JPS5936851B2 - Manufacturing method of polyester film - Google Patents

Manufacturing method of polyester film

Info

Publication number
JPS5936851B2
JPS5936851B2 JP7347677A JP7347677A JPS5936851B2 JP S5936851 B2 JPS5936851 B2 JP S5936851B2 JP 7347677 A JP7347677 A JP 7347677A JP 7347677 A JP7347677 A JP 7347677A JP S5936851 B2 JPS5936851 B2 JP S5936851B2
Authority
JP
Japan
Prior art keywords
film
stretching
rolls
roll
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7347677A
Other languages
Japanese (ja)
Other versions
JPS548672A (en
Inventor
孝彦 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7347677A priority Critical patent/JPS5936851B2/en
Publication of JPS548672A publication Critical patent/JPS548672A/en
Publication of JPS5936851B2 publication Critical patent/JPS5936851B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明はポリエチレンテレフタレート(以下PETと略
記する)と主成分とする実質的に非晶状態のフィルムか
ら易滑性の優れたフィルムを製造する方法に関するもの
であり、さらに詳しくいえば、PETの急冷フィルムを
縦方向に3段階に分けて延伸することによりフィルム表
面に発現する粒子状態を変化させ易滑性をさらに付与す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a film with excellent slipperiness from a substantially amorphous film containing polyethylene terephthalate (hereinafter abbreviated as PET) as a main component; Specifically, the present invention relates to a method of stretching a rapidly cooled PET film in three stages in the longitudinal direction to change the state of particles appearing on the surface of the film to further impart slipperiness.

従来、フィルムを2段階以上に分けて延伸する方法は、
種々公知であるが、それらの公知の方法では、従来から
一般的に行なわれている1段階延伸に比して、易滑性に
関し大きな改良効果がない。
Conventionally, the method of stretching a film in two or more stages is
Various methods are known, but these known methods do not significantly improve slipperiness compared to the conventional one-step stretching.

特に、縦方向に上記の公知の方法で延伸したフィルムを
さらに直交する方向に延伸し2軸延伸フィルムとした場
合は易滑性に関しては従来の1段縦延伸フィルムを横延
伸して得たものと実際上同じものしか得られない。すな
わち、公知の多段延伸方法を種々条件をかえても易滑性
が改良されないばかりか、かえつて悪化したり、厚み均
一性、フィルムのへイズ等が、従来の1段延伸より悪化
するため、とくに、PETフィルムの製造には、ほとん
ど使用されていないのが実情である。本発明者等は、l
段縦延伸の特徴である厚み均一性、ヘイズおよびさらに
横延伸するときの安定製造性を生かし、かつ易滑性の優
れたフィルムを製造するための多段延伸方法を、鋭意検
討し、本発明に達したのである。
In particular, when a film stretched in the longitudinal direction by the above-mentioned known method is further stretched in the perpendicular direction to form a biaxially stretched film, the smoothness is better than that obtained by horizontally stretching a conventional single-stage longitudinally stretched film. You can only get practically the same thing. That is, even if various conditions are changed in the known multi-stage stretching method, the slipperiness not only is not improved but is even worsened, and thickness uniformity, film haze, etc. are worse than in the conventional one-stage stretching method. In particular, the reality is that it is hardly used in the production of PET films. The inventors have l
We have diligently studied a multistage stretching method that takes advantage of the uniformity of thickness, haze, and stable productivity during horizontal stretching, which are the characteristics of longitudinal stretching, and have developed a multistage stretching method to produce a film with excellent slipperiness. It was reached.

すなわち、本発明の骨子は常法によつて得た非晶性PE
Tフィルムを複屈折率が1.0〜12×10−0になる
ように縦方向に延伸(1段目)後、表面温度が100−
150℃のロールに0.5秒以上接触させながら縦方向
に1.03倍以上の延伸を行ない(2段目)、さらに8
0〜1、20℃の温度で縦方向に2.5倍から4.5倍
延伸(3段目)することにある。
That is, the gist of the present invention is to obtain amorphous PE obtained by a conventional method.
After stretching the T film in the longitudinal direction (first step) so that the birefringence becomes 1.0 to 12 x 10-0, the surface temperature becomes 100-
While in contact with a roll at 150°C for 0.5 seconds or more, stretching is carried out by 1.03 times or more in the longitudinal direction (second stage), and further 8
The purpose is to stretch the film by 2.5 to 4.5 times in the longitudinal direction at a temperature of 0 to 1.20°C (third stage).

