JPS59212924A - Position detector for traveling object - Google Patents
Position detector for traveling objectInfo
- Publication number
- JPS59212924A JPS59212924A JP58087871A JP8787183A JPS59212924A JP S59212924 A JPS59212924 A JP S59212924A JP 58087871 A JP58087871 A JP 58087871A JP 8787183 A JP8787183 A JP 8787183A JP S59212924 A JPS59212924 A JP S59212924A
- Authority
- JP
- Japan
- Prior art keywords
- group
- slit
- light
- distance
- angles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000005389 magnetism Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Measurement Of Optical Distance (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、−辺の長さが読値でその辺に対する頂点と、
その辺とのなす2つの角度を検出して、辺と頂角との間
の距離を求める三角測量による検出装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention provides: - the length of an edge is a reading value and the vertex for that edge;
This invention relates to a detection device that uses triangulation to determine the distance between a side and an apex angle by detecting two angles formed with the side.
従来この種の装置として第1図および第2図に示すもの
があった。第1図において、固定位置の2ケ所(2)、
(3)から同時に発した超音波あるいは光等の信号を
移動体(1)の受信部(4)で受信し、その到達時間か
ら各固定位置との距離tl+ t2を求め、固定位置(
2)、 (3)の距離tとから平面上での移動体(1)
の位置りを検出する装置がある。この場合、固定位置(
2)、 、(3)および移動体(1)とは発信、受信位
置を逆にすることがある。他の方法として、第2図に示
したように、固定位置(2)で発信した超音波あるいは
光等の信号を2ケ所にスリットを設けたスリット板(5
)のスリットに通過させてイメージセンサ(6)で受信
し、信号処理してからtlとt2に求め、スリット板(
5)とイメージセンサ(6)間の距離りと、イメージセ
ンサ(6)が受信した2点間の距離およびこの2点と固
定点(2)とがなす角度を検出して、移動体(1)から
固定点(2)までの距離りを検出する装置がある。Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In Figure 1, two fixed positions (2),
The reception unit (4) of the moving object (1) receives signals such as ultrasonic waves or light simultaneously emitted from (3), calculates the distance tl + t2 from each fixed position from the arrival time, and calculates the distance tl + t2 from the fixed position (
2), (3) from the distance t to the moving body (1) on the plane
There is a device that detects the position of In this case, the fixed position (
2), , (3) and the transmitting and receiving positions may be reversed from those of the mobile unit (1). As another method, as shown in Figure 2, a slit plate (5
) is passed through the slit of the image sensor (6), and after signal processing, tl and t2 are obtained, and the slit plate (
5) and the image sensor (6), the distance between the two points received by the image sensor (6), and the angle between these two points and the fixed point (2), and detect the distance between the moving object (1) and the image sensor (6). ) to a fixed point (2).
従来の移動体の位置検出装置は以上のように構成されて
いるので、第1図により示した場合では、発信側と受信
側に同時指令を与える必要があるので、これが測定精度
に影響することと、移動体の移動速度も測定精度に影響
を与える。Conventional position detection devices for moving objects are configured as described above, so in the case shown in Figure 1, it is necessary to give simultaneous commands to the sending and receiving sides, which may affect measurement accuracy. In addition, the moving speed of the moving object also affects measurement accuracy.
また、第2図により示した場合では、信号入射角と信号
帯幅との関係で、入射角が大きくなるとLlおよびt2
の検出精度が悪くなるなどの欠点があった。In addition, in the case shown in FIG. 2, due to the relationship between the signal incidence angle and the signal bandwidth, when the incidence angle becomes large, Ll and t2
There were drawbacks such as poor detection accuracy.
この発明は上記のような従来の欠点を除去するためにな
されたもので、点光源を有する固定発信部からの光を、
スリット−4通して半円周状に並べた光検出素子群が直
接検出し、かつ、入射角検出器が外界壁面と平行に対面
するように、磁石の方向を基準にして、入射角検出器の
方向を制御することにより、三角測量における測定精度
に影響を与える角度検出と入射角検出器面の制御を精度
良く行ない、移動体自体で自己位置を認識できるような
自己位置検出装置を提供するものである。This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology.
