JPS5930783B2 - vibration absorbing alloy - Google Patents

vibration absorbing alloy

Info

Publication number
JPS5930783B2
JPS5930783B2 JP50058737A JP5873775A JPS5930783B2 JP S5930783 B2 JPS5930783 B2 JP S5930783B2 JP 50058737 A JP50058737 A JP 50058737A JP 5873775 A JP5873775 A JP 5873775A JP S5930783 B2 JPS5930783 B2 JP S5930783B2
Authority
JP
Japan
Prior art keywords
less
alloy
vibration
subcomponents
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50058737A
Other languages
Japanese (ja)
Other versions
JPS51134308A (en
Inventor
量 増本
昭八 沢谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP50058737A priority Critical patent/JPS5930783B2/en
Priority to DE19762622108 priority patent/DE2622108C3/en
Publication of JPS51134308A publication Critical patent/JPS51134308A/en
Publication of JPS5930783B2 publication Critical patent/JPS5930783B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は大きな振動減衰能を有する吸振合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration absorbing alloy having a large vibration damping ability.

近時、航空機、船舶、車両などの公害問題を起している
振動および騒音を伴う機械類あるいは振動を伴う精密計
器などには高い減衰能を有する吸振合金よりなる素子が
使用されつつある。
In recent years, elements made of vibration-absorbing alloys having high damping ability have been used in machinery such as aircraft, ships, and vehicles that generate noise and vibration that cause pollution problems, as well as precision instruments that generate vibration.

吸振合金としては減衰能Q−1の値が0.005以上の
Mn−Cu 、Ni−TiおよびZn−Al系合金など
が普通用いられている。
As vibration-absorbing alloys, Mn--Cu, Ni--Ti, and Zn--Al alloys having a damping capacity Q-1 of 0.005 or more are commonly used.

Q−1は次式(式中のδは対数減衰率を示す)で表わす
ことができる。
Q-1 can be expressed by the following formula (δ in the formula represents a logarithmic attenuation rate).

つまり、Q−’の値が大きいほど、エネルギーの減少量
が多いことになり、短い時間で振動の振幅が小さくなり
、減衰効果が大きいことになる。
In other words, the larger the value of Q-', the greater the amount of energy reduction, the smaller the amplitude of vibration in a shorter time, and the greater the damping effect.

しかし吸振合金のうちMn−Cu系合金およびNi−T
i系合金は室温付近での減衰能特性はすぐれているが、
温度の上昇に伴って激減し100℃付近ではほとんどそ
の特性を失ない一般の金属材料の特性と同じになる。
However, among vibration-absorbing alloys, Mn-Cu alloys and Ni-T
Although i-based alloys have excellent damping properties near room temperature,
It decreases dramatically as the temperature rises, and at around 100°C, it hardly loses its properties, becoming the same as those of general metal materials.

したがってこれら合金は100℃を越えた高温で吸振合
金素子としての効果が期待できない。
Therefore, these alloys cannot be expected to be effective as vibration-absorbing alloy elements at high temperatures exceeding 100°C.

またZn−Al系合金は室温付近での減衰能特性は非常
に小さいが、温度の上昇に従って増大しし100℃以上
の高温域で比較的高い減衰能特性を示す。
Further, the Zn-Al alloy has very low damping ability near room temperature, but increases as the temperature rises, and exhibits relatively high damping ability in a high temperature range of 100° C. or higher.

また両合金とも冷間加工性および耐食性が悪いという欠
点を有する。
Both alloys also have the disadvantage of poor cold workability and poor corrosion resistance.

本発明は従来の吸振合金の性能を改善し、低温から高温
までの広範囲の温度領域においてすぐれた減衰能が得ら
れ、かつ冷間加工性にすぐれ、しかも耐食性の良い吸振
合金素子を提供することにある。
The present invention improves the performance of conventional vibration-absorbing alloys, and provides a vibration-absorbing alloy element that has excellent damping ability in a wide temperature range from low to high temperatures, has excellent cold workability, and has good corrosion resistance. It is in.

本発明の合金は重量比にてCu0.01〜5係および残
部Feから成る二元合金あるいはこれに副成分としてC
r40%以下、Al、Nb2Mo。
The alloy of the present invention is a binary alloy consisting of Cu0.01 to 5% and the balance Fe or C as a subcomponent in weight ratio.
r40% or less, Al, Nb2Mo.