このようにして得られたl軸延伸フィルムをさらに横方
向にも常法で2.5倍以上延伸し熱処理することにより
、厚み均一性、ヘイズ等が一段縦延伸法と同等でかつ易
滑性を良化させるという従来にない2軸延伸フィルムが
得られる。
By further stretching the l-axis stretched film thus obtained in the transverse direction by 2.5 times or more using a conventional method and heat-treating it, the thickness uniformity, haze, etc. are the same as those of the one-step longitudinal stretching method, and the film is easy to slip. An unprecedented biaxially stretched film with improved properties can be obtained.

以下に本発明の態様を詳しく説明する。Aspects of the present invention will be explained in detail below.

本発明におけるポリエチレンテレフタレートは酸成分と
してテレフタル酸80%以上であり、グリコール成分は
、エチレングリコールを80%以上からなるものであり
、他の成分の量および種類の異なるものの共重合体ある
いはブレンド物でもよい。
The polyethylene terephthalate in the present invention has 80% or more of terephthalic acid as the acid component, and the glycol component consists of 80% or more of ethylene glycol, and may also be a copolymer or blend of other components with different amounts and types. good.

また、使用するポリマー中には重合段階でリン酸および
それらのエステルあるいは無機粒子(シリカ、カオリン
、炭酸カルシウム、リン酸カルシウムなど)が含まれて
もよいし、重合後ポリマーに無機粒子などをブレンドし
てもよい。
In addition, the polymer used may contain phosphoric acid and its esters or inorganic particles (silica, kaolin, calcium carbonate, calcium phosphate, etc.) during the polymerization step, or inorganic particles may be blended with the polymer after polymerization. Good too.

このようにして得たポリマーを十分乾燥後280〜29
0℃にコントロールした押出機、フイルタ一、口金を通
して溶融成型し、回転するドラム上にキヤストし、急冷
固化フイルムを得る。
After sufficiently drying the polymer obtained in this way, the
The mixture is melt-molded through an extruder controlled at 0°C, a filter, and a die, and cast onto a rotating drum to obtain a rapidly solidified film.

この急冷フイルムは実質的に非晶状態(以下Aフイルム
という)である。次に、非晶状フイルムを縦方向にガラ
ス転移温度以上で延伸し、複屈折率(以下Δnという)
1.0〜12%10−3のフイルム(以下B−1フイル
ムという)とする。複屈折率は以下の方法で求める。す
なわち複屈折率は、偏光顕微鏡とベレツクのコンペンセ
ータを用いて、レターデーシヨン値を決定し、次式から
複屈折率(Δn)を算出する。
This rapidly cooled film is substantially in an amorphous state (hereinafter referred to as A film). Next, the amorphous film is stretched in the longitudinal direction at a temperature higher than the glass transition temperature, and the birefringence (hereinafter referred to as Δn) is
The film is 1.0 to 12% 10-3 (hereinafter referred to as B-1 film). The birefringence index is determined by the following method. That is, the birefringence is determined by determining the retardation value using a polarizing microscope and a Bereck compensator, and calculating the birefringence (Δn) from the following equation.

B−1フイルムのΔnが1.0×10−3以下では、後
の工程を最適化しても易滑性が向上しないし、12×1
0−3以上だと後の工程で結晶化の進行が著しく、特に
2軸延伸に供する場合は2段目以降の縦延伸条件を本発
明の範囲で最適化しても横延伸時にクリツプで把持して
いる近傍での破れが多発し、安定製造状態が得られず好
ましくない。B−1フイルムは、延伸後ガラス転移温度
以下に冷却するほうが、厚み均一性の点で好ましい。次
にB−1フイルムを表面が100〜150℃にコントロ
ールされたロールに065秒以上接触させながら、1.
03倍以上の延伸を行ないB−2フイルムを得る。本延
伸工程においてロール表面温度が100゜C未満では易
滑性付与がなく、150℃以上では厚み均一性が悪化す
る。本フイルムを用いて2軸延伸フイルムを製造する場
合にはB2フイルムの熱結晶化を極力低く押える必要が
あり、PETの場合、B−2フイルム厚み方向全体の平
均結晶化度は8%以下が好ましい。ただし、結晶化度C
は完全結晶の.密度を1.45t/C77i、完全非晶
の密度を1.33y/dとしで、求めた数値である。
If the Δn of the B-1 film is less than 1.0×10-3, the slipperiness will not improve even if the subsequent steps are optimized;
If it is 0-3 or higher, crystallization will progress significantly in the subsequent steps, and even if the longitudinal stretching conditions in the second and subsequent stages are optimized within the scope of the present invention, especially when subjecting to biaxial stretching, the film cannot be held with clips during transverse stretching. This is not preferable because it causes frequent breaks in the vicinity of the surface, making it difficult to obtain stable manufacturing conditions. It is preferable for the B-1 film to be cooled to below the glass transition temperature after stretching in terms of thickness uniformity. Next, the B-1 film was brought into contact with a roll whose surface was controlled at 100 to 150°C for 065 seconds or more, and 1.
A B-2 film is obtained by stretching 03 times or more. In the main stretching step, if the roll surface temperature is less than 100°C, no slipperiness will be imparted, and if it is 150°C or higher, the thickness uniformity will deteriorate. When producing a biaxially stretched film using this film, it is necessary to suppress the thermal crystallization of the B2 film as low as possible, and in the case of PET, the average crystallinity of the entire B-2 film in the thickness direction is 8% or less. preferable. However, crystallinity C
is a perfect crystal. These values were determined by assuming a density of 1.45t/C77i and a completely amorphous density of 1.33y/d.

