JPS59230620A - Slurry concentration control method of wet waste gas desulfurization apparatus - Google Patents

Slurry concentration control method of wet waste gas desulfurization apparatus

Info

Publication number
JPS59230620A
JPS59230620A JP58104886A JP10488683A JPS59230620A JP S59230620 A JPS59230620 A JP S59230620A JP 58104886 A JP58104886 A JP 58104886A JP 10488683 A JP10488683 A JP 10488683A JP S59230620 A JPS59230620 A JP S59230620A
Authority
JP
Japan
Prior art keywords
slurry
compound
tank
concn
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104886A
Other languages
Japanese (ja)
Other versions
JPH0256127B2 (en
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Setsuo Omoto
節男 大本
Susumu Okino
進 沖野
Hiroshi Shimizu
拓 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58104886A priority Critical patent/JPS59230620A/en
Publication of JPS59230620A publication Critical patent/JPS59230620A/en
Publication of JPH0256127B2 publication Critical patent/JPH0256127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To simplify an apparatus by stably controlling the concn. of a Ca-compound slurry, by dividing a Ca-compound suspended slurry into two or more slurries different in a Ca-compound concn. in withdrawing said slurry from an absorbing tower while respectively adjusting the flow amounts of the withdrawn slurries. CONSTITUTION:SO2-containing waste gas 101 is guided to an absorbing tower 102 and brought into contact with Ca-compound suspended slurry to remove SO2 while the purified gas 107 is exhausted. A liquid chamber 115 is formed in a tank 103 by a partition wall 114 of which the lower end is opened and the supernatant liquid in the liquid chamber 115 is discharged from a line 117. The filtrate returned from a separator 11 by a line 13 is downwardly flowed into the lower part of the liquid chamber 115 to prevent the rising of a gypsum crystal and the concn. of the gypsum to be taken out by a pump 119 is enhanced. The flow amount of the supernatant liquid from a line 117 and the flow amount of the slurry from a discharge port 110 are controlled by a microcomputer and the concn. of the Ca-compound in the slurry in the tank 103 is controlled to a desired concn.

Description

【発明の詳細な説明】 本発明は、湿式排煙脱硫装置のスラリー濃度の管理方法
に関し、更に固形物を懸濁するスラリーを用いて排煙中
のSO2を吸収し、副生物として固体のイオウ化合物を
回収する湿式排煙脱硫装置のスラリー濃度の管理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling slurry concentration in a wet flue gas desulfurization equipment, and further relates to a method for controlling the concentration of slurry in a wet flue gas desulfurization equipment, in which SO2 in flue gas is absorbed using a slurry in which solids are suspended, and solid sulfur is produced as a by-product. The present invention relates to a method for controlling slurry concentration in a wet flue gas desulfurization device for recovering compounds.

現在、排煙脱硫の主流をなしているものに0aOO3や
0a(OH)zを吸収剤として排煙脱硫ケ行ない、亜硫
酸カルシウムや硫酸カルシウム(石膏ンとして回収する
いわゆる湿式石灰法の排煙脱硫装置があシ、例えば、特
開昭57−4S5117号などの他、多くの刊行物に詳
述されている通シである。
Currently, the main stream of flue gas desulfurization is the so-called wet lime method flue gas desulfurization equipment, which uses 0aOO3 and 0a(OH)z as absorbents to recover calcium sulfite and calcium sulfate (gypsum). This is a conventional method that is described in detail in many publications including, for example, Japanese Patent Application Laid-Open No. 57-4S5117.

ここで、第1図によって現在、工業的に広く採用されて
いる湿式石灰法による排煙脱硫装置を説明する。
Here, with reference to FIG. 1, a flue gas desulfurization apparatus using a wet lime method, which is currently widely used industrially, will be explained.