W t T 1 、V 、Ta 10 %以下、Si
5%以下、CoおよびYの何れか1係以下のうち一種
または二種以上の副成分全量0.01〜400;bを添
加したものである。
W t T 1 , V , Ta 10% or less, Si
5% or less, and one or more of Co and Y in a total amount of 0.01 to 400; b is added.

次に本発明合金の製法について説明する。Next, a method for producing the alloy of the present invention will be explained.

まず上記の組成範囲において適量の鉄および銅あるいは
これを主成分としてさらに副成分を加え、空気中もしく
は不活性ガス中または真空中において通常の溶解炉によ
って溶解した後、マンガン、ケイ素、チタン、アルミニ
ウム、カルシウムなど少量(1%以下)を添加して有害
な不純物を除き、充分に攪拌して組成的に均一な溶融合
金を造り、さらにこれを常温あるいは1300℃以下の
温度において鍛造、圧延あるいはスェージして用途に適
合する形状の素材を形成する。
First, in the above composition range, appropriate amounts of iron and copper, or these as the main components, are further added as subcomponents, and after melting in an ordinary melting furnace in air, inert gas, or vacuum, manganese, silicon, titanium, aluminum, etc. Add a small amount (1% or less) such as calcium to remove harmful impurities, stir thoroughly to create a compositionally uniform molten alloy, and then forge, roll, or swage at room temperature or a temperature below 1300°C. to form a material with a shape that suits the purpose.

本発明ではこの成形体に次のごとき熱処理を施す。In the present invention, this molded body is subjected to the following heat treatment.

囚 融点以下800℃以上の高温度で1分乃至100時
間加熱して均質溶体化処理した後焼入れするかあるいは
毎秒1℃以下の速度で徐冷して焼鈍を行う。
The material is heated for 1 minute to 100 hours at a high temperature of 800° C. or higher below the melting point to undergo homogeneous solution treatment and then quenched, or annealed by slow cooling at a rate of 1° C. per second or less.

(B) 上記の焼入れ後あるいは焼鈍後冷間加工を行
う。
(B) Cold working is performed after the above quenching or annealing.

(C) CA)の焼入れ後または(B)の冷間加工後
、100℃乃至焼入れ温度(800°C)以下で1分乃
至100時間加熱し、ついで毎秒1℃以下の速度で徐冷
する。
(C) After quenching in CA) or cold working in (B), heat at 100°C to below the quenching temperature (800°C) for 1 minute to 100 hours, and then slowly cool at a rate of 1°C or less per second.

本発明の吸振合金の吸振機構について述べると次の通り
である。
The vibration absorption mechanism of the vibration absorption alloy of the present invention will be described as follows.

一般に振動が物体に加えられると、その振動が零になる
まで減衰する。
Generally, when vibrations are applied to an object, the vibrations attenuate until they become zero.

この現象は振動のエネルギーが物体中で熱エネルギー等
に変換され、加えられたエネルギーが零になって消失す
るのである。
In this phenomenon, vibrational energy is converted into thermal energy etc. in the object, and the applied energy becomes zero and disappears.

これは物体中のエネルギーの吸収の意味で内部摩擦と云
われている。
This is called internal friction in the sense of absorption of energy within the object.

高減衰能合金は内部摩擦の値の大きいもの程特性がよい
The higher the internal friction value of the high damping capacity alloy, the better the characteristics.

従来知られている吸振合金を分類すると下記の通りであ
る。
Conventionally known vibration absorbing alloys are classified as follows.

本発明の吸振合金はCu−Fe系吸振合金であり、少く
とも上記の強磁性型吸振機構を有するものであるが、転
位型および複合型の転位又は結晶内の内部摩擦等の原因
が複合して吸振する機構を有するものと考えられる。
The vibration-absorbing alloy of the present invention is a Cu-Fe-based vibration-absorbing alloy, and has at least the above-mentioned ferromagnetic type vibration absorption mechanism, but it has complex causes such as dislocation-type and composite-type dislocations or internal friction within the crystal. It is thought that the structure has a mechanism that absorbs vibrations.