すなわち、2軸延伸にする場合には、第2段階の延伸に
おける結晶化増大は、高々フイルムの表層部のみにとど
めるべきであり、フイルム厚さ方向全体としては、微結
晶の生成を極力押えることがポイントになる。
In other words, in the case of biaxial stretching, the increase in crystallization in the second stage of stretching should be limited to the surface layer of the film at most, and the formation of microcrystals should be suppressed as much as possible in the film thickness direction as a whole. becomes the point.

そのため第2段目の延伸時のロール表面温度が150℃
のときでもフイルム温度は高々135℃以下にとどめる
ことが好ましい。ロールへの接触時間は0.5秒未満で
は易滑性付与がない。必要な接触時間は易滑性付与要求
の度合にもよるが、通常は1.5秒以上の条件が好まし
く用いられる。本フイルムを用いて2軸延伸フイルムを
製造する場合に安定した製造を得るために本工程はたか
だか10秒以内に押えるべきである。延伸倍率が1.0
3倍未満では、厚み均一性が悪化するとともに易滑性効
果が減少するので好ましくない。本工程での最大倍率は
接触させるロール表面温度にもよるが、1.30倍以下
に押えるべきである。1.30倍を越えると易滑性は向
上するもののフイルムへのヘイズも上昇し、結晶化度も
15%以上にまで高めるため、本フイルムを2軸延伸す
ることは、不可能となるので好ましくない。
Therefore, the roll surface temperature during the second stage stretching was 150℃.
Even in this case, it is preferable to keep the film temperature at most 135° C. or lower. If the contact time to the roll is less than 0.5 seconds, slipperiness will not be imparted. Although the necessary contact time depends on the degree of request for imparting slipperiness, a condition of 1.5 seconds or more is usually preferably used. When producing a biaxially stretched film using this film, this process should be completed within 10 seconds at most in order to obtain stable production. Stretching ratio is 1.0
If it is less than 3 times, the thickness uniformity deteriorates and the slipperiness effect decreases, which is not preferable. The maximum magnification in this step depends on the surface temperature of the rolls being brought into contact, but should be kept to 1.30 times or less. If it exceeds 1.30 times, the slipperiness will improve, but the haze of the film will also increase, and the crystallinity will also increase to 15% or more, making it impossible to biaxially stretch the film, so it is preferable. do not have.