The incident angle detector is set with the direction of the magnet as a reference so that the photodetecting elements arrayed in a semicircular manner through the slit 4 directly detect the light, and the incident angle detector faces parallel to the external wall surface. To provide a self-position detecting device that can accurately detect angles that affect measurement accuracy in triangulation and control the angle of incidence detector surface by controlling the direction of the movable body itself. It is something.
以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.
第4図において、(7)は半円周状に並べた光検出群、
(8)は(7)と同軸の円筒上に一つの基準点をもつ全
円周状に並べた光検出素子群、(9)は両光検出素子群
(7)、 (8)と同軸上に枢支されたスリット(9α
)を有す出素子群(8)の基準点が対向すべき発光素子
αqを設ける。そして、両光検出素子群(7)、 (8
)は一体として回動自在に移動体(1)に取付けられて
いる。In Fig. 4, (7) is a photodetection group arranged in a semicircular shape,
(8) is a group of photodetecting elements arranged in a complete circumference with one reference point on a cylinder coaxial with (7), and (9) is a group of photodetecting elements arranged coaxially with both (7) and (8). A slit (9α) pivoted to
) is provided with a light emitting element αq to which the reference point of the output element group (8) is to be opposed. Then, both photodetecting element groups (7), (8
) are integrally attached to the movable body (1) so as to be rotatable.
第5〜7図において、いま、外界壁面(D)が地磁気の
N−8と平行になっているとし、この外界壁面(D)に
所定の距離をおいて点光源を有する発信部(2>、 (
3)を配設する。一方、移動体(1)は、磁石付スリッ
ト板(9)に取付けられた発光素子αOの光信号を、全
円周状の光検出素子群(8)の基準点に対応した光検出
素子以外の、例えば、基準点から時計方向に角ψの光検
出素子で受光している場合、移動体(1)を角ψだけ回
動させて発光素子(10)が基準点に対向するようにす
る。これにより、半円周上の光検出素子群(7)が外界
壁面(D)及び磁石付スリット板(9)に平行に対面す
る。したがって、第6図に示すように、発信部(2L
(3)からの光はスリン) (9,)を通って光検出素
子群(7ンのそれぞれ対応する光検出素子に入射し、そ
の位置でそれぞれの入射角θI、θ2を検出する。ここ
で、第5図において、光検出素子群(7)のA端からm
番目と、B端からn番目の光検出素子(ア)と(イ)に
光が入射しているとすると、その入射角θ1.θ2に対
応しているので、光検出素子群(力の出力をA、Bj:
す90’の点を境にして2分1−1lシ、それぞれの出
力σ、b金光検光検出回路4)に入力する。この光1■
1」k回路C24)では、入力a、4としさい値発生回
路01によるしきい値Cとで、最大光入射量の〃1”レ
ベルが(ア)、(イ)の点であることを判別し、θl/
90°、θ2/90°の整数倍を“1”に1、−C1信
−号d*”iじ出力し、−“1”レベル検出回路94I
、曹で2進数のテークに変換12て信号f 、 gを
出力する。In Figures 5 to 7, it is assumed that the outer wall surface (D) is now parallel to the earth's magnetic field N-8, and the transmitting section (2> , (
3). On the other hand, the moving body (1) transmits the optical signal of the light emitting element αO attached to the slit plate with magnet (9) to a photodetecting element other than the one corresponding to the reference point of the entire circumferential photodetecting element group (8). For example, if light is being received by a photodetecting element at an angle ψ clockwise from the reference point, rotate the moving body (1) by the angle ψ so that the light emitting element (10) faces the reference point. . Thereby, the photodetecting element group (7) on the semicircle faces the outer wall surface (D) and the slit plate with magnet (9) in parallel. Therefore, as shown in FIG.
The light from (3) passes through Surin) (9,) and enters the corresponding photodetecting element of the photodetecting element group (7), and the respective incident angles θI and θ2 are detected at that position. , m from the A end of the photodetecting element group (7) in FIG.
Assuming that light is incident on the nth photodetecting elements (A) and (B) from the B end, the incident angle θ1. Since it corresponds to θ2, the photodetecting element group (force output A, Bj:
The outputs σ and b are inputted to the gold light analysis detection circuit 4) for 2 minutes 1-1l with the point 90' as the boundary. This light 1■
The 1''k circuit C24) determines that the 1'' level of the maximum amount of incident light is at points (A) and (B) using inputs a and 4 and the threshold value C from the threshold value generation circuit 01. , θl/
90°, an integer multiple of θ2/90° is output as “1”, -C1 signal d*”i, -“1” level detection circuit 94I
, and outputs signals f and g by converting them into binary numbers.