合金中における振動の減衰の機構は外界より受けた衝撃
又は振動等のエネルギーにより磁区壁の移動が生ずる。
The vibration damping mechanism in an alloy involves movement of magnetic domain walls due to energy such as impact or vibration received from the outside world.

磁区壁の移動により自発磁化の方向が変り、エネルギー
が消失する。
The direction of spontaneous magnetization changes due to the movement of the magnetic domain walls, and energy is dissipated.

高減衰能は磁区壁が移動し易い性質をもった材料に得ら
れる。
High attenuation ability can be obtained from materials whose magnetic domain walls are easily movable.

このように磁区壁が移動し易い性質は合金に固有の性質
ではない。
This tendency for magnetic domain walls to move easily is not a property unique to alloys.

従って、組成が同一でも全く吸振能を有するものと有し
ないものとがある。
Therefore, even if the composition is the same, some have no vibration absorbing ability and others do not.

上述のように吸振合金の吸振特性は■組成、■熱処理、
■機械加工とが関係があり、少くとも組成が適合しなけ
れば、どのように熱処理をしても吸振特性は得られない
As mentioned above, the vibration-absorbing properties of vibration-absorbing alloys depend on ■composition, ■heat treatment,
■It has something to do with machining, and unless the composition is at least compatible, vibration absorption properties will not be obtained no matter how you heat treat it.

例えば方向性をもった鋼は少くとも絶対に吸振能は得ら
れない。
For example, steel with directional properties will never be able to absorb vibrations.

これは方向性をもつよう処理せられたために、磁区が一
定の方向に整列されており、磁区壁の移動し易さが完全
に失われているためである。
This is because the magnetic domains are aligned in a fixed direction due to the directional processing, and the ease of movement of the magnetic domain walls is completely lost.

これに対し、磁区の磁化の方向がランダムであると、磁
化の方向が同一の方向に整列する迄磁区壁が移動し、こ
れが内部摩擦となって、熱エネルギー等により振動のエ
ネルギーが減衰するのである。
On the other hand, if the direction of magnetization of the magnetic domains is random, the domain walls will move until the directions of magnetization are aligned in the same direction, and this will cause internal friction and the vibration energy will be attenuated by thermal energy etc. be.

本発明の吸振合金を強い磁界中に入れて磁化すると、吸
振能は消失する。
When the vibration-absorbing alloy of the present invention is placed in a strong magnetic field and magnetized, its vibration-absorbing ability disappears.

第5図はFe−1係Cu−5%5i−15%Cr系吸振
合金を磁界中に入れて磁化すると吸振能がほとんど零に
近づき、減磁すると吸振能が復元する状態を示すもので
ある。
Figure 5 shows the state in which when a Fe-1 Cu-5%5i-15%Cr vibration absorbing alloy is placed in a magnetic field and magnetized, its vibration absorption capacity approaches zero, and when it is demagnetized, its vibration absorption capacity is restored. .

このことは磁化によりランダムな方向に整列した磁区を
もった吸振合金の磁区が一定の方向に整列してそれ以上
磁区壁の移動が生じない状態となるためで、このような
状態にある合金に外部より振動又は衝撃を与えても振動
の減衰が生じない。
This is because the magnetic domains of vibration-absorbing alloys that have magnetic domains aligned in random directions are aligned in a certain direction due to magnetization, and the magnetic domain walls no longer move. Even if vibration or shock is applied from the outside, the vibration will not be damped.

然し乍ら、このような状態の本発明の合金を再度減磁す
ると、吸振能が元に復する。
However, when the alloy of the present invention in such a state is demagnetized again, the vibration absorbing ability is restored.

然し、本発明合金と同一組成のステンレス鋼を減磁して
も吸振能は生じない。
However, even if stainless steel having the same composition as the alloy of the present invention is demagnetized, no vibration absorption ability will be produced.

このことは通常のステンレス鋼は本発明の吸振合金と同
じ吸振機構をもたないことの証拠である。
This is evidence that ordinary stainless steel does not have the same vibration absorption mechanism as the vibration absorption alloy of the present invention.