SO,を含んだ排煙1は吸収塔本体2に導かれる。吸収
塔本体2の下部にはOa 化合物を懸濁したスラリーを
受けるタンク3が設けてあり、攪拌機4にてスラリーを
攪拌して固形物の沈殿を防止する。aa 化合物を懸濁
したスラリーは吸収塔循環ポンプ5によって塔頂に送ら
れ、塔内に散布され、排煙と接触しながら流下し、再び
タンク3に戻る。スラリーと接触してSO,を除去され
た排煙はミストエリ汁ネータ−6を通つて、浄化ガス7
として排出される。一方、タンク6へはSO2吸収量に
見合ってCaCO3やca (OH) 2のスラリーを
2イン8よシ供給すると共に、吸収剤がSO,を吸収し
て生成した亜硫酸カルシウムを含むスラリーを2イン9
から酸化塔10へ導く。酸化塔10では底部に備けた気
泡発生器11がら空気12を吹き込み、ライン15から
硫酸を供給して、亜硫酸カルシウムを酸化して石膏にす
ると共に、未反応のcaco3やca (OH) 2を
石膏に転化する。酸化塔10から出た石・冴スラリーは
ライン14を通ってシックナー15に導かれ、濃縮石膏
スラリーはライン16、タンク17、ポンプ18、遠心
分離器19へ送られ、石膏20を得ると共に濾過液はタ
ンク21へ導かれ、ポンプ22及びライン23を経由し
てシックナー15へ導かれる。一方、シックナー15の
上澄液はライン24からタンク25へ導かれ、ポンプ2
6から、排煙脱硫装置内の例えば吸収剤の調整用に使用
されたり、排水されたりする。
The flue gas 1 containing SO is guided to the absorption tower main body 2. A tank 3 for receiving a slurry in which Oa compounds are suspended is provided at the bottom of the absorption tower body 2, and the slurry is stirred by an agitator 4 to prevent precipitation of solids. The slurry in which the aa compound is suspended is sent to the top of the tower by the absorption tower circulation pump 5, spread inside the tower, flows down while coming into contact with flue gas, and returns to the tank 3 again. The exhaust gas from which SO has been removed by contact with the slurry passes through the mist eli juice inator 6, and then passes through the purified gas 7.
It is discharged as. On the other hand, a slurry of CaCO3 or ca (OH) 2 is supplied to tank 6 in a 2-in-8 format according to the amount of SO2 absorbed, and a slurry containing calcium sulfite produced when the absorbent absorbs SO is supplied in a 2-in-8 format. 9
from there to the oxidation tower 10. In the oxidation tower 10, air 12 is blown through a bubble generator 11 provided at the bottom, and sulfuric acid is supplied from a line 15 to oxidize calcium sulfite to gypsum, and unreacted caco3 and ca(OH)2 to gypsum. converts into The stone/sae slurry coming out of the oxidation tower 10 is led to the thickener 15 through the line 14, and the concentrated gypsum slurry is sent to the line 16, tank 17, pump 18, and centrifugal separator 19 to obtain the gypsum 20 and the filtrate. is led to tank 21 and then to thickener 15 via pump 22 and line 23. On the other hand, the supernatant liquid of the thickener 15 is led from the line 24 to the tank 25, and the pump 2
6, it is used, for example, for the preparation of an absorbent in a flue gas desulfurization device, or it is drained.

本発明は、現在の排煙脱硫装置に含まれる構成を簡単化
して経済的にすぐれたものとするべく、鋭意研究を重ね
て来た結果、caco3や0a(OH)xの結晶とSO
2との反応速度、S02を吸収して生成する亜硫酸カル
シウムの酸化反応速度、石膏の沈降速度の各データに基
づき、各々、別々の工程を設けていた従来の一操作一工
程の基本的考え方を脱却し、吸収塔及び、吸収塔タンク
にSO,吸収、酸化、石膏沈殿濃縮、上澄液回収の各操
作を集約した工程の集約簡単化を成し得たものである。
The present invention was developed as a result of intensive research to simplify the configuration included in current flue gas desulfurization equipment and make it economically superior.
Based on the data on the reaction rate with 2, the oxidation reaction rate of calcium sulfite produced by absorbing S02, and the sedimentation rate of gypsum, we changed the basic concept of the conventional one-operation-one-step process, which had separate steps for each. The process has been simplified by consolidating the operations of SO, absorption, oxidation, gypsum precipitation concentration, and supernatant liquid recovery in the absorption tower and absorption tower tank.