7゛バ6ζτおいて、外界壁面(D)と移動1イベl)
との距で求めらJする。したがって、信号f、gi第6
図に示す余弦回路0す、 (171,’0樽、(1@に
それぞれ入力して5llio+ + 52n021
Sin (900−θ+)、5in(90°−02)
を弧算し、さらに除算回路シi、(2υおよび加算回路
囚で前足を行ない、)役I支に除算回路(23+で両発
信部(2)。At 7゛ bar 6ζτ, move 1 degree l) with the external wall surface (D)
Find the distance from J. Therefore, the signal f, gi 6th
The cosine circuit shown in the figure is 0s, (171,'0 keg, (1@) and 5llio+ + 52n021
Sin (900-θ+), 5in (90°-02)
Calculate the arc, and then perform the front foot with the division circuit I, (2υ and the addition circuit,) and the division circuit (23+ with both transmitters (2)).
(3)間の距離tに対応する信号L(lを加算回路(2
21の出力で除算することにより、移動体(1)と外界
壁面(D’)との距離りを移動体(1)側で検出する。(3) The signal L (l) corresponding to the distance t between the adder circuit (2
By dividing by the output of 21, the distance between the moving body (1) and the external wall surface (D') is detected on the moving body (1) side.
また、上記実施例では外界壁面の2個所に固定発信部を
、移動体に°1組の光入射角検出器を設けるようにした
か、逆に、外界壁面の1個所に固定発信部金、移動体に
2組の光入射角検出器を所定距離に配置しても、同様(
(移動体の自己位置を検出することができる。In addition, in the above embodiment, fixed transmitters were provided at two locations on the external wall surface, and one set of light incident angle detectors was provided on the moving body, or conversely, a fixed transmitter section was provided at one location on the external wall surface, Even if two sets of light incident angle detectors are placed at a predetermined distance on a moving object, the same result (
(The self-position of a moving body can be detected.
な:1′6、上記の説明では発信部(2)、 (3)を
配設する外界壁面ω)を地磁気のN−8と平行するよう
1(配置1ツニしたが、N−8とある角度をもって配設
されている場合に(は、磁石付スリット板(9)の磁石
のN−8方向とスリン) C9,)の方向に上記角度を
もたせ、光検出素子群(8)の基準点を上記角度に応じ
て変更すればよい。N: 1'6, in the above explanation, the outer wall surface ω) on which the transmitting parts (2) and (3) are arranged is 1 (the arrangement is adjusted by 1) so that it is parallel to N-8 of the earth's magnetic field, but it is written as N-8. When the photodetecting element group (8) is arranged at an angle, the reference point of the photodetecting element group (8) is set at the above angle in the direction of (C9,). may be changed according to the above angle.
以ヒ説明したように本発明によれば、点光源を有する固
定発信部からの光をスリットを通して半円周状の光検出
素子群で直接検出し、かつ入射角検出器が外界壁面と平
行に対面するように制御しているので、両角既検出の同
時性が得られ、また、三角;t111量におけるrθ度
検出を精4[厖良く行々え、移動体自体で自己の位置を
正確に認識することができるものが得ら」する効果があ
る、。As explained below, according to the present invention, light from a fixed transmitter having a point light source is directly detected by a semicircular photodetecting element group through a slit, and the incident angle detector is parallel to the external wall surface. Since it is controlled so that they face each other, simultaneous detection of both angles can be obtained, and the detection of rθ degrees in the triangular t111 amount is carried out precisely 4 degrees, and the moving object itself can accurately determine its own position. It has the effect of ``getting what you can recognize.''
4、 図面のf、’i +1−庁説明
第1図およびj、i’−2l閃は従東例金示した平面図
、第7)図、第4[図、メ、i″35図、第6図および
第7図はとの発明による一実施例である移動体の位if
、′を検出人11個の構成である。4. Drawings f, 'i +1-Office Explanation Figure 1 and j, i'-2l are plan views showing Jyuto Reikan, Figure 7), Figure 4 [Figure, Me, i'' Figure 35, FIGS. 6 and 7 show the position of a moving body according to an embodiment of the invention.
