JPS59228371A - Sodium-sulfur battery - Google Patents
Sodium-sulfur batteryInfo
- Publication number
- JPS59228371A JPS59228371A JP58103090A JP10309083A JPS59228371A JP S59228371 A JPS59228371 A JP S59228371A JP 58103090 A JP58103090 A JP 58103090A JP 10309083 A JP10309083 A JP 10309083A JP S59228371 A JPS59228371 A JP S59228371A
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- cathode
- container
- anode
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はナトIJウムー硫黄電池の陰極室の構造に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of the cathode chamber of a Nato IJ Umu sulfur battery.
従来のナトリウムーー黄電池は、第1図に示す如く、ナ
トリウムイオン伝導性固体電解質管1の上端にガラス生
国接合したa−アルミナリング2の上面に陰極補助蓋6
が、下面には陽極蓋4がそれぞれアル1ニウム層を介し
て熱圧接合されている。一方、陽極集電体を兼ねたm油
容器5内には、陽極活物質6としての硫黄を含浸したグ
ラファイト、又はカーボンの繊維を織成した陽極電導材
7を挿入し、かつ底には陽極電導材7と同一材質のフェ
ルト状円板8を配置した。上記の電池容器5内に固体を
解質管1を挿入し、真空中又はヘリウムガス減圧下で陽
極蓋4と電池容器5が溶接され、陽極室が密閉されてい
る。@極室については、IIJi極禎助炉3と固体電解
質管1内に挿入された底に微孔を膜条。As shown in FIG. 1, the conventional sodium yellow battery has a cathode auxiliary lid 6 on the top surface of an a-alumina ring 2 bonded to the top end of a sodium ion conductive solid electrolyte tube 1.
However, an anode lid 4 is bonded to the bottom surface by thermopressure via an aluminum layer. On the other hand, an anode conductive material 7 made of woven graphite or carbon fibers impregnated with sulfur as an anode active material 6 is inserted into the oil container 5 which also serves as an anode current collector, and an anode conductive material 7 is inserted at the bottom. A felt-like disk 8 made of the same material as material 7 was placed. The solid solute tube 1 is inserted into the battery container 5, and the anode lid 4 and the battery container 5 are welded together in a vacuum or under reduced pressure of helium gas, and the anode chamber is hermetically sealed. @ Regarding the electrode chamber, micropores are inserted into the bottom of the IIJi electrode support furnace 3 and the solid electrolyte tube 1.
たナトリウム容器9の上端部及び排気兼陰極集電端子l
を溶接した陰極蓋10を、溶接した後、約150°Cに
保温し、真空含浸法により陰極集電端子tより同温度の
陰極活物質11としての溶融す) IJウムを定量充填
し、冷却する。冷却後、アルゴンガス、窒素ガス、又は
ヘリウムガス雰囲気下で陰極集電端子の上端を溶接し陰
極室を密閉する。このように固体電解質管1内にナトリ
ウムを充填した後、上記の電池容器5と陽極蓋4の溶接
が行なわれ陰極活物質11及び陽極活物質6を有した電
池が作成される0尚、陽極電導材7の挿入は、電池容器
5の底より行なった後、電池容器5の底蓋を溶接しても
よい。The upper end of the sodium container 9 and the exhaust and cathode current collector terminal l
After welding, the cathode lid 10 is kept at a temperature of about 150°C, and a fixed amount of IJium (IJum is melted as the cathode active material 11 at the same temperature from the cathode current collector terminal t) by vacuum impregnation method is filled and cooled. do. After cooling, the upper end of the cathode current collector terminal is welded under an argon gas, nitrogen gas, or helium gas atmosphere to seal the cathode chamber. After filling the solid electrolyte tube 1 with sodium in this way, the battery container 5 and the anode lid 4 are welded together to create a battery having the cathode active material 11 and the anode active material 6. The conductive material 7 may be inserted from the bottom of the battery container 5, and then the bottom cover of the battery container 5 may be welded.