本工程で用いるロール表面材質はセラミツク、あるいは
エラストマー{バイトン(6フツ化プロピレンとフツ化
ビニリデンを主とする共重合体で、デユポン社製商標名
)、シリコーン、EPT(エチレンプロピレン共重合系
)、ハイパロン(クロロスルフオン化ポリエチレン)な
ど}、あるいはポリ沸化エチレン等の沸素樹脂などで、
被覆されてJいることが好ましいが、熱伝達係数がクロ
ムメツキロールよりも小さく、粘着が著しくおきない材
質なら上記の材質以外でも使用しうる。なお、本工程で
の延伸のための加熱は上で述べたようなロールからの伝
熱以外の方法(例えばラジエーシヨ5ンヒータ一、熱風
、熱媒中)だけでは本発明に述べる効果は発現しないが
、ロールによる加熱と他の加熱手段との組合せは条件を
適正化することにより、本発明の効果を得ることができ
る。B−2フイルムの延伸終了部のロールについては必
要にO応じて駆動で、かつフイルムをはさんで、非粘着
ロールでニツプできる構造であることが好ましい。次に
80〜120℃の温度で2.5〜4.5倍縦延伸する(
B−3フイルム)工程に入る。延伸温度が80℃未満で
は、延伸後の配向が高くなるとともに、フイルム中の粒
子近傍のボードが大きくなり、ヘイズが高くなる。
The roll surface materials used in this process include ceramics, elastomers (Viton (a copolymer mainly composed of propylene hexafluoride and vinylidene fluoride, a trade name manufactured by DuPont), silicone, EPT (ethylene propylene copolymer), Hypalon (chlorosulfonated polyethylene), etc., or fluorine resins such as polyfluorinated ethylene, etc.
Although it is preferable that the roll be coated, other materials than the above may be used as long as the heat transfer coefficient is smaller than that of the chrome-plated roll and the material does not cause significant adhesion. Note that the effects described in the present invention will not be achieved if the heating for stretching in this step is performed by a method other than heat transfer from the rolls as described above (for example, using a radiator heater, hot air, or in a heat medium). The effects of the present invention can be obtained by optimizing the conditions for the combination of heating by rolls and other heating means. It is preferable that the roll at the end of stretching of the B-2 film is driven as necessary and has a structure in which the film can be nipped with non-adhesive rolls. Next, it is longitudinally stretched 2.5 to 4.5 times at a temperature of 80 to 120°C (
B-3 film) process begins. If the stretching temperature is less than 80° C., the orientation after stretching becomes high, the boards near the particles in the film become large, and the haze becomes high.

とくに、2軸延伸を行なう場合には、前後の理由による
フイルム破れが顕著で、かつヘイズの高いフイルムしか
得られないので好ましくない。120℃を越えると、適
正な配向度を有するフイルムを安定して得ることが困難
なため、とくに2軸延伸用として用いる場合には、破れ
やすい状態と、2軸方向の強度が不十分な状態とが混在
し、しかも幅方向の厚みむらも悪化するので好ましくな
い。
In particular, biaxial stretching is undesirable because the film tends to tear easily due to the preceding and following reasons, and only a film with high haze can be obtained. If the temperature exceeds 120°C, it is difficult to stably obtain a film with an appropriate degree of orientation, so especially when used for biaxial stretching, the film tends to break easily and the strength in the biaxial direction is insufficient. This is not preferable because it causes a mixture of the above and the like, and also worsens the thickness unevenness in the width direction.

本工程では、ロールによる延伸あるいはロール間にラジ
エーシヨンを設けてフリパスで延伸する方法、あるいは
熱風を加熱源にする方法のいずれか、あるいはそれらの
組合せでもよい。
In this step, any one of a method of drawing using rolls, a method of drawing with a flip pass with radiation provided between the rolls, a method of using hot air as a heating source, or a combination thereof may be used.

ここでいう延伸温度とは延伸開始時点のフイルム温度で
あり、ロール群で温度をコントロールする場合にはロー
ル本数を十分に設置しておけば、ほぼロール表面温度±
2℃以内にフイルム温度が入る。本工程での延伸倍率が
2.5倍未満では厚み均一性が悪化し好ましくなく、4
.5倍を越えると熱結晶化が著しく促進され、とくにB
−3フイルムを横方向に延伸して2軸延伸フイルムを作
る場合は横延伸時に把持しているクリツプ近傍からの破
れが多発し安定した製造条件が得られない。なお、ロー
ル材質等を適正化すれば第2段延伸と第3段延伸とは、
ほぼ同一の温度でも延伸できるため、第2段目と第3段
目の間に1駆動のニツプロールを配することにより、第
3段目で予熱をせずに直接延伸させてしまうことも可能
である。以上の方法で得られたフイルムはそのままでも
縦方向に高い強度を有する易滑性、厚み均一囲の優れた
フイルムが得られるが通常は横方向の特性、縦裂き性を
改良するために、横方向に常法により延伸温度90〜1
40℃で2.5〜4.0倍の2軸延伸し、150〜24
0℃で熱固定して寸法安定性の優れたフイルムが得られ
るとともに、さらに、再縦延伸の場合は、横延伸を80
〜130℃、2.5〜4.0倍行ない、縦方向に広幅ロ
ールを用いて90〜170℃で1.3〜3.0倍延伸後
、160〜240℃で熱処理すると、縦方向に高い強度
を有し、易滑性も十分そなわつたフイルムが得られる。
The stretching temperature here refers to the temperature of the film at the start of stretching, and when controlling the temperature with a group of rolls, if a sufficient number of rolls are installed, the temperature of the roll surface can be approximately ±
The film temperature is within 2℃. If the stretching ratio in this step is less than 2.5 times, the thickness uniformity will deteriorate, which is undesirable.
.. When the temperature exceeds 5 times, thermal crystallization is significantly promoted, especially for B.
-3 When a biaxially stretched film is produced by stretching a film in the transverse direction, it is difficult to obtain stable manufacturing conditions because the film frequently breaks near the clips gripped during the transverse stretching. In addition, if the roll material etc. are optimized, the second stage stretching and the third stage stretching are
Since stretching can be performed at almost the same temperature, by placing a single-drive nip roll between the second and third stages, it is possible to directly stretch the film in the third stage without preheating. be. The film obtained by the above method can be used as it is, with high strength in the longitudinal direction, excellent slipperiness, and a uniform thickness. Stretching temperature 90 to 1 by conventional method in direction
Biaxially stretched 2.5 to 4.0 times at 40°C, 150 to 24
A film with excellent dimensional stability can be obtained by heat setting at 0°C, and in the case of longitudinal re-stretching, the transverse stretching can be carried out at 80°C.
~130℃, 2.5~4.0 times, stretched 1.3~3.0 times at 90~170℃ using wide rolls in the machine direction, and then heat treated at 160~240℃. A film with sufficient strength and slipperiness can be obtained.