, ' has a configuration of 11 detected persons.
(1)・・・移動体、(2) 、 (Q)・・・光源4
(7)、 (8)・・・光検出素子群、(9)・・・
磁石側スリット板、(10)・・・発光素子、(D)・
・・固定平面。(1)...Moving object, (2), (Q)...Light source 4
(7), (8)...Photodetection element group, (9)...
Magnet side slit plate, (10)...Light emitting element, (D)...
・Fixed plane.
代理人 大 岩 増 雄 第1図 第3図 1禅文し 第5図 第6図 第7図 S−−レNAgent Masuo Oiwa Figure 1 Figure 3 1 Zen writing Figure 5 Figure 6 Figure 7 S--LeN
Claims (1)
れた光検出素子群とを内壁に固定した円筒体と、該円筒
体の同軸上に枢支され発光素子を設けた磁石付スリット
板とでなる検出器を1個ないし2個備えた移動体にて、
前記移動体の移動する平面に対して垂直な固定面に設け
られた1個所ないし2個所の光源より受光し、前記固定
面と前記移動体との距1)、fCを検出することを特徴
とする移動体の位置検出装置。A cylindrical body in which a group of photodetecting elements arranged in a semicircular manner and a group of photodetecting elements arranged in a continuous manner in a full circumference are fixed to an inner wall, and a light emitting element is coaxially supported on the cylindrical body. With a moving body equipped with one or two detectors consisting of a slit plate with a magnet,
It is characterized by receiving light from one or two light sources provided on a fixed surface perpendicular to the plane in which the moving object moves, and detecting a distance 1) between the fixed surface and the moving object, and fC. A position detection device for moving objects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58087871A JPS59212924A (en) | 1983-05-17 | 1983-05-17 | Position detector for traveling object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58087871A JPS59212924A (en) | 1983-05-17 | 1983-05-17 | Position detector for traveling object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59212924A true JPS59212924A (en) | 1984-12-01 |
Family
ID=13926928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58087871A Pending JPS59212924A (en) | 1983-05-17 | 1983-05-17 | Position detector for traveling object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59212924A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706917B1 (en) | 2004-07-07 | 2010-04-27 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8239992B2 (en) | 2007-05-09 | 2012-08-14 | Irobot Corporation | Compact autonomous coverage robot |
US8253368B2 (en) | 2004-01-28 | 2012-08-28 | Irobot Corporation | Debris sensor for cleaning apparatus |
US8368339B2 (en) | 2001-01-24 | 2013-02-05 | Irobot Corporation | Robot confinement |
US8374721B2 (en) | 2005-12-02 | 2013-02-12 | Irobot Corporation | Robot system |
US8380350B2 (en) | 2005-12-02 | 2013-02-19 | Irobot Corporation | Autonomous coverage robot navigation system |
US8382906B2 (en) | 2005-02-18 | 2013-02-26 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US8386081B2 (en) | 2002-09-13 | 2013-02-26 | Irobot Corporation | Navigational control system for a robotic device |
US8390251B2 (en) | 2004-01-21 | 2013-03-05 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US8387193B2 (en) | 2005-02-18 | 2013-03-05 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8396592B2 (en) | 2001-06-12 | 2013-03-12 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US8412377B2 (en) | 2000-01-24 | 2013-04-02 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US8417383B2 (en) | 2006-05-31 | 2013-04-09 | Irobot Corporation | Detecting robot stasis |
US8418303B2 (en) | 2006-05-19 | 2013-04-16 | Irobot Corporation | Cleaning robot roller processing |
US8428778B2 (en) | 2002-09-13 | 2013-04-23 | Irobot Corporation | Navigational control system for a robotic device |
US8838274B2 (en) | 2001-06-12 | 2014-09-16 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US8930023B2 (en) | 2009-11-06 | 2015-01-06 | Irobot Corporation | Localization by learning of wave-signal distributions |
US8950038B2 (en) | 2005-12-02 | 2015-02-10 | Irobot Corporation | Modular robot |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US9008835B2 (en) | 2004-06-24 | 2015-04-14 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US9038233B2 (en) | 2001-01-24 | 2015-05-26 | Irobot Corporation | Autonomous floor-cleaning robot |
US9128486B2 (en) | 2002-01-24 | 2015-09-08 | Irobot Corporation | Navigational control system for a robotic device |