この従来のナトリウム−硫黄電池は、ナトリウム容器9
内にナトリウム11を充填する際、固体電解質管1をナ
トリウムの融点以上の温度に昇温する必要がある。この
昇温及び充填後の降温によるヒートサイクルで固体電解
質管1及びα−アルミナリング2とのガラス半田接合部
が熱衝撃破壊される場合があり、又、ナトリウム容器9
の底蓋にナトリウム11が通る孔が設けられているが、
孔の孔径が小さいと、放電時、ナトリウム容器9内から
固体電解質管1との間隙域へのナトリウム供給が不十分
となり、固体電解質管1の内表面です) IJウム欠乏
箇所が発生し、電池内部抵抗が上昇したり、固体電解質
管1に電流密度不均一よりクラックが発生したりする問
題点があった。This conventional sodium-sulfur battery consists of a sodium container 9
When filling the solid electrolyte tube 1 with sodium 11, it is necessary to raise the temperature of the solid electrolyte tube 1 to a temperature higher than the melting point of sodium. Due to the heat cycle caused by this temperature increase and temperature decrease after filling, the glass solder joints between the solid electrolyte tube 1 and the α-alumina ring 2 may be damaged by thermal shock, and the sodium container 9
There is a hole in the bottom cover for sodium 11 to pass through,
If the pore diameter is small, during discharge, sodium supply from the inside of the sodium container 9 to the gap between the solid electrolyte tube 1 and the solid electrolyte tube 1 will be insufficient, resulting in an IJium deficiency point (which is the inner surface of the solid electrolyte tube 1), and the battery will be damaged. There are problems in that internal resistance increases and cracks occur in the solid electrolyte tube 1 due to non-uniform current density.
本発明は上記の問題点を解消するものであり、以下図面
により詳細に説明する。The present invention solves the above problems, and will be explained in detail below with reference to the drawings.
第2図は本発明による実施例のナトリウム−硫黄電池の
断面図であり、1は固体電解質管、2はα−アルミナリ
ング、3は陰極補助蓋、4は陽極蓋、5は電池容器、6
は陽極活物質、7は陽極電導材、8はフェルト状円盤、
I/)2v!櫂1/1.毒端子〃10は陰極蓋、11は
陰極活物質)12は底蓋12′及び上蓋12′を有し、
かつナトリウム連通路13として、例えば内径3φ、外
径4φのステンレス管を上蓋12′に溶接した容器で、
ナトリウム連通路13の下端は底蓋12′と少なくとも
1fl離間している。容器12の上蓋12′又は底蓋1
2′を溶接する前に、容器12内にアジ化ナトリウムを
例えば20〜120岬、アルミニウム箔に包含して埋填
しておき、次に容器12を不活性ガス雰囲気中、例えば
窒素ガス、アルゴンガス中で約100〜150℃に保温
する。保温下でナトリウム連通路16より排気した後、
真空含浸によりナトリウム連通路13より溶融ナトリウ
ムを充填し、容器12内に充満させ冷却する。14は陰
極蓋10に溶接された陰極パイプで内径はナトリウム連
通路13の外径より大きい、例えば内径5φ、外径6φ
のステンレス管で、内部にナトリウム連通路が挿入され
る。15′はステンレス、ニク冒ム又は金属被覆カーボ
ン等の繊維からなりナトリウム保持もおこなう衝撃吸収
材である。すなわち陰極は・固体電解質管1内底部に衝
撃吸収材15を配した後、ナトリウム充填済ナトリウム
容器12を挿入し、次に陰極パイプ14を溶接した陰極
蓋10を挿入し、陰極パイプ14内にナトリウム連通路
16が挿入されるように配した後、真空中で又は微量の
ヘリウムガスを含む減圧下で陰極補助蓋3と陰極蓋10
及び陰極パイプ14の上端が溶接される。尚、陰極パイ
プ14の溶接は陰極補助蓋6と陰極蓋10の溶接(空気
中で行なわれてもよい)の後で行なわれてもよい。FIG. 2 is a sectional view of a sodium-sulfur battery according to an embodiment of the present invention, in which 1 is a solid electrolyte tube, 2 is an α-alumina ring, 3 is a cathode auxiliary lid, 4 is an anode lid, 5 is a battery container, and 6
is an anode active material, 7 is an anode conductive material, 8 is a felt-like disk,
I/)2v! Paar 1/1. Poison terminal (10 is a cathode lid, 11 is a cathode active material) 12 has a bottom lid 12' and a top lid 12',
In addition, as the sodium communication passage 13, for example, a container made of a stainless steel pipe with an inner diameter of 3φ and an outer diameter of 4φ welded to the upper lid 12',
The lower end of the sodium communication passage 13 is spaced apart from the bottom cover 12' by at least 1 fl. Top lid 12' or bottom lid 1 of container 12
2', the container 12 is filled with, for example, 20 to 120 caps of sodium azide wrapped in aluminum foil, and then the container 12 is heated in an inert gas atmosphere, such as nitrogen gas or argon. The temperature is kept at about 100-150°C in a gas atmosphere. After exhausting the sodium through the sodium communication passage 16 while keeping it warm,
Molten sodium is filled from the sodium communication path 13 by vacuum impregnation, and the container 12 is filled and cooled. 14 is a cathode pipe welded to the cathode lid 10, and the inner diameter is larger than the outer diameter of the sodium communication passage 13, for example, the inner diameter is 5φ and the outer diameter is 6φ.