次に、図面について説明する。Next, the drawings will be explained.

第1図は、本発明のフイルム縦延伸における1段延伸装
置の一例を示す図である。
FIG. 1 is a diagram showing an example of a one-stage stretching apparatus for longitudinal film stretching of the present invention.

図において、ロール1,8はクロムメツキされた駆動冷
却ロール、ロールvはゴムライニングのニツプロール、
ロール2〜7は、バイトンA(6フツ化プロピレンとフ
ツ化ビニリデンの共重合体で、デユポン社商品名:肉厚
2m77!)の遊動加熱ロールである。第2図は、本発
明のフイルム縦延伸における2段延伸装置の一例を示す
図である。図において、ロール9,15はクロムメツキ
された駆動冷却ロール、ロール10〜14はバイトンA
(同上:肉厚3mu)の遊動加熱ロールである。ロール
15′は、ゴムライニングのニツプロールである。各ロ
ール間の間隙はロール上でのスベリを極力押えるために
、2m77!程度の間隙にしており、また、ロール表面
のトルクは、ロール2〜4を120Vとし、ロール5,
6を507になるよう調整している。第3図は、本発明
のフイルム縦延伸における3段延伸装置の一例を示す図
である。図において、ロール15,21,22はクロム
メツキされた駆動冷却ロール、ロール16〜20はハイ
パロン40(デユポン社商品名:肉厚2mm)の遊動加
熱ロールである。第4図は、本発明のフイルム縦延伸装
置の1段延伸区域(1)、2段延伸区域01)、3段延
伸区域(ホ)を連結した装置を示す図である。
In the figure, rolls 1 and 8 are chrome-plated drive cooling rolls, roll v is a rubber-lined nip roll,
Rolls 2 to 7 are floating heating rolls made of Viton A (a copolymer of propylene hexafluoride and vinylidene fluoride, trade name of DuPont Co., Ltd., wall thickness: 2 m77!). FIG. 2 is a diagram showing an example of a two-stage stretching apparatus for longitudinal film stretching of the present invention. In the figure, rolls 9 and 15 are chrome-plated driving cooling rolls, rolls 10 to 14 are Viton A
(Same as above: wall thickness 3 mu) floating heating roll. Roll 15' is a rubber-lined nip roll. The gap between each roll is 2m77 to prevent slipping on the roll as much as possible! Also, the torque on the roll surface is 120V for rolls 2 to 4, and 120V for rolls 5 and 4.
6 is adjusted to become 507. FIG. 3 is a diagram showing an example of a three-stage stretching apparatus for longitudinal film stretching of the present invention. In the figure, rolls 15, 21, and 22 are chrome-plated driving cooling rolls, and rolls 16 to 20 are floating heating rolls made of Hypalon 40 (trade name of DuPont, wall thickness: 2 mm). FIG. 4 is a diagram showing an apparatus in which the first-stage stretching zone (1), the second-stage stretching zone 01), and the third-stage stretching zone (E) of the film longitudinal stretching apparatus of the present invention are connected.