本発明による湿式排煙脱硫装置を第2図によって説明す
る。SO,を含んだ排煙101は吸収塔本体102に導
かれる。第2図では排煙と吸収スラリーがいわゆる並流
で接触する場合を図示したが、第1図に示したような向
流の気液接触方式でもよい。しかし、本発明方式に於い
ては並流の方が後述するように石膏への酸化反応効率を
高くすることができる利点がある。
The wet flue gas desulfurization apparatus according to the present invention will be explained with reference to FIG. Flue gas 101 containing SO, is guided to the absorption tower main body 102. Although FIG. 2 shows a case in which the flue gas and absorption slurry contact in a so-called parallel flow, a countercurrent gas-liquid contact method as shown in FIG. 1 may also be used. However, in the method of the present invention, parallel flow has the advantage of increasing the efficiency of the oxidation reaction to gypsum, as will be described later.

吸収塔本体102の下部にはCa化合物を懸濁したスラ
リーを受けるタンク105が設けてあり、攪拌機104
にてスラリーを攪拌して固形物の沈殿を防止する。Ca
化合物を懸濁したスラリーは吸収塔循環ポンプ10.5
によって塔頂に送られ、場内に散布され、排煙と接触し
ながら流下し、再びタンク105に戻る。スラリーと接
触してSO。
A tank 105 is provided at the bottom of the absorption tower body 102 to receive the slurry in which Ca compounds are suspended.
Stir the slurry to prevent precipitation of solids. Ca
The slurry in which the compound is suspended is passed through the absorption tower circulation pump 10.5
The gas is sent to the top of the tower, dispersed within the plant, flows down while coming into contact with flue gas, and returns to tank 105 again. SO on contact with slurry.

を除去された排煙はミストエリミネータ−106を通っ
て、浄化ガス107として排出される。
The exhaust gas from which the gas has been removed passes through a mist eliminator 106 and is discharged as purified gas 107.

一方、タンク103へはSO,吸収量に見合ってCaO
O3や0a(OH)xの粉体を粉体輸送ライン108よ
シ供給する。吸収剤であるcaco、やca (OH)
 zは水と懸濁したスラリーとしてタンク105へ供給
することもできる。吸収剤がSO2を吸収して生成する
亜硫酸カルシウムは、並流方式の気液接触ゾーンでスラ
リーが酸性状態に保たれる為、排煙中に含まれる酸素に
よって、酸化され、石膏結晶に転化してしまう。
On the other hand, SO and CaO are supplied to the tank 103 in proportion to the absorbed amount.
Powder of O3 or Oa(OH)x is supplied through a powder transport line 108. Absorbent caco, ca (OH)
z can also be supplied to the tank 105 as a slurry suspended in water. Calcium sulfite, which is produced when the absorbent absorbs SO2, is oxidized by the oxygen contained in the flue gas and converted into gypsum crystals because the slurry is kept in an acidic state in the gas-liquid contact zone of the parallel flow system. I end up.

しかし、排煙中の酸素が少ない場合は、空気ノズル10
9から酸素ガスを含む気体を供給すると、吸収されたS
O,を石膏として固定化することができる。
However, if there is little oxygen in the flue gas, the air nozzle 10
When gas containing oxygen gas is supplied from 9, the absorbed S
O, can be fixed as gypsum.

このようにタンク105ではOa 化合物としての石膏
結晶が懸濁したスラリーが溜まるのでスラリー排出口1
10とポンプ119を介して石膏結晶を含むスラリーを
分離器111へ導き石膏ケーキ112を得ると共に濾過
液はライン115からタンク106へ戻す。
In this way, slurry in which gypsum crystals as an Oa compound are suspended accumulates in the tank 105, so the slurry discharge port 1
10 and a pump 119, the slurry containing gypsum crystals is introduced into a separator 111 to obtain a gypsum cake 112, and the filtrate is returned to the tank 106 through a line 115.

