JPS59215045A - Manufacture of photomagnetic disk - Google Patents

Manufacture of photomagnetic disk

Info

Publication number
JPS59215045A
JPS59215045A JP8852283A JP8852283A JPS59215045A JP S59215045 A JPS59215045 A JP S59215045A JP 8852283 A JP8852283 A JP 8852283A JP 8852283 A JP8852283 A JP 8852283A JP S59215045 A JPS59215045 A JP S59215045A
Authority
JP
Japan
Prior art keywords
substrate
coercive force
plate
source
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8852283A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Noriaki Hara
原 憲明
Yoshihiko Kudo
工藤 嘉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8852283A priority Critical patent/JPS59215045A/en
Publication of JPS59215045A publication Critical patent/JPS59215045A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To ensure easily a large recording region by placing a correcting plate between a substrate and an evaporating source in the vacuum vessel of a vapor deposition apparatus and by rotating two or more among the substrate, the evaporating source and the correcting plate at different speeds. CONSTITUTION:A substrate 1, a correcting plate 2 and an evaporating source 3 are placed in a vacuum vessel. The source 3 is a composite target consisting of a pure iron plate and small chips of gadolinium and terbium on the iron plate. While rotating the target 1 clockwise and the plate 2 counterclockwise, a magnetic film is formed on the substrate 1 by a sputtering method. The distribution of coercive force is made independent of the relative positions of the substrate 1, the plate 2 and the source 3 in the circumferential direction of the substrate, so uniformity in the distribution of coercive force in the circumferential direction is easily ensured, and uniformity in the distribution of coercive force in the radial direction is easily controlled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱磁気的に記録消去を行う機能を有した記録
再生装置の記録媒体の磁性膜層を製造する製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method for manufacturing a magnetic film layer of a recording medium of a recording/reproducing device having a thermomagnetic recording/erasing function.

従来例の構成とその問題点 光磁気ディスクの磁性膜層は一般的に次に示す2つの製
造方法によって作られる。
Conventional Structure and Problems The magnetic film layer of a magneto-optical disk is generally manufactured by the following two manufacturing methods.

その1つは、真空槽内に蒸発源と基板を設置し、蒸発源
を加熱蒸発させて基板上に蒸発粒子を付着・堆積させる
ことにより磁性膜を得る真空蓋着方2ページ 法であり、もう1つは真空槽内にアルゴンイオンを形成
し、これを蒸発源に衝突させ、蒸発粒子を蒸発源からた
たき出し、その粒子を真空槽内に設置した基板上に付着
・堆積させて磁性膜を得るスパッタ蒸着による方法であ
る。
One of them is a two-page vacuum lid attachment method in which a magnetic film is obtained by installing an evaporation source and a substrate in a vacuum chamber, heating and evaporating the evaporation source, and adhering and depositing evaporated particles on the substrate. The other method is to form argon ions in a vacuum chamber, collide them with an evaporation source, knock out evaporated particles from the evaporation source, and attach and deposit the particles on a substrate placed in the vacuum chamber to form a magnetic film. This is a method by sputter deposition.

さて、光磁気ディスクを記録媒体として使用する場合、
熱磁気的に記録、消去を行う際に、バイアス磁界を印加
して光磁気ディスク中の磁性膜に局部加熱を行うが、こ
の時のバイアス磁界の大きさ並びに加熱パワーは磁性膜
の保磁力によって決定される要因が大である。光磁気デ
ィスクの記録領域内で保磁力が位置によって変化すると
きにはその都度前述のバイアス磁界や加熱パワーを変え
る必要があり、記録再生装置が非常に複雑になる。
Now, when using a magneto-optical disk as a recording medium,
When recording and erasing thermomagnetically, a bias magnetic field is applied to locally heat the magnetic film in the magneto-optical disk, but the magnitude of the bias magnetic field and the heating power at this time depend on the coercive force of the magnetic film. There are many determining factors. When the coercive force changes depending on the position within the recording area of the magneto-optical disk, it is necessary to change the aforementioned bias magnetic field and heating power each time, which makes the recording and reproducing apparatus very complicated.