各口・−ルは前記、第1〜第3図に示すものと同じであ
る。実施例 1 常法により重合した固有粘度0.60のポリエチレンテ
レフタレート(平均粒径2.3μのカリオンを0.1%
重合時に添加)を170℃で3時間乾燥後285℃で押
出しし、Tダイからシート状にて30℃に保たれた回転
ドラムに接触させ急冷固化して幅300mm1厚み20
0μの未延伸フイルムを得た。
Each port is the same as shown in FIGS. 1 to 3 above. Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.60 (0.1% carrion with an average particle size of 2.3μ) polymerized by a conventional method
(added during polymerization) was dried at 170°C for 3 hours, extruded at 285°C, brought into contact with a rotating drum maintained at 30°C in sheet form from a T-die, and rapidly solidified to form a sheet with a width of 300 mm and a thickness of 20 mm.
An unstretched film of 0μ was obtained.

なお回転ドラムに溶融ポリマーを密着させるとき公知の
静電キヤスト法を用いた。次に、第4図に示す装置を用
い、下記条件で、縦延伸を行なつた。
Note that a known electrostatic casting method was used to bring the molten polymer into close contact with the rotating drum. Next, longitudinal stretching was performed using the apparatus shown in FIG. 4 under the following conditions.

このとき、1段目では実質的に延伸がロール5から7の
間で、2段目は、ロール10〜14の間で、 3段目は、ロール18〜20の間で行なわれた。
At this time, stretching was substantially performed between rolls 5 and 7 in the first stage, between rolls 10 and 14 in the second stage, and between rolls 18 and 20 in the third stage.

ロール18上のフイルムの温度を赤外式非接触温度計で
測定した結果、約105℃であつた。次に、横方向に3
.6倍、110℃で延伸後220℃で熱処理して、厚み
11μの2軸延伸フイルムを得た。2軸延伸後の巻取速
度は約90m/分であり、熱処理時間は4秒である。
The temperature of the film on roll 18 was measured with an infrared non-contact thermometer and was found to be about 105°C. Next, horizontally 3
.. After stretching the film 6 times at 110°C, it was heat-treated at 220°C to obtain a biaxially stretched film with a thickness of 11μ. The winding speed after biaxial stretching is about 90 m/min, and the heat treatment time is 4 seconds.

比較例 1 実施例1と同じポリエチレンテレフタレートの未延伸フ
イルム(厚み130μ、幅30011)を、第4図の装
置の1、2段目をスルーにし、ロール15から以降を通
して1段延伸した。
Comparative Example 1 The same unstretched polyethylene terephthalate film as in Example 1 (thickness: 130 μm, width: 30011 mm) was stretched in one stage through the first and second stages of the apparatus shown in FIG. 4, starting from roll 15 and thereafter.

延伸条件は110℃、3.5倍である。なお、本比較例
では延伸はロール19と20との間で実質的に行なわれ
、ロール19上でのフイルム温度は実施例と同じ方法で
測定した結果は90℃であり、Δn=8.6X10−2
であつた。このフイルムを、実施例1と同じ条件で横延
伸、熱処理した。比較例 2 実施例1と同じ条件の未延伸フイルムを用い、以下の条
件で縦延伸した。
The stretching conditions were 110°C and 3.5 times. In addition, in this comparative example, stretching was substantially performed between rolls 19 and 20, and the film temperature on roll 19 was measured in the same manner as in the example and was 90°C, Δn=8.6×10 -2
It was hot. This film was laterally stretched and heat treated under the same conditions as in Example 1. Comparative Example 2 An unstretched film under the same conditions as Example 1 was longitudinally stretched under the following conditions.

3段目の延伸は、実質的に第4図のロール19と20と
の間で行なわれ、ロール19上でのフイルム温度は10
9℃であつた。
The third stage of stretching is substantially carried out between rolls 19 and 20 in FIG. 4, and the film temperature on roll 19 is 10.
It was 9℃.

このフイルムを実施例1と同じ条件で、横延伸、熱固定
し、11μの2軸延伸フイルムを得た。実施例 2 実施例1において、ロール10,11を60℃に下げた
以外は全て同じ設定条件で2軸延伸した。
This film was laterally stretched and heat-set under the same conditions as in Example 1 to obtain a biaxially stretched film of 11μ. Example 2 Biaxial stretching was carried out under the same conditions as in Example 1 except that the temperature of rolls 10 and 11 was lowered to 60°C.

/″比較例 3 実施例2において2段目の延伸倍率を1.01に下げた
以外は全く同じ条件で2軸延伸したフイルムを得た。
/''Comparative Example 3 A biaxially stretched film was obtained under exactly the same conditions as in Example 2 except that the second stage stretching ratio was lowered to 1.01.