A stainless steel tube with a sodium communication passage inserted inside. 15' is a shock absorbing material made of fibers such as stainless steel, carbon fiber, or metal-coated carbon, which also retains sodium. That is, for the cathode, after disposing the shock absorber 15 at the inner bottom of the solid electrolyte tube 1, insert the sodium-filled sodium container 12, then insert the cathode lid 10 to which the cathode pipe 14 is welded, and insert the cathode pipe 14 into the cathode pipe 14. After arranging the sodium communication passage 16 to be inserted, the cathode auxiliary lid 3 and the cathode lid 10 are removed in a vacuum or under reduced pressure containing a small amount of helium gas.
And the upper end of the cathode pipe 14 is welded. Note that the welding of the cathode pipe 14 may be performed after the welding of the cathode auxiliary lid 6 and the cathode lid 10 (which may be performed in air).
上記の如く構成することによりナトリウム連通路16と
陰極パイプ14との間に、もう1つの連通路となる間隙
が形成される。よって、電池を電池作動温度約300〜
650°Cまで昇温した場合、ナトリウム容器12内の
ナトリウム11が体膨張し、更にナトリウム容器12内
圧上昇により、溶融ナトリウム11はナトリウム連通路
13を通り上方に押し上げられ陰極パイプ14内を充満
させた後、固体電解質管1とす) リウム容器12との
間隙域に充満する。放電すると間隙域の溶融ナトリウム
は、イオン化して固体電解質管1を通り陽極室に移動す
るため減少すルカ、陰極パイプ14内にナトリウム連通
路13が挿入されているため、例えば上部にナトリウム
欠乏箇所が発生し、陰極蓋10と溶融ナトリウム11と
の電気的接触がたたれても、陰極パイプ14で溶融ナト
リウム11との接触がなされているため、常に電気的に
断たれることはない。更に陰極パイプ14とナトリウム
連通路16との間隙形成により、ナトリウムの通路がせ
ばめられるため、急激なナトリウム消費、例えば固体電
解質管1の破損による陽極活物質6との直接反応におい
ても、ナトリウム容器12内からのナトリウム供給量を
抑制される。更に、ナトリウム容器12は底部で衝撃吸
収材15により保持され、かつ上部では陰極パイプ14
内にナトリウム供給量16が挿入され半固定されている
ため偏心することなく、またガタッキなどで固体電解質
管1に衝撃を与えることもない。By configuring as described above, a gap serving as another communication path is formed between the sodium communication path 16 and the cathode pipe 14. Therefore, the battery operating temperature is about 300~
When the temperature rises to 650°C, the sodium 11 in the sodium container 12 expands, and as the internal pressure of the sodium container 12 increases, the molten sodium 11 is pushed upward through the sodium communication path 13 and fills the cathode pipe 14. After that, the solid electrolyte tube 1) fills the gap between the solid electrolyte tube 1 and the lithium container 12. When discharging, the molten sodium in the interstitial region is ionized and moves to the anode chamber through the solid electrolyte tube 1, which reduces the amount of sodium.Since the sodium communication passage 13 is inserted into the cathode pipe 14, for example, there is a sodium deficient area in the upper part. Even if this occurs and the electrical contact between the cathode lid 10 and the molten sodium 11 is broken, the contact with the molten sodium 11 is maintained through the cathode pipe 14, so the electrical connection will never be broken. Furthermore, the formation of a gap between the cathode pipe 14 and the sodium communication passage 16 narrows the sodium passage, so even if there is rapid sodium consumption, for example, a direct reaction with the anode active material 6 due to breakage of the solid electrolyte tube 1, the sodium container 12 The amount of sodium supplied from within is suppressed. Furthermore, the sodium container 12 is held by a shock absorber 15 at the bottom and a cathode pipe 14 at the top.