吸振能を有する合金は高温熱処理と機械加工又はこれ等
の組合わせにより磁区の移動の生じ易い状態を造ること
により得られる。
An alloy having vibration absorbing ability can be obtained by creating a state where magnetic domains are likely to move by high-temperature heat treatment, machining, or a combination of these.

上記の結晶格子中の欠陥構造又は内部歪は次のような原
因で生ずる。
The defect structure or internal strain in the crystal lattice described above is caused by the following reasons.

(a) 合金を熱処理する際に、結晶格子中に添加元
素が析出、沈澱又は凝集して内部歪即ち格子欠陥が生ず
る。
(a) When an alloy is heat-treated, additive elements precipitate, precipitate, or aggregate in the crystal lattice, resulting in internal strain, that is, lattice defects.

結晶中に内部歪が生ずると、外部より振動が与えられた
とき、結晶格子が歪のない安定した状態に復元しようと
するため、結晶中の原子の転位が生じ、これが熱エネル
ギーとなって、外部より与えられた振動が消失する。
When internal strain occurs in a crystal, when vibrations are applied from the outside, the crystal lattice attempts to restore itself to a stable, undistorted state, resulting in dislocation of atoms within the crystal, which converts into thermal energy. Vibration applied from the outside disappears.

(b) 結晶の磁区境界に添加元実が析出したために
これらの元素が滑材の役目をして磁区壁の移動がし易く
なる。
(b) Since the additive elements are precipitated at the magnetic domain boundaries of the crystal, these elements act as lubricants, making it easier for the magnetic domain walls to move.

これも欠陥構造の一つであり、磁区の移動により振動エ
ネルギーが消失する。
This is also a defective structure, and vibrational energy is lost due to the movement of magnetic domains.

合金を成形のために線引、圧延、鍛造、曲げ加工等の機
械加工をすると結晶格子中に機械的歪が生じ、機械的強
度は向上されるが、減衰能は減少する。
When an alloy is subjected to mechanical processing such as wire drawing, rolling, forging, bending, etc. for shaping, mechanical strain occurs in the crystal lattice, which improves mechanical strength, but reduces damping capacity.

これは結晶格子に機械的歪が生ずると組織が剛固になり
磁区が移動し難くなるので、減衰能は減少するのである
This is because when mechanical strain occurs in the crystal lattice, the structure becomes rigid and it becomes difficult for magnetic domains to move, resulting in a decrease in attenuation ability.

このために熱処理により機械歪を除く必要がある。For this reason, it is necessary to remove mechanical strain by heat treatment.

上述の熱処理において、 (5)融点(約1300℃)以下800℃以上の高温で
1分以上100時間以下加熱し均質溶体化処理した後、
焼鈍すると吸振能は最も大きくなる。
In the above heat treatment, (5) After homogeneous solution treatment by heating at a high temperature of 800 °C or higher below the melting point (approximately 1300 °C) for 1 minute to 100 hours,
When annealed, the vibration absorption capacity is maximized.

これは高温熱処理により材料の均質化および歪み除去を
することにより磁壁の移動が大きくなり、自発磁化の方
向が変化して渦電流が発生するため、減衰能が最も大き
くなるのである。
This is due to the homogenization of the material and the removal of strain through high-temperature heat treatment, which increases the movement of the domain walls, changes the direction of spontaneous magnetization, and generates eddy currents, resulting in the highest attenuation ability.

(B) 冷間加工ニー 然し、焼鈍をしただけでは、機械的強度が不足するので
、引続いて冷間加工を施すのである。
(B) Cold Working Knee However, mechanical strength is insufficient only by annealing, so cold working is subsequently performed.

冷間加工をすると機械的強度は向上するが減衰能が小さ
くなる。
Cold working improves mechanical strength, but reduces damping capacity.

従って、冷間加工と焼鈍状態との中間程度の減衰能と機
械的強度とを必要とする場合に焼入するのであり、焼入
温度は約800℃又はそれより少し高い温度である。
Therefore, quenching is performed when a damping capacity and mechanical strength intermediate between cold worked and annealed states are required, and the quenching temperature is about 800° C. or slightly higher.