上記の理由から、光磁気ディスクの記録領域の保磁力は
位置による変化がないことが要求される。
For the above reasons, it is required that the coercive force of the recording area of the magneto-optical disk does not change depending on the position.

従来、光磁気ディスクの記録領域の保磁力の均一化に関
して、基板の回転によってディスクの円周方向の均一性
を確保する方法が用いられてきている。又、ディスクの
半径方向の均一性を確保す31  ゛・ るために、真空蒸着法では基板を自公転させる方法が用
いられ、又スパッタ法では蒸発源の配置を変える方法や
基板前面に窓を設ける方法が採られてきた。
Conventionally, in order to make the coercive force uniform in the recording area of a magneto-optical disk, a method has been used in which uniformity in the circumferential direction of the disk is ensured by rotating a substrate. In addition, in order to ensure the uniformity of the disk in the radial direction, the vacuum evaporation method uses a method of rotating the substrate, and the sputtering method uses methods such as changing the arrangement of the evaporation source or creating a window on the front of the substrate. A method has been adopted to set it up.

しかし、真空蒸着やスパッタでは蒸発源の状態の変化に
伴って、付着粒子の堆積の様子が異なるため、」−記の
方法では保磁力の制御に長い時間を要するという欠点が
あった。
However, in vacuum evaporation and sputtering, the manner in which the deposited particles are deposited differs depending on the change in the state of the evaporation source, so the method described above has the disadvantage that it takes a long time to control the coercive force.

発明の目的 本発明は光磁気ディスクの記録領域の円周方向の保磁力
の均一性を確保し、同時に半径方向の保磁力の制御を短
時間に行って光磁気ディスクの記録領域を広い面積にわ
たって確保することを目的とするものである。
Purpose of the Invention The present invention ensures the uniformity of the coercive force in the circumferential direction of the recording area of a magneto-optical disk, and at the same time controls the coercive force in the radial direction in a short time to spread the recording area of the magneto-optical disk over a wide area. The purpose is to ensure that

発明の構成 本発明は真空蒸着装置又はスパッタ蒸着装置の真空槽内
の基板と蒸発源の間に補正板を設け、基板、蒸発源、補
正板の2つ以−にが異なる速度で回転するようにしたも
のである。
Structure of the Invention The present invention provides a correction plate between a substrate and an evaporation source in a vacuum chamber of a vacuum evaporation apparatus or a sputter evaporation apparatus, so that two or more of the substrate, the evaporation source, and the correction plate rotate at different speeds. This is what I did.

実施例の説明 捷ず、第1図に真空蒸着装置又はスパッタ蒸着装置の真
空槽内の基板と蒸発源の間に補正板を設け、基板、蒸発
源、補正板の各々に回転を加えた場合の円周方向の保磁
力分布の均一性の確保と、半径方向の保磁力分布の均一
性の制御の容易さを表わす。
Without omitting the description of the embodiment, Fig. 1 shows a case where a correction plate is provided between the substrate and the evaporation source in the vacuum chamber of a vacuum evaporation apparatus or sputter evaporation apparatus, and rotation is applied to each of the substrate, the evaporation source, and the correction plate. It represents the ease of ensuring uniformity of the coercive force distribution in the circumferential direction and controlling the uniformity of the coercive force distribution in the radial direction.

半径方向での保磁力分布の制御を容易にするためには、
基板、蒸発源、補正板の少くとも2つ以」二を異なる速
度で回転させる必要がある。この理由は2つ以上を回転
させることにより、基板の周方向での基板、補正板、蒸
発源の相対位置が保磁力分布に及ぼす影響がなくなるか
らである。
To facilitate control of the coercive force distribution in the radial direction,
It is necessary to rotate at least two of the substrate, evaporation source, and correction plate at different speeds. The reason for this is that by rotating two or more of them, the relative positions of the substrate, correction plate, and evaporation source in the circumferential direction of the substrate no longer affect the coercive force distribution.

蒸発源は高電圧や大電流を印加したり、電子ビーム等を
照射するため、基板と補正板を回転させるのが望捷しく
、相対速度を大きくするために逆方向に回転させるのが
よい。
Since the evaporation source applies a high voltage or a large current or irradiates with an electron beam, it is desirable to rotate the substrate and the correction plate, and it is preferable to rotate them in opposite directions to increase the relative speed.