US9320398B2 (en) | 2005-12-02 | 2016-04-26 | Irobot Corporation | Autonomous coverage robots |
US9360300B2 (en) | 2004-03-29 | 2016-06-07 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
US10470629B2 (en) | 2005-02-18 | 2019-11-12 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
-
1983
- 1983-05-17 JP JP58087871A patent/JPS59212924A/en active Pending
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9446521B2 (en) | 2000-01-24 | 2016-09-20 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US8412377B2 (en) | 2000-01-24 | 2013-04-02 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US9144361B2 (en) | 2000-04-04 | 2015-09-29 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9038233B2 (en) | 2001-01-24 | 2015-05-26 | Irobot Corporation | Autonomous floor-cleaning robot |
US8368339B2 (en) | 2001-01-24 | 2013-02-05 | Irobot Corporation | Robot confinement |
US9622635B2 (en) | 2001-01-24 | 2017-04-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US9582005B2 (en) | 2001-01-24 | 2017-02-28 | Irobot Corporation | Robot confinement |
US8838274B2 (en) | 2001-06-12 | 2014-09-16 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US8396592B2 (en) | 2001-06-12 | 2013-03-12 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US9104204B2 (en) | 2001-06-12 | 2015-08-11 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US9128486B2 (en) | 2002-01-24 | 2015-09-08 | Irobot Corporation | Navigational control system for a robotic device |
US8428778B2 (en) | 2002-09-13 | 2013-04-23 | Irobot Corporation | Navigational control system for a robotic device |
US9949608B2 (en) | 2002-09-13 | 2018-04-24 | Irobot Corporation | Navigational control system for a robotic device |
US8386081B2 (en) | 2002-09-13 | 2013-02-26 | Irobot Corporation | Navigational control system for a robotic device |
US8390251B2 (en) | 2004-01-21 | 2013-03-05 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US8854001B2 (en) | 2004-01-21 | 2014-10-07 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US9215957B2 (en) | 2004-01-21 | 2015-12-22 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US8253368B2 (en) | 2004-01-28 | 2012-08-28 | Irobot Corporation | Debris sensor for cleaning apparatus |
US8378613B2 (en) | 2004-01-28 | 2013-02-19 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9360300B2 (en) | 2004-03-29 | 2016-06-07 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US9008835B2 (en) | 2004-06-24 | 2015-04-14 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US9486924B2 (en) | 2004-06-24 | 2016-11-08 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US8874264B1 (en) | 2004-07-07 | 2014-10-28 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US7706917B1 (en) | 2004-07-07 | 2010-04-27 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US9223749B2 (en) | 2004-07-07 | 2015-12-29 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US9229454B1 (en) | 2004-07-07 | 2016-01-05 | Irobot Corporation | Autonomous mobile robot system |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US9445702B2 (en) | 2005-02-18 | 2016-09-20 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8855813B2 (en) | 2005-02-18 | 2014-10-07 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8392021B2 (en) | 2005-02-18 | 2013-03-05 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US8387193B2 (en) | 2005-02-18 | 2013-03-05 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8985127B2 (en) | 2005-02-18 | 2015-03-24 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US8382906B2 (en) | 2005-02-18 | 2013-02-26 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US10470629B2 (en) | 2005-02-18 | 2019-11-12 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US10524629B2 (en) | 2005-12-02 | 2020-01-07 | Irobot Corporation | Modular Robot |
US9149170B2 (en) | 2005-12-02 | 2015-10-06 | Irobot Corporation | Navigating autonomous coverage robots |
US9144360B2 (en) | 2005-12-02 | 2015-09-29 | Irobot Corporation | Autonomous coverage robot navigation system |