Since the sodium supply amount 16 is inserted inside and semi-fixed, there is no eccentricity, and there is no impact on the solid electrolyte tube 1 due to looseness or the like.
下表に従来の電池と本発明の電池との改良点を示す。The table below shows improvements between the conventional battery and the battery of the present invention.
表 次に他の実施例について示す。table Next, other embodiments will be described.
第6図の実施例では、陰極側の断面図を示し、9′はス
テンレス又はニッケルからなる陰極集電端子で、14′
は陰極蓋10に溶接された陰極棒で、直径3φのステン
レスからなり、内径4φのナトリウム連通路13に挿入
されナトリウム容器12の底fE 12’に接触してい
る。これはナトリウム容器12内に真空含浸法により溶
融ナトリウムを充満させた後、陰極棒14′及び陰極集
電端子9′を溶接した陰極蓋10の陰極棒14′をナト
リウム連通路16内に挿入し冷却する。In the embodiment shown in FIG. 6, a sectional view of the cathode side is shown, and 9' is a cathode current collector terminal made of stainless steel or nickel, and 14' is a cathode current collector terminal made of stainless steel or nickel.
is a cathode rod welded to the cathode lid 10, which is made of stainless steel and has a diameter of 3φ, is inserted into the sodium communication passage 13 having an inner diameter of 4φ, and is in contact with the bottom fE 12' of the sodium container 12. This is done by filling the sodium container 12 with molten sodium by vacuum impregnation, and then inserting the cathode rod 14' of the cathode lid 10, to which the cathode rod 14' and the cathode current collector terminal 9' are welded, into the sodium communication path 16. Cooling.
次にこのナトリウム充填済ナトリウム容器12及び陰極
蓋10を固体電解質管1内に挿入し、真空下で陰極沓1
0と陰極補助蓋5を溶接する。Next, the sodium-filled sodium container 12 and the cathode lid 10 are inserted into the solid electrolyte tube 1, and the cathode shoe 1 is placed under vacuum.
0 and the cathode auxiliary lid 5 are welded.
上記の構造により、ナトリウム容器12内のナトリウム
が放電末で最も低い液面位(例えばナトリウム連通路1
3の下端よりわずか高い位置)になっても、陰極棒14
′が溶融ナトリウム中に没していることから常に電気的
接触がなされる。With the above structure, the sodium in the sodium container 12 is at the lowest liquid level at the end of the discharge (for example, the sodium communication path 1
3)), even if the cathode bar 14
' is submerged in molten sodium, so electrical contact is always made.