タンク106の内部にはスラリー液面上から液面下に亘
って、攪拌されているスラリーと隔離された液室115
が形成されるように仕切壁114を設け、仕切壁114
の下端は開放させて、攪拌機104によって攪拌された
スラリーが仕切壁114によって仕切られた液室115
の下部を互に流通し得るようにしである。更に第2図に
は攪拌されたスラリーの流動によって、液室115内の
上澄液が乱されないように邪魔板116を設けである。
Inside the tank 106, there is a liquid chamber 115 that extends from above the slurry liquid level to below the liquid level and is isolated from the slurry being stirred.
The partition wall 114 is provided so that the partition wall 114 is formed.
The lower end of the liquid chamber 115 is opened and the slurry stirred by the stirrer 104 is separated by a partition wall 114.
The lower portions of the tubes are arranged so that they can communicate with each other. Further, in FIG. 2, a baffle plate 116 is provided to prevent the supernatant liquid in the liquid chamber 115 from being disturbed by the flow of the stirred slurry.

液室115の上澄液は上澄液排出口117とポンプ11
8を介して排出される。又、ライン113より戻される
濾過液ば液室115の下部に上方から下方に向って流入
するようにし、石膏結晶が上昇して来るのを防止する。
The supernatant liquid in the liquid chamber 115 is transferred to the supernatant liquid outlet 117 and the pump 11.
8. In addition, the filtrate returned from the line 113 is made to flow downward from above into the lower part of the liquid chamber 115 to prevent gypsum crystals from rising.

更に、スラリー排出口110は液室115の下部に位置
するタンク103の端部に設けた傾斜板12!]によっ
て石膏結晶が沈殿濃縮される位置に設けである。
Furthermore, the slurry discharge port 110 is provided on an inclined plate 12 at the end of the tank 103 located at the bottom of the liquid chamber 115! ] is provided at a position where gypsum crystals are precipitated and concentrated.

こうすることによってポンプ119によって取シ出す石
膏結晶のスラリー濃度が高くなシ、無駄な液体運搬のエ
ネルギーが節減できる。
By doing so, the slurry concentration of gypsum crystals taken out by the pump 119 is high, and wasteful energy for transporting the liquid can be saved.

湿式排煙脱硫装置ではミストエリミネータ−106で捕
集されたミスト中のOa 化合物結晶が付着堆積して、
ガス流路を狭隘化しないよう洗浄ノズル121から洗浄
水が流入したシ、更にはポンプのシール水が流入する等
、水が沢山使用される。そしてこれらの水は、タンク1
03に溜まっているスラリー濃度の外乱となる。スラリ
ー濃度の変化は湿式排煙脱硫装置の運転管理が不安定に
なり種晶濃度変動に伴なうスケールトラブルを誘発する
。従来これらの問題は、解決されないままであシ、特に
Oa 化合物を懸濁したスラリーを用いた湿式排煙脱硫
装置のスクール防止は重要な課題であるが、本発明者ら
の研究によれば、スクールトラブルの主因は水の流入に
よるスラリー濃度変動にあることが分った。
In wet flue gas desulfurization equipment, Oa compound crystals in the mist collected by the mist eliminator 106 adhere and accumulate.
A large amount of water is used, such as washing water flowing in from the washing nozzle 121 to avoid narrowing the gas flow path, and sealing water from the pump flowing in. And these waters are in tank 1
It becomes a disturbance to the slurry concentration accumulated in 03. Changes in slurry concentration make the operational management of wet flue gas desulfurization equipment unstable and induce scale troubles due to fluctuations in seed crystal concentration. Conventionally, these problems have remained unsolved. In particular, prevention of schooling in wet flue gas desulfurization equipment using slurry in which Oa compounds are suspended is an important issue, but according to the research of the present inventors, It was found that the main cause of school troubles was fluctuations in slurry concentration due to water inflow.