実施例 3 実施例1において、ロール16〜20の表面温度を20
℃に下げた以外は全く同じ条件で縦延伸、横延伸して、
2軸延伸フイルムを得た。
Example 3 In Example 1, the surface temperature of rolls 16 to 20 was set to 20
Longitudinal and horizontal stretching were carried out under exactly the same conditions except that the temperature was lowered to ℃.
A biaxially stretched film was obtained.

本実施例での3段目の縦延伸は実質的にロール15と1
6との間で行なわれ、ロール15から出た直後のフイル
ム温度は108℃であつた。実施例1〜3、比較例1〜
3で得たフイルムの特性を次表に示す。
In this example, the third stage of longitudinal stretching is substantially carried out by rolls 15 and 1.
The temperature of the film immediately after coming out from the roll 15 was 108°C. Examples 1-3, Comparative Examples 1-
The properties of the film obtained in step 3 are shown in the following table.

これらの結果を要約すると、次のとおりである。These results can be summarized as follows.

(1)実施例1と比較例1(1段延伸)の比較から、本
発明によれば、同じヘイズ、厚みむらで摩擦係数が低下
することがわかる。(2)実施例2は、2段目の延伸工
程での加熱ロールとの接触時間を実施例1より短縮させ
た条件であるが、本条件でも比較例1より摩擦係数で有
利なことがわかる。
(1) A comparison between Example 1 and Comparative Example 1 (one-stage stretching) shows that according to the present invention, the friction coefficient decreases with the same haze and thickness unevenness. (2) Example 2 is a condition in which the contact time with the heating roll in the second drawing step is shorter than that in Example 1, but it can be seen that even under these conditions, the coefficient of friction is more advantageous than in Comparative Example 1. .

(3)比較例3は、2段目の延伸倍率を、本発明の範囲
外にした条件であり、ヘイズと厚みむらの悪化が著しい
ことがわかる。
(3) Comparative Example 3 is a condition in which the second stage stretching ratio is outside the range of the present invention, and it can be seen that the haze and thickness unevenness are significantly deteriorated.

(4)比較例2は、2段目の延伸温度と倍率の両者を本
発明の範囲外にした条件であり、ヘイズ、摩擦係数が悪
化していることがわかる。
(4) In Comparative Example 2, both the second-stage stretching temperature and the stretching ratio were outside the range of the present invention, and it can be seen that the haze and friction coefficient were deteriorated.

(5)実施例3は、実質的に2段目と3段目をニツプロ
ールをはさんで直結させた条件であり、比較例1に比し
て摩擦係数、厚みむらが良化していることがわかる5/
0 また、本発明に従がえば、フイルム品質を同等以上のレ
ベルに保つたまま、第1段目倍率×第2段目倍率分、す
なわち、約1.55倍総合縦延伸倍率を高められるので
、未延伸フイルムの速度が同じであれば生産性、すなわ
ち製造スピードは55%も高められる可能性がでる。
(5) In Example 3, the second and third stages were essentially directly connected by sandwiching the Nipro rolls, and it was found that the friction coefficient and thickness unevenness were improved compared to Comparative Example 1. Understood 5/
0 Furthermore, according to the present invention, the overall longitudinal stretching ratio can be increased by the amount of the first stage magnification x the second stage magnification, that is, about 1.55 times, while maintaining the film quality at the same or higher level. If the speed of the unstretched film remains the same, the productivity, that is, the manufacturing speed, can be increased by as much as 55%.

例えば、通常の1段縦延伸で2軸延伸フイルムを得ると
きの製造スピードの上限をVlm/Mmとすると、本発
明による上限スピードV2得られる。
For example, if the upper limit of the production speed when obtaining a biaxially stretched film by ordinary one-stage longitudinal stretching is Vlm/Mm, the upper limit speed V2 according to the present invention can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明方法を実施するための
それぞれ1段目、2段目、3段目の延伸装置の→リを示
すものである。 第4図は、本発明方法を実施するためのフイルム縦延伸
装置の一例を示すものである。ロール1,8,9,21
,22:冷却駆動ロール(クロームメツキ)、ロール1
′,15′,22′:ニツプロール(ゴムライコング)
、ロール2〜7,10〜14:遊動加熱ロール(バイト
ンA)、ロール15〜20:遊動加熱ロール(ハイパロ
ン40)。
FIGS. 1, 2, and 3 are views of the first, second, and third stage stretching apparatus, respectively, for carrying out the method of the present invention. FIG. 4 shows an example of a film longitudinal stretching apparatus for carrying out the method of the present invention. Roll 1, 8, 9, 21
, 22: Cooling drive roll (chrome plating), roll 1
', 15', 22': Nituprol (Gum Lycong)
, Rolls 2-7, 10-14: floating heating rolls (Viton A), Rolls 15-20: floating heating rolls (Hypalon 40).