US8954192B2 (en) | 2005-12-02 | 2015-02-10 | Irobot Corporation | Navigating autonomous coverage robots |
US8374721B2 (en) | 2005-12-02 | 2013-02-12 | Irobot Corporation | Robot system |
US9599990B2 (en) | 2005-12-02 | 2017-03-21 | Irobot Corporation | Robot system |
US9320398B2 (en) | 2005-12-02 | 2016-04-26 | Irobot Corporation | Autonomous coverage robots |
US8380350B2 (en) | 2005-12-02 | 2013-02-19 | Irobot Corporation | Autonomous coverage robot navigation system |
US9392920B2 (en) | 2005-12-02 | 2016-07-19 | Irobot Corporation | Robot system |
US8950038B2 (en) | 2005-12-02 | 2015-02-10 | Irobot Corporation | Modular robot |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US9955841B2 (en) | 2006-05-19 | 2018-05-01 | Irobot Corporation | Removing debris from cleaning robots |
US10244915B2 (en) | 2006-05-19 | 2019-04-02 | Irobot Corporation | Coverage robots and associated cleaning bins |
US9492048B2 (en) | 2006-05-19 | 2016-11-15 | Irobot Corporation | Removing debris from cleaning robots |
US8418303B2 (en) | 2006-05-19 | 2013-04-16 | Irobot Corporation | Cleaning robot roller processing |
US9317038B2 (en) | 2006-05-31 | 2016-04-19 | Irobot Corporation | Detecting robot stasis |
US8417383B2 (en) | 2006-05-31 | 2013-04-09 | Irobot Corporation | Detecting robot stasis |
US10299652B2 (en) | 2007-05-09 | 2019-05-28 | Irobot Corporation | Autonomous coverage robot |
US8438695B2 (en) | 2007-05-09 | 2013-05-14 | Irobot Corporation | Autonomous coverage robot sensing |
US10070764B2 (en) | 2007-05-09 | 2018-09-11 | Irobot Corporation | Compact autonomous coverage robot |
US9480381B2 (en) | 2007-05-09 | 2016-11-01 | Irobot Corporation | Compact autonomous coverage robot |
US8239992B2 (en) | 2007-05-09 | 2012-08-14 | Irobot Corporation | Compact autonomous coverage robot |
US8839477B2 (en) | 2007-05-09 | 2014-09-23 | Irobot Corporation | Compact autonomous coverage robot |
US11072250B2 (en) | 2007-05-09 | 2021-07-27 | Irobot Corporation | Autonomous coverage robot sensing |
US11498438B2 (en) | 2007-05-09 | 2022-11-15 | Irobot Corporation | Autonomous coverage robot |
US8930023B2 (en) | 2009-11-06 | 2015-01-06 | Irobot Corporation | Localization by learning of wave-signal distributions |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
US11058271B2 (en) | 2010-02-16 | 2021-07-13 | Irobot Corporation | Vacuum brush |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59212924A (en) | Position detector for traveling object | |
TWI424148B (en) | Small form-factor distance sensor | |
US20050043039A1 (en) | Position detecting system, and transmitting and receiving apparatuses for the position detecting system | |
JP2005502053A5 (en) | ||
EP0168335B1 (en) | Method for constructing a microwave system and for correlation processing of its signals | |
KR101681187B1 (en) | Localization system and method of robot | |
JPH0248069B2 (en) | ||
TW201610764A (en) | Accurately positioning instruments | |
JP2002131426A (en) | Ultrasonic sensor device | |
JP4772425B2 (en) | Object detection device | |
JP2004184341A (en) | Azimuth detection device | |
JP6253932B2 (en) | Direction detection device and survey system | |
JP2000346856A (en) | Method and device for measurement of speed of traveling body | |
JPS59224504A (en) | Position self-detector of moving body | |
JPS59212919A (en) | Position detector for traveling object | |
JP6311230B2 (en) | Target detection apparatus, target detection method, program, and recording medium | |
RU165657U1 (en) | HYDROACOUSTIC SHOULDER | |
KR200364690Y1 (en) | Radio position finding system using radion-direction fider | |
JPH0863278A (en) | Position input device | |
JPH07122667B2 (en) | Surveyor using laser light | |
CN108732576B (en) | Method for positioning by means of a laser measuring device and laser measuring device | |
WO1998037434A1 (en) | Optoelectronic system for detecting space coordinates of an object | |
JPS58184525A (en) | Device for measuring temperature in water | |
JPH09203625A (en) | Rotation position detector | |
JPH1019567A (en) | Apparatus and method for measuring position and azimuth of moving body |