本発明は従来よシも装置構成の簡単化を図って研究を重
ねる途中に上述のスラリー濃度変動を防止することが重
要な課題であることを認識するに至った。
The present invention aims to simplify the device configuration compared to the conventional method, and during the course of research, it was realized that preventing the above-mentioned slurry concentration fluctuation is an important issue.

本発明によれば、湿式排煙脱硫装置のタンクからCa 
化合物結晶を懸濁するスラリーを排出することと、同タ
ンクからCa 化合物結晶濃度の低い上澄液を排出する
ことの2つの操作を同時に任意にしかも応答遅れがなく
随意に行なうことによシ、湿式排煙脱硫装置のCa 化
合物スラリー濃度を安定にコントロールすることが可能
となる。しかも、従来の湿式排煙脱硫装置に比較して構
成が簡単化された上に上述の効果が得られる極めてすぐ
れた特徴がある。
According to the present invention, Ca is removed from the tank of a wet flue gas desulfurization equipment.
By simultaneously and arbitrarily performing the two operations of discharging the slurry in which the compound crystals are suspended and discharging the supernatant liquid with a low concentration of Ca compound crystals from the same tank, without any response delay, It becomes possible to stably control the concentration of Ca compound slurry in the wet flue gas desulfurization equipment. Furthermore, compared to conventional wet flue gas desulfurization equipment, the structure is simplified and the above-mentioned effects can be obtained.

実施例 使用した装置を第2図に示した。Example The equipment used is shown in Figure 2.

石膏結晶を含むスラリーを溜めるタンク103は100
0@X2000■の断面を有し、液深さは200’Ow
とした。吸収塔循環ポンプ105で50 m”/hのス
ラ、リーを吸収塔102の塔頂からスプレーし、塔内に
はグリッドを充填して気液並流方式で排煙!l、 OO
ONm37’hを処理し、入口So、 + 200 p
pmから出口so、 60 Ppmとなるまで脱硫した
The tank 103 that stores the slurry containing gypsum crystals is 100
It has a cross section of 0@X2000■, and the liquid depth is 200'Ow.
And so. The absorption tower circulation pump 105 sprays sludge at a rate of 50 m”/h from the top of the absorption tower 102, and the tower is filled with a grid to exhaust smoke in a gas-liquid parallel flow system!l, OO
Process ONm37'h, inlet So, + 200 p
Desulfurization was carried out from pm to so at the outlet of 60 Ppm.

タンク103へは0aOO3粉末を吸収剤としてライン
108からSO,吸収量に見合って供給した。タンク1
03の内部には内径が400■で長さが2500mmの
下端が開放された円筒状の仕切壁114を取シ付けた。
SO was supplied to the tank 103 from a line 108 using OaOO3 powder as an absorbent in proportion to the absorbed amount. tank 1
A cylindrical partition wall 114 having an inner diameter of 400 mm and a length of 2500 mm and having an open bottom end was installed inside the 03.

仕切壁114で囲まれた液室115から上澄液を取シ出
すライン117からの上澄液は若干の固形物を含むもの
であったが、その流量と、スラリー排出口110からの
流量とをマイコン制御することにより、タンク103に
溜まるCa 化合物のスラリー濃度を1〜35重量係重
量域に於ける所望の濃度に管理運転できた。
The supernatant liquid from the line 117 that takes out the supernatant liquid from the liquid chamber 115 surrounded by the partition wall 114 contained some solid matter, but the flow rate and the flow rate from the slurry discharge port 110 were By controlling this with a microcomputer, the slurry concentration of the Ca compound accumulated in the tank 103 could be controlled to a desired concentration in the weight range of 1 to 35.

本実験で分離器111から排出された固形物の組成は0
aSO4・2 H2O97wt%、caco3o、 s
wt%、その他2.5 wt%であり、殆んどが石膏で
あシ、亜硫酸カルシウムは検出されなかった。
In this experiment, the composition of the solids discharged from the separator 111 was 0.
aSO4・2 H2O97wt%, caco3o, s
wt%, others 2.5 wt%, mostly gypsum, and no calcium sulfite was detected.