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンテレフタレートを主成分とする実質的
に非晶状態のフィルムを縦方向に複屈折率(Δn)が1
.0〜12×10^−^3になるように延伸した後、少
なくとも1.03倍の延伸倍率で100〜150℃の表
面を有するロールに、少なくとも0.5秒以上接触させ
、しかる後に80〜120℃の温度で2.5〜4.5倍
さらに縦方向に延伸することを特徴とするポリエステル
フィルムの製造法。
1 A substantially amorphous film containing polyethylene terephthalate as a main component has a birefringence index (Δn) of 1 in the longitudinal direction.
.. After stretching it to 0 to 12 x 10^-^3, it is brought into contact with a roll having a surface temperature of 100 to 150 °C for at least 0.5 seconds at a stretching ratio of at least 1.03 times, and then stretched to 80 to 150 °C. A method for producing a polyester film, characterized by further stretching in the machine direction by 2.5 to 4.5 times at a temperature of 120°C.
JP7347677A 1977-06-21 1977-06-21 Manufacturing method of polyester film Expired JPS5936851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7347677A JPS5936851B2 (en) 1977-06-21 1977-06-21 Manufacturing method of polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7347677A JPS5936851B2 (en) 1977-06-21 1977-06-21 Manufacturing method of polyester film

Publications (2)

Publication Number Publication Date
JPS548672A JPS548672A (en) 1979-01-23
JPS5936851B2 true JPS5936851B2 (en) 1984-09-06

Family

ID=13519358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347677A Expired JPS5936851B2 (en) 1977-06-21 1977-06-21 Manufacturing method of polyester film

Country Status (1)

Country Link
JP (1) JPS5936851B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651331A (en) * 1979-10-03 1981-05-08 Toyobo Co Ltd Manufacture of polyester film
JPS6056101B2 (en) * 1980-09-25 1985-12-09 東レ株式会社 Manufacturing method of polyester film
JPS5878729A (en) * 1981-11-04 1983-05-12 Diafoil Co Ltd Preparation of biaxially-oriented polyester film
JPS58153232A (en) * 1982-03-05 1983-09-12 Toray Ind Inc Magnetic recording medium
JPS58153231A (en) * 1982-03-05 1983-09-12 Toray Ind Inc Magnetic recording tape
JPS59159319A (en) * 1983-03-03 1984-09-08 Mitsui Toatsu Chem Inc Manufacture of uniaxially stretched polyester film
JPS60228123A (en) * 1984-04-26 1985-11-13 Diafoil Co Ltd Manufacture of biaxially oriented polyester film
JPS62149413A (en) * 1985-12-25 1987-07-03 Toray Ind Inc Heating of film made of thermoplastic resin
JPS62158026A (en) * 1986-01-07 1987-07-14 Toray Ind Inc Heating of film made of thermoplastic resin
JP2510741B2 (en) * 1990-01-11 1996-06-26 東レ株式会社 Biaxially oriented thermoplastic resin film
DE60134022D1 (en) 2000-06-23 2008-06-26 Teijin Ltd METHOD FOR PRODUCING A POLYESTER RAIL AND A POLYESTER FILM

Also Published As

Publication number Publication date
JPS548672A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
JPS6056101B2 (en) Manufacturing method of polyester film
JPS5936851B2 (en) Manufacturing method of polyester film
JP3765681B2 (en) Production method of polyester film
JPH0125695B2 (en)
JP3804311B2 (en) Polyester film and method for producing the same
JPH0125694B2 (en)
JPS6243856B2 (en)
JPS60262624A (en) Stretching method of polyester film
JP2569471B2 (en) Method for producing toughened polyester film
JPH02130125A (en) Production of polyester film
JPH06210720A (en) Molding of polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPH0125696B2 (en)
JP3367129B2 (en) Method for producing polyester film
JP2992586B2 (en) Method for producing biaxially oriented polyester film
JPH11198228A (en) Inline coating method
JPH01165423A (en) Preparation of biaxially oriented polyester film
KR0142039B1 (en) Process for preparing biaxially oriented polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JP3988228B2 (en) Biaxially oriented polyester film
JPH08174662A (en) Production of biaxially stretched polyester film
JPH06305016A (en) Manufacture of polyester film
JPS60176743A (en) Manufacture of biaxially oriented polyester film
KR0173729B1 (en) Manufacturing method of biaxially oriented polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film