また、ナトリウム連通路13と陰極棒14′のそれぞれ
の側面で形成する間隙を小さくしても単位面積あたりの
ナトリウム量を変化させることなく、急激なナトリウム
消費量に対して抑制効果を有するものとなる〇
第4図の実施例においては、約0.5闘厚のステンレス
からなる陰極蓋10′の上面に陰極集電端子9′をスポ
ット溶接などで溶接し、下面には直径2φで先細となっ
たステンレス棒からなる陰極棒14′(尚、木ネジ状で
あってもよい)をスポット溶接などで溶接した。ナトリ
ウム容器12に上記した如く陰極活物質11を充填した
後、固体電解質管1内に挿入し、更に上記陰極蓋10′
を配し、かつ陰極棒14′をナトリウム連通路13内に
挿入した。次・に陰極蓋10′と陰極補助蓋5を真空中
又はヘリウムガス減圧下で溶接して陰極室内を真空密閉
した。上記の構成により電池作動温度まで昇温すると固
体電解質管1及び陰極蓋10′等とナトリウム容器12
との間隙域に溶融ナトリウムが充満し、溶融ナトリウム
自体の陰極蓋10′及び陰極棒14′との接触により電
気的接続がなされ、充電・放電に際しても接触不良によ
る電池内部抵抗増加現象は認められなかった(この現象
が発生すると放電時、ナトリウム容器12内に溶融ナト
リウム消費く残存するにもかかわらず放電々圧が低下し
放電打切りとなり電池容量が理論値よりも小さくなり電
池特性は悪くなる)。また急速なナト」ラム消費に対し
ては、陰極棒14′とナトリウム連通路15との間隙に
より流量が抑制される。更に通常のナトリウム消費に対
しては、陰極棒14′の先端が先細となっていることか
ら流速はは!一定した。Furthermore, even if the gaps formed between the side surfaces of the sodium communication path 13 and the cathode rod 14' are made smaller, the amount of sodium per unit area does not change, and the effect of suppressing rapid sodium consumption can be achieved. In the embodiment shown in Fig. 4, a cathode collector terminal 9' is welded by spot welding to the upper surface of the cathode cover 10' made of stainless steel with a thickness of about 0.5 mm, and a tapered terminal with a diameter of 2φ is attached to the lower surface. A cathode rod 14' made of a stainless steel rod (which may be in the shape of a wood screw) was welded by spot welding or the like. After filling the sodium container 12 with the cathode active material 11 as described above, the sodium container 12 is inserted into the solid electrolyte tube 1, and the cathode lid 10'
and the cathode rod 14' was inserted into the sodium communication path 13. Next, the cathode cover 10' and the cathode auxiliary cover 5 were welded together in a vacuum or under reduced pressure of helium gas to vacuum-seal the cathode chamber. With the above configuration, when the temperature rises to the battery operating temperature, the solid electrolyte tube 1, cathode cover 10', etc., and the sodium container 12
The gap between the battery and the battery is filled with molten sodium, and an electrical connection is established through contact between the molten sodium itself and the cathode cover 10' and the cathode rod 14', and no increase in battery internal resistance due to poor contact is observed during charging and discharging. (If this phenomenon occurs, the discharge pressure decreases even though the molten sodium remains in the sodium container 12 due to consumption, and the discharge is terminated. The battery capacity becomes smaller than the theoretical value and the battery characteristics deteriorate.) . Furthermore, the flow rate is suppressed by the gap between the cathode rod 14' and the sodium communication passage 15 against rapid sodium ram consumption. Furthermore, for normal sodium consumption, the tapered tip of the cathode rod 14' reduces the flow rate! Constant.
尚、本発明によるナトリウム容器を一重又は二重容器と
すること、及び材質、肉厚、陰極ノシイプ棒の形状、材
質については、上記実施例に限定されるものではない。Note that the sodium container according to the present invention is not limited to the above-mentioned embodiments, and the material, wall thickness, shape, and material of the cathode nozzle rod are not limited to the single or double container.
本発明は、上記した如く、固体電解質管へのヒートサイ
クル数を削減すると共に、ナトリウム容器の偏心による
固体電解質管への衝撃をなくシ、かつどのような状態に
おいても常に電気的接続がなされると共に、電池破損時
においては急速なナトリウム供給を抑制するなどの効果
を有するものであり、その工業的価値は大である。As described above, the present invention reduces the number of heat cycles applied to the solid electrolyte tube, eliminates shock to the solid electrolyte tube due to eccentricity of the sodium container, and maintains electrical connection at all times in any state. In addition, it has the effect of suppressing the rapid supply of sodium when the battery is damaged, and has great industrial value.