(C) 焼入後再加熱ニー 上記の目的で冷間加工をした場合、結晶内に機械歪が生
ずるので、この歪を除去する目的で100°C乃至焼入
温度(800℃)以下で1分以上100時間以下加熱し
、ついで毎秒1℃以下の速度で徐冷するのである。
(C) Reheating knee after quenching When cold working is performed for the above purpose, mechanical strain occurs in the crystal, so in order to remove this strain, the temperature is lower than 100°C or below the quenching temperature (800°C). The mixture is heated for 100 hours or more, and then gradually cooled at a rate of 1° C. or less per second.

つぎに本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

第1表に示す組成のFeおよびCuの全量約500gを
アルミナ坩堝中でアルゴンガスを通じながら高周波誘導
電気炉により溶解した後、溶湯をよく攪拌し、鉄型に鋳
込んで35imX 35mmの角型鋳塊を得た。
After melting about 500 g of Fe and Cu having the composition shown in Table 1 in an alumina crucible in a high-frequency induction electric furnace while passing argon gas, the molten metal was thoroughly stirred and cast into an iron mold to form a square mold of 35 mm x 35 mm. Got a lump.

つぎにこれを鍛造によって約10mr/Lの丸棒にし、
1000℃で1時間焼鈍の後、常温で冷間引抜により0
.5 mmの線を得た。
Next, this is forged into a round bar of approximately 10 mr/L,
After annealing at 1000℃ for 1 hour, cold drawing at room temperature
.. A 5 mm line was obtained.

これから適轟な長さの線を切りとり、1ooo℃で1時
間加熱した後100℃/時間の速度で冷却して試料とし
た。
A wire of a suitable length was cut from this, heated at 100°C for 1 hour, and then cooled at a rate of 100°C/hour to prepare a sample.

かかる試料の減衰能をねじれ振子法により求めて第1表
に示す結果を得た。
The damping capacity of such a sample was determined by the twisted pendulum method, and the results shown in Table 1 were obtained.

なお本発明の代表的な合金の測定値を第2〜第4表に示
す。
The measured values of typical alloys of the present invention are shown in Tables 2 to 4.

第1〜第4表から明らかなように、2元合金および3元
合金のいずれの処理状態においてもその減衰能は一般に
大きく、特に焼鈍状態で最も大きく、ついで水焼入れ状
態、冷間加工状態の順に減少しでいる。
As is clear from Tables 1 to 4, the damping capacity of binary and ternary alloys is generally large in any processing state, and is particularly greatest in the annealed state, followed by the water-quenched state and the cold-worked state. It is gradually decreasing.

これらの値は一般の金属に比較して数十倍の大きさの値
である。
These values are several tens of times larger than those of ordinary metals.

第1図には焼鈍状態におけるFe−Cu合金の組成と減
衰能との関係が示してあり、第2図には焼鈍状態におけ
るFe−1% Cu −Cr系合金の組成と減衰能との
関係が示しである。
Figure 1 shows the relationship between the composition of the Fe-Cu alloy and the damping capacity in the annealed state, and Figure 2 shows the relationship between the composition and the damping capacity of the Fe-1% Cu - Cr alloy in the annealed state. is the indication.

また第3図には焼鈍状態における9 9.0 %Fe−
1,0%Cu合金、84.0 %Fe−1,0%Cu−
15,0%Cr合金および88,0%Mn−12,0%
Cu合金の減衰能と加熱温度との関係が示しである。
Figure 3 also shows 99.0% Fe-
1,0%Cu alloy, 84.0%Fe-1,0%Cu-
15,0% Cr alloy and 88,0% Mn-12,0%
The relationship between the damping ability of the Cu alloy and the heating temperature is shown.

これら図面から調も、本発明合金の減衰能はMn−Cu
合金に比べ常温でも高温においても非常に大きいことが
わかる。
From these drawings, it is clear that the damping ability of the alloy of the present invention is higher than that of Mn-Cu.
It can be seen that it is much larger than alloys at both room and high temperatures.

なお、本発明合金は副成分を加えることによって弾性率
および抗張力が増す特徴を有する。
The alloy of the present invention has the characteristic that the elastic modulus and tensile strength are increased by adding subcomponents.

本発明吸振合金の主成分および副成分の添加の一般的効
果を比較すると、第5表の通りである。
Table 5 shows a comparison of the general effects of adding the main components and subcomponents of the vibration absorbing alloy of the present invention.