コortlJ、Ityり+ 03に設置した空気ノズル
109からは空気を送風していない。従って、並流方式
の気液接触をグリッド充填塔で行なわせると、湿式石灰
法の排煙脱硫では塔頂で吸収されたSO,がグリッド充
填部を流下しながら排ガス中の酸素によって全部酸化さ
れてしまうので、タンク103に於いてもはや空気酸化
は不要であった。
Air is not blown from the air nozzle 109 installed in the core. Therefore, when co-current gas-liquid contact is carried out in a grid packed tower, in the wet lime method flue gas desulfurization, the SO absorbed at the top of the tower is completely oxidized by the oxygen in the flue gas as it flows down the grid packed part. Therefore, air oxidation was no longer necessary in tank 103.

尚、本実験中にミストエリミネータ−の洗浄ノズル12
1から水を注入し、更にポンプシール水を注入していた
が前述の通シ、本発明方法によってスラリー濃度は所望
値にコントロールすることができた。
During this experiment, the cleaning nozzle 12 of the mist eliminator
Although water was injected from step 1 and pump seal water was further injected, the slurry concentration could be controlled to a desired value by the above-mentioned method and the method of the present invention.

本発明によれば、従来の湿式排煙脱硫装置に設けられて
いた酸化塔、シックナー及びr過液タンクや上澄液タン
ク、更にはそれら設備に付帯するポンプ、弁、計装器具
などが不要となシ、大幅な工程の簡単化が可能になるこ
とを実証した。
According to the present invention, the oxidation tower, thickener, filtrate tank, and supernatant tank provided in conventional wet flue gas desulfurization equipment, as well as the pumps, valves, and instrumentation equipment associated with these equipment, are unnecessary. We have demonstrated that it is possible to significantly simplify the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来から工業的に採用されている湿式石灰法に
よる排煙脱硫装置を示し、第2図は本発明の湿式排煙脱
硫装置の構成図を示す。 第2図において、 101・・排煙、102・・吸収塔本体、103・・タ
ンク、104・・攪拌機、105・・吸収塔循環ポンプ
、106・・ミストエリミネータ−1107・・浄化ガ
ス、108・・粉体輸送ライン、109・・空気ノズル
、110・・スラリー排出口、111・・分離器、11
2・・石膏ケーキ、113・・f過液ライン、114・
・仕切壁、115・・液室、116・・邪魔板、117
・・上澄液排出口、118・・ポンプ、119・eポン
プ、120・1傾斜板、121・−洗浄ノズル である。
FIG. 1 shows a flue gas desulfurization device using a wet lime method that has been conventionally employed industrially, and FIG. 2 shows a configuration diagram of the wet flue gas desulfurization device of the present invention. In Fig. 2, 101.. Flue gas, 102.. Absorption tower main body, 103.. Tank, 104.. Stirrer, 105.. Absorption tower circulation pump, 106.. Mist eliminator, 1107.. Purified gas, 108. - Powder transport line, 109... Air nozzle, 110... Slurry discharge port, 111... Separator, 11
2... Gypsum cake, 113... f filtrate line, 114...
・Partition wall, 115...Liquid chamber, 116...Baffle plate, 117
...Supernatant liquid outlet, 118.. Pump, 119.e pump, 120.1 inclined plate, 121.-washing nozzle.