本発明の一実施例における基板、補正板、蒸発源の構成
を第2図に示す。この実施例は光磁気ディスクの磁性膜
層をスパッタ法によって製造する場合のものである。1
は基板、2は補正板、3は5 、  ・、− 蒸発源であり、全て真空槽内に設置されている。
FIG. 2 shows the structure of the substrate, correction plate, and evaporation source in one embodiment of the present invention. This embodiment is for manufacturing a magnetic film layer of a magneto-optical disk by sputtering. 1
is a substrate, 2 is a correction plate, and 3 is an evaporation source, all of which are installed in a vacuum chamber.

蒸発源3は複合ターゲットと呼ばれるもので、例えば純
鉄の板の上にガドリニウムとテルビウムの小片を置いた
ものである。
The evaporation source 3 is called a composite target, for example, a pure iron plate with small pieces of gadolinium and terbium placed on it.

基板1を右方向に、補正板2を左方向に回転させながら
スパッタ法にて基板1上に磁性膜層を製造する。なお、
4は基板1の回転駆動源、6は補正板2の回転駆動源で
あり、これらは例えばモータ等からなる。
A magnetic film layer is manufactured on the substrate 1 by sputtering while rotating the substrate 1 to the right and the correction plate 2 to the left. In addition,
Reference numeral 4 indicates a rotational drive source for the substrate 1, and 6 indicates a rotational drive source for the correction plate 2, which may include, for example, a motor.

」二記のようにして製造した磁性膜層の保磁力分布の均
一性改善の様子を第3図に示す。折れ線6は蒸発源と基
板との間に補正板を挿入し基板だけを回転した場合の保
磁力分布を表わし、折れ線7は補正板を挿入し、基板、
補正板をそれぞれ逆方向に回転させた場合の保磁力分布
を示したものである。
FIG. 3 shows the improvement in the uniformity of the coercive force distribution of the magnetic film layer manufactured as described in Section 2 above. The polygonal line 6 represents the coercive force distribution when a correction plate is inserted between the evaporation source and the substrate and only the substrate is rotated, and the polygonal line 7 represents the coercive force distribution when the correction plate is inserted and the substrate,
This figure shows the coercive force distribution when the correction plates are rotated in opposite directions.

この第3図から明らかなように本発明は基板1の直径が
66〜120rrrm tでの保磁力分布は±35係か
ら+10チ以下におさえることができ、光磁気ディスク
の大面積化に有望な製造方法であるこ6、、−・ とがわかる。
As is clear from FIG. 3, the present invention can suppress the coercive force distribution from ±35 to less than +10 when the diameter of the substrate 1 is 66 to 120 mm, which is promising for increasing the area of magneto-optical disks. It can be seen that the manufacturing method is as follows.

発明の効果 以上のように本発明は基板と蒸発源の間に補正板を設け
、基板、蒸発源、補正板の2つ以上を異である。
Effects of the Invention As described above, in the present invention, a correction plate is provided between the substrate and the evaporation source, and two or more of the substrate, the evaporation source, and the correction plate are different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における基板の円周方向の保持力分布の
均一性の確保と半径方向の保持力分布の均一性の制御の
容易さを示す図、第2図は本発明の一実施例を示す要部
概略構成斜視図、第3図は基板の直径と保持力の関係を
示す図である。 1・・・・・・基板、2・・・・・・補正板、3・・・
・・・蒸発源、4.6・・・・・・回転駆動源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 0−一一回転盲 ×−−一曹転島 第2図 第3図 基板のL怪(mrn ]
FIG. 1 is a diagram showing the ease of ensuring the uniformity of the holding force distribution in the circumferential direction of the substrate and controlling the uniformity of the holding force distribution in the radial direction in the present invention, and FIG. 2 is an example of the present invention. FIG. 3 is a diagram showing the relationship between the diameter of the substrate and the holding force. 1... Board, 2... Correction plate, 3...
...Evaporation source, 4.6... Rotation drive source. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 0-11 Rotation blindness