第1図は従来のナトリウム−硫黄電池の断面図、第2図
、第6図、第4図は本発明による実施例のナトリウム−
硫黄電池の断面図である。
1・・・固体電解質管
9.12・・・、ナトリウム容器
13・・・ナトリウム連通路
14・・・陰極バイブ
14’、14’・・・@柵棒
出願人 湯浅電池株式会社
!r4 図FIG. 1 is a sectional view of a conventional sodium-sulfur battery, and FIGS. 2, 6, and 4 are sodium-sulfur batteries according to embodiments of the present invention.
FIG. 2 is a cross-sectional view of a sulfur battery. 1...Solid electrolyte tube 9.12..., sodium container 13...sodium communication path 14...cathode vibrator 14', 14'...@Fence rod applicant Yuasa Battery Co., Ltd.! r4 diagram
Claims (1)
室としたナトリウム−硫黄電池において、固体電解質管
内にナトリウム連通路を設けたナトリウム容器を配し、
少なくともナトリウム連通路の固体電解質管へ通じる通
路を狭くしたことを特徴とするナトリウム−硫黄電池。 2)ナトリウム連通路の一方の端部を、一方を密閉した
陰極パイプ内に挿入された特許請求の範囲第1項記載の
ナトリウム−硫黄電池。 3)ナトリウム連通路内に陰極蓋に設けられた陰極棒が
挿入された特許請求の範囲第1項記載のナトリウム−硫
黄電池。 4)陰極棒がナトリウム容器の内底面近傍まで挿入した
特許請求の範囲第3項記載のナトリウム−硫黄電池。[Scope of Claims] 1) In a sodium-sulfur battery with an IJium ion-conducting solid electrolyte tube as a cathode chamber, a sodium container provided with a sodium communication path is arranged in the solid electrolyte tube,
A sodium-sulfur battery characterized in that at least a sodium communication path leading to a solid electrolyte tube is narrowed. 2) The sodium-sulfur battery according to claim 1, wherein one end of the sodium communication path is inserted into a cathode pipe with one end sealed. 3) The sodium-sulfur battery according to claim 1, wherein the cathode rod provided on the cathode cover is inserted into the sodium communication path. 4) The sodium-sulfur battery according to claim 3, wherein the cathode rod is inserted up to the vicinity of the inner bottom surface of the sodium container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103090A JPS59228371A (en) | 1983-06-08 | 1983-06-08 | Sodium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103090A JPS59228371A (en) | 1983-06-08 | 1983-06-08 | Sodium-sulfur battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59228371A true JPS59228371A (en) | 1984-12-21 |
Family
ID=14344934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58103090A Pending JPS59228371A (en) | 1983-06-08 | 1983-06-08 | Sodium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59228371A (en) |
-
1983
- 1983-06-08 JP JP58103090A patent/JPS59228371A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5951482A (en) | Sodium-sulfur battery | |
JPH06310171A (en) | Sodium/molten salt cell | |
US4104448A (en) | Alkali metal-sulphur cells | |
JPS5825086A (en) | Electrochemical storage battery | |
JP3193319B2 (en) | Sodium-sulfur battery | |
JPS59228371A (en) | Sodium-sulfur battery | |
JPS6012680A (en) | Sodium-sulfur battery | |
JPH0665073B2 (en) | Sodium-sulfur battery | |
JPS5973863A (en) | Sodium-sulfur battery | |
JPS59163773A (en) | Sodium-sulfur battery | |
JP2004265743A (en) | Sodium secondary battery module | |
JPH0554908A (en) | Sodium-sulfur battery | |
JPS61285655A (en) | Manufacture of thin enclosed cell | |
JPS609067A (en) | Sodium-sulfuric battery | |
JP2646087B2 (en) | Sodium-sulfur secondary battery | |
GB2101395A (en) | Thermal electric cells | |
JPS6012681A (en) | Sodium-sulfur battery | |
JPS6039774A (en) | Sodium-sulfur battery | |
JPS5935373A (en) | Sodium-sulfur battery | |
JPH1064581A (en) | Sodium-sulfur battery | |
JPH05266919A (en) | Sodium-sulfuer battery | |
JPH0256868A (en) | Sodium-sulfur battery | |
JPS6044972A (en) | Sodium-sulfur battery | |
JPH05266922A (en) | Sodium-sulfur battery | |
JPH02126571A (en) | Sodium-sulphur cell |