以上の第5表より明らかなように主成分として鉄基合金
中にCuを0.1〜5係添加すると、減衰能、耐食性、
機械的強度、加工性の何れも向上する。
As is clear from Table 5 above, when 0.1 to 5% of Cu is added to the iron-based alloy as the main component, the damping capacity, corrosion resistance,
Both mechanical strength and workability are improved.

然し銅が5係を越えると耐食性は向上するが、減衰能お
よび加工性が悪くなるので好ましくない。
However, if the copper content exceeds 5, the corrosion resistance will improve, but the damping capacity and workability will deteriorate, which is not preferable.

また銅が0.1係未満では所望の減衰能が得られない。Further, if the copper content is less than 0.1, the desired damping ability cannot be obtained.

またFe−Cu基合金に副成分としてクロム40係以下
、アルミニウム、ニオブ、モリブデン、タングステン、
チタン、バナジウム、タンタルの何れか一種又は二種以
上10係以下、ケイ素5係以下、コバルト、イツトリウ
ムの何れか一種又は二種を1係以下の群より選択した何
れか一種又は二種以上の元素を添加すると、減衰能、耐
食性、機械的強度、加工性の何れも向上するので、これ
等の副成分の添加は何れも同効物質として作用効果が同
じと見做される。
In addition, the Fe-Cu base alloy has sub-components of chromium 40 or less, aluminum, niobium, molybdenum, tungsten,
Any one or more elements selected from the group consisting of titanium, vanadium, and tantalum with a factor of 10 or less, silicon of 5 or less, and any one or two of cobalt and yttrium with a factor of 1 or less. Since the addition of these subcomponents improves all of the damping ability, corrosion resistance, mechanical strength, and processability, the addition of these subcomponents is considered to have the same effect as a substance with the same effect.

然し、これ等副成分はその上限を超えて添加すると減衰
能、耐食性、機械的強度又は加工性の何れかが悪くなる
ので、その上限を超えて添加することは好ましくない。
However, if these subcomponents are added in an amount exceeding the upper limit, any of the damping ability, corrosion resistance, mechanical strength, or workability will deteriorate, so it is not preferable to add them in an amount exceeding the upper limit.

副成分の添加の合計量はo、o1%〜40係を越えては
ならない。
The total amount of subcomponents added should not exceed 1% to 40%.

副成分の添加の合計量が40係を越えると減衰能が悪く
なり、耐食性、機械的強度又は加工性の何れかが悪くな
るため好ましくない。
If the total amount of subcomponents added exceeds 40 parts, it is not preferable because the damping ability deteriorates and either corrosion resistance, mechanical strength, or workability deteriorates.

また副成分の合計量がo、o1%に満たないときは副成
分添加の効果がないので好ましくない。
Further, when the total amount of the subcomponents is less than 1%, it is not preferable because the addition of the subcomponents has no effect.

本発明合金は航空機、船舶、車両などの振動および騒音
を伴う機械類あるいは振動を伴う精密計器の吸振合金素
子として非常に好適である。
The alloy of the present invention is very suitable as a vibration-absorbing alloy element for machinery that generates vibration and noise, such as aircraft, ships, and vehicles, or for precision instruments that generate vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のF e −Cu合金の焼鈍状態におけ
る組成と減衰能との関係を示す曲線図、第2図はFe−
1% Cu −Cr合金の焼鈍状態における組成と減衰
能との関係を示す曲線図、第3図は本発明のFe−Cu
合金およびFe−Cu−Cr合金と従来のMn−Cu合
金との各温度における減衰能特性比較曲線図、第4図は
本発明の吸振合金の磁区の配向状態を示す特性図、第5
図は本発明の吸振合金の磁界中における磁化と減磁とに
より減衰能が消失および復元する状態を示す特性図であ
る。
Figure 1 is a curve diagram showing the relationship between the composition and damping capacity in the annealed state of the Fe-Cu alloy of the present invention, and Figure 2 is a curve diagram showing the relationship between the composition and damping capacity of the Fe-Cu alloy of the present invention in the annealed state.
A curve diagram showing the relationship between the composition and damping capacity of the 1% Cu-Cr alloy in the annealed state, FIG. 3 shows the Fe-Cu alloy of the present invention.
Figure 4 is a characteristic diagram showing the orientation state of the magnetic domains of the vibration absorbing alloy of the present invention;
The figure is a characteristic diagram showing the state in which the damping ability of the vibration absorbing alloy of the present invention disappears and is restored due to magnetization and demagnetization in a magnetic field.