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着装置又はスパッタ装置内の蒸発源と基板の間に
、部分的に蒸発粒子の基板への飛来を防げる機能を有し
た補正板を設け、蒸発源、基板、補正板の2つ以上を異
なる速度で回転させることを特徴とする光磁気ディスク
の製造方法。
A correction plate having a function of partially preventing evaporated particles from flying to the substrate is provided between the evaporation source and the substrate in a vacuum evaporation device or sputtering device, and two or more of the evaporation source, substrate, and correction plate are different from each other. A method for manufacturing a magneto-optical disk characterized by rotating it at a high speed.
JP8852283A 1983-05-19 1983-05-19 Manufacture of photomagnetic disk Pending JPS59215045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8852283A JPS59215045A (en) 1983-05-19 1983-05-19 Manufacture of photomagnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8852283A JPS59215045A (en) 1983-05-19 1983-05-19 Manufacture of photomagnetic disk

Publications (1)

Publication Number Publication Date
JPS59215045A true JPS59215045A (en) 1984-12-04

Family

ID=13945162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8852283A Pending JPS59215045A (en) 1983-05-19 1983-05-19 Manufacture of photomagnetic disk

Country Status (1)

Country Link
JP (1) JPS59215045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266062A (en) * 1987-04-23 1988-11-02 Sumitomo Metal Mining Co Ltd Production of multielemental sputtering thin film and sputtering device
JPH04232262A (en) * 1990-08-31 1992-08-20 Internatl Business Mach Corp <Ibm> Sputtering apparatus
US6872285B2 (en) * 2001-08-30 2005-03-29 Anelva Corporation System for depositing a film
US7115191B2 (en) 2001-03-05 2006-10-03 Anelva Corporation Magnetic recording disk, magnetic recording disk manufacturing method and magnetic recording disk manufacturing system
US20180080117A1 (en) * 2016-01-18 2018-03-22 Boe Technology Group Co., Ltd. Vacuum Evaporation Coating Equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266062A (en) * 1987-04-23 1988-11-02 Sumitomo Metal Mining Co Ltd Production of multielemental sputtering thin film and sputtering device
JPH04232262A (en) * 1990-08-31 1992-08-20 Internatl Business Mach Corp <Ibm> Sputtering apparatus
US7115191B2 (en) 2001-03-05 2006-10-03 Anelva Corporation Magnetic recording disk, magnetic recording disk manufacturing method and magnetic recording disk manufacturing system
US7517438B2 (en) 2001-03-05 2009-04-14 Canon Anelva Corporation Magnetic recording disk, magnetic recording disk manufacturing method and magnetic recording disk manufacturing system
US6872285B2 (en) * 2001-08-30 2005-03-29 Anelva Corporation System for depositing a film
US20180080117A1 (en) * 2016-01-18 2018-03-22 Boe Technology Group Co., Ltd. Vacuum Evaporation Coating Equipment

Similar Documents

Publication Publication Date Title
EP0122030B1 (en) A magnetic recording member and a manufacturing method for such a member
JPS59215045A (en) Manufacture of photomagnetic disk
JPH02161617A (en) Production of magnetic recording medium
JP4167833B2 (en) Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof
JPH0747816B2 (en) Method for forming polycrystalline thin film
JP3038288B2 (en) Thick film making equipment
JPS6237369A (en) Material for sputtering target
JPS6174142A (en) Production of magnetic recording medium
JPH0719369B2 (en) Magnetic recording medium and manufacturing method thereof
JPH06349662A (en) Forming method of magnetoresistance effect film
JPH05171409A (en) Device for producing magneto-optical recording medium
JPH037936Y2 (en)
JPS6334226B2 (en)
JPS63244342A (en) Manufacture of recording medium
JPH0462814A (en) Method for producing artificial grid film
JPS63100179A (en) Film forming device
JPH0610347B2 (en) Tripolar spatling source
JPS58161137A (en) Manufacture of magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPH01261A (en) Ion deposition thin film formation method
JPS618737A (en) Manufacture of vertical magnetic recording medium
JPS60204850A (en) Thin magnetic film and its production
JPH03119519A (en) Production of perpendicular magnetic recording medium
JPH0278018A (en) Production of perpendicular magnetic recording medium
JPH06282888A (en) Magneto-optical recording medium