Claims (1)

【特許請求の範囲】[Claims] S02を含む排煙をCa 化合物を懸濁するスラリーと
接触させてSO,を吸収する吸収塔に於いて、該吸収塔
内に保持された該スラリーを抜き出すに際し、aa 化
合物濃度の異なる少なくとも2つのスラリーに分割して
Oa 化合物濃度の高いスラリーとCa 化合物濃度の
低いスラリーを得、該吸収塔からの各々のスラリー抜き
出し流量を調整することによって排煙と接触するスラリ
ー中のOa 化合物濃度を管理することを特徴とする吸
収塔のスラリー濃度管理方法。
In an absorption tower that absorbs SO by bringing flue gas containing S02 into contact with a slurry in which a Ca compound is suspended, at least two different aa compound concentrations are The Oa compound concentration in the slurry that comes into contact with flue gas is controlled by dividing the slurry into slurries to obtain a slurry with a high Oa compound concentration and a slurry with a low Ca compound concentration, and adjusting the flow rate of each slurry extracted from the absorption tower. A method for controlling slurry concentration in an absorption tower, characterized by:
JP58104886A 1983-06-14 1983-06-14 Slurry concentration control method of wet waste gas desulfurization apparatus Granted JPS59230620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104886A JPS59230620A (en) 1983-06-14 1983-06-14 Slurry concentration control method of wet waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104886A JPS59230620A (en) 1983-06-14 1983-06-14 Slurry concentration control method of wet waste gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS59230620A true JPS59230620A (en) 1984-12-25
JPH0256127B2 JPH0256127B2 (en) 1990-11-29

Family

ID=14392659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104886A Granted JPS59230620A (en) 1983-06-14 1983-06-14 Slurry concentration control method of wet waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS59230620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067130U (en) * 1983-10-12 1985-05-13 石川島播磨重工業株式会社 Gas-liquid contact device
JPS62193630A (en) * 1986-02-21 1987-08-25 Babcock Hitachi Kk Method and equipment for wet stack-gas desulfurization
JPS62204828A (en) * 1986-03-04 1987-09-09 Babcock Hitachi Kk Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPH0286634U (en) * 1988-12-21 1990-07-09

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067130U (en) * 1983-10-12 1985-05-13 石川島播磨重工業株式会社 Gas-liquid contact device
JPS6246421Y2 (en) * 1983-10-12 1987-12-15
JPS62193630A (en) * 1986-02-21 1987-08-25 Babcock Hitachi Kk Method and equipment for wet stack-gas desulfurization
JPS62204828A (en) * 1986-03-04 1987-09-09 Babcock Hitachi Kk Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPH0286634U (en) * 1988-12-21 1990-07-09
JPH0523205Y2 (en) * 1988-12-21 1993-06-15

Also Published As

Publication number Publication date
JPH0256127B2 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US4696804A (en) Method for treating SO2, SO3 and dust simultaneously
US4687649A (en) Flue gas desulfurization process
CA2180110C (en) Flue gas scrubbing apparatus
CA1129181A (en) So.sub.2 scrubbing system for flue gas desulfurization
US4690807A (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
CA1049752A (en) Process for removing sulfur oxides from gas streams
US2142406A (en) Apparatus for the wet purification of gases
RU2040960C1 (en) Method and apparatus to remove sulfur oxides from furnace gasses
JPS60179120A (en) Process for treating waste gas with separation and recovery of gypsum and dust
CA1037227A (en) Process for the purification of flue gas and other waste gases
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
KR970703798A (en) IMPROVED WET SCRUBBING METHOD AND APPARATUS FOR REMOVING SULFUR OXIDES FROM COMBUSTION EFFLUENTS
KR0174794B1 (en) Exhaust gas desulfurization process
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
US6090357A (en) Flue gas scrubbing method
US4618482A (en) Method for controlling a concentration of slurry in wet flue gas desulfurization apparatus
JPS62225226A (en) Wet stack-gas desulfurization facility
JPS6099329A (en) Stack gas desulfurization apparatus by wet process
GB2163417A (en) Controlling slurry concentration in wet flue gas desulphurization apparatus
JPH0722676B2 (en) Flue gas desulfurization method
US4590048A (en) Removal of sulfur oxides from gas streams with ammonium sulfite
JPH0319937Y2 (en)
JPS6012583Y2 (en) gas cleaning equipment
DK174369B1 (en) Flue gas desulphurisation process - uses absorption in limestone slurry, producing gypsum in different grades and treating effluent internally
JPS604726B2 (en) Flue gas desulfurization method