Claims (1)

【特許請求の範囲】 1 重量比にて主成分としてCu0.01〜5係と、副
成分としてCr40%以下、AA 、 Nb 、 Mo
。 W、 ’ri 、 V 、 Taの何れか10係以下、
Si 5係以下、Co 、Yの何れか1係以下のうち一
種または二種以上の全量0.01〜40係と、残部Fe
とから成り、減衰能3X10 ’以上である吸振合金。 2 重量比にて主成分としてCu0.01〜5係と、副
成分としてCr40%以下、Al、Nb 、Mo。 W、Ti、V、Taの何れか一種又は二種以上10係以
下、Si 5%以下、Si 5%以下、Co。 Yの何れか一種又は二種1係以下のうち一種または二種
以上の全量0.01〜40係と、残部Feとから成る合
金の成形体に次のごとき処理を施す囚 融点以下800
℃以上の高温度で1分乃至100時間加熱し均質溶体化
処理した後、焼入れする (B) 上記の焼入れ後、冷間加工を行う(C)
(B)の容量加工後、100℃乃至焼入れ温度(800
℃)以下で1分間以上100時間以下加熱し、ついで毎
秒1℃以下の速度で徐冷するの処理し、減衰能3X10
−3以上の合金を得ることを特徴とする吸振合金の製造
法。 3 重量比にて主成分としてCuO,01〜5係と、副
成分としてCr40%以下、Al、Nb 、Mo 。 W、Ti、V、Taの何れか一種又は二種以上10φ以
下、Si 5チ以下、Co 、Yの何れか一種又は二種
1係以下のうち一種または二種以上の全量0.01〜4
0係と、残部Feとから成る合金の成形体に次のごとき
処理を施す (5)融点以下800℃以上の高温度で1分乃至100
時間加熱し均質溶体化処理した後、毎秒1℃以下の速度
で徐冷して焼鈍を行う (B) 上記の焼鈍後冷間加工を行う (C)(B)の冷間加工後、100℃乃至焼入れ温度(
800℃)以下で1分間以上100時間以下加熱し、つ
いで毎秒1℃以下の速度で徐冷するの処理し、減衰能3
X10”以上の合金を得ることを特徴とする吸振合金の
製造法。
[Claims] 1. Cu 0.01 to 5% as main component in weight ratio, 40% or less Cr as subcomponents, AA, Nb, Mo
. Any of W, 'ri, V, Ta below 10,
A total amount of 0.01 to 40 parts of Si of 5 parts or less, one or more of Co and Y of 1 part or less, and the balance Fe
A vibration-absorbing alloy consisting of and having a damping capacity of 3X10' or more. 2 Cu 0.01 to 5% as the main component and 40% or less Cr, Al, Nb, and Mo as subcomponents in terms of weight ratio. Any one or more of W, Ti, V, Ta, 10% or less, Si 5% or less, Si 5% or less, Co. The following treatment is applied to a compact of an alloy consisting of any one or two types of Y with a total amount of 0.01 to 40% of one or more types below 1%, and the balance is Fe.
After heating at a high temperature of ℃ or higher for 1 minute to 100 hours and performing homogeneous solution treatment, quenching is performed (B) After the above quenching, cold working is performed (C)
After the capacity processing of (B), the temperature ranges from 100℃ to quenching temperature (800℃).
℃) or less for 1 minute or more and 100 hours or less, and then slowly cooled at a rate of 1℃ or less per second to achieve a damping capacity of 3X10.
- A method for producing a vibration absorbing alloy, characterized by obtaining an alloy of 3 or more. 3 CuO, 01 to 5 as the main component and 40% or less of Cr, Al, Nb, and Mo as the subcomponents in terms of weight ratio. Total amount of one or more of W, Ti, V, Ta, or more than 10φ, Si of 5 or less, Co, Y, or more of 1 or less, 0.01 to 4
The following treatment is applied to a molded body of an alloy consisting of 0% and the remainder Fe.
After heating for a period of time and homogeneous solution treatment, annealing is performed by slow cooling at a rate of 1°C per second or less (B) Cold working is performed after the above annealing (C) After cold working in (B), 100°C to quenching temperature (
800℃) or less for 1 minute or more and 100 hours or less, and then slowly cooled at a rate of 1℃ or less per second to achieve a damping capacity of 3.
A method for producing a vibration-absorbing alloy characterized by obtaining an alloy of X10" or more.
JP50058737A 1975-05-19 1975-05-19 vibration absorbing alloy Expired JPS5930783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50058737A JPS5930783B2 (en) 1975-05-19 1975-05-19 vibration absorbing alloy
DE19762622108 DE2622108C3 (en) 1975-05-19 1976-05-18 Use of an iron alloy containing copper and / or molybdenum for parts with high damping ability against vibrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50058737A JPS5930783B2 (en) 1975-05-19 1975-05-19 vibration absorbing alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6029781A Division JPS56163241A (en) 1981-04-20 1981-04-20 Damping alloy

Publications (2)

Publication Number Publication Date
JPS51134308A JPS51134308A (en) 1976-11-20
JPS5930783B2 true JPS5930783B2 (en) 1984-07-28

Family

ID=13092816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50058737A Expired JPS5930783B2 (en) 1975-05-19 1975-05-19 vibration absorbing alloy

Country Status (1)

Country Link
JP (1) JPS5930783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582262B2 (en) * 1979-08-14 1983-01-14 住友金属工業株式会社 Structural steel with excellent vibration damping properties
JPS61179816A (en) * 1985-12-21 1986-08-12 Res Inst Electric Magnetic Alloys Production of high oscillation absorptive and high corrosion resistant ferrous alloy
KR0121321B1 (en) * 1991-12-26 1997-12-04 호시노 지로 Vibration-damping alloy
JP2792364B2 (en) * 1992-09-22 1998-09-03 日本鋼管株式会社 High strength, high toughness damping alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834720A (en) * 1971-09-08 1973-05-22
JPS4852619A (en) * 1971-11-06 1973-07-24
JPS4853922A (en) * 1971-11-11 1973-07-28
JPS492713A (en) * 1972-04-28 1974-01-11
JPS499422A (en) * 1972-05-25 1974-01-28

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834720A (en) * 1971-09-08 1973-05-22
JPS4852619A (en) * 1971-11-06 1973-07-24
JPS4853922A (en) * 1971-11-11 1973-07-28
JPS492713A (en) * 1972-04-28 1974-01-11
JPS499422A (en) * 1972-05-25 1974-01-28

Also Published As

Publication number Publication date
JPS51134308A (en) 1976-11-20

Similar Documents

Publication Publication Date Title
JP4775510B2 (en) Iron alloy parts
JPWO2006085609A1 (en) Novel Fe-Al alloy and method for producing the same
JP4984272B2 (en) Steel with excellent vibration damping performance, method for producing the same, and damping body including the steel
JP2010043304A (en) Fe-BASED DAMPING ALLOY
JP5724613B2 (en) Damping alloy material manufacturing method and damping alloy material
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JP2010090472A (en) Vibration-damping stainless steel, method for producing the same and molded product thereof
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JPS5930783B2 (en) vibration absorbing alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
US5173254A (en) Steel having excellent vibration-dampening properties and weldability
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP4450157B2 (en) Heat treatment method for manganese-based twin-type damping alloy
JPH0627301B2 (en) High strength low thermal expansion alloy for ceramic bonding
JPH04116141A (en) High-hardness and low-permeability nonmagnetic functional alloy and its production
JPH036354A (en) Damping alloy having high hardness and high damping capacity and its manufacture
JP5601268B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
JPH04143215A (en) Production of steel for welded structure having high vibration damping capacity
JPS6238418B2 (en)
JP2005226126A (en) Vibration-proofing alloy
JPH0726148B2 (en) Method for manufacturing welded structural steel with high vibration damping capacity
JPS5857503B2 (en) vibration absorbing alloy
JPH0327620B2 (en)