JPS591989B2 - multispectral scanner - Google Patents

multispectral scanner

Info

Publication number
JPS591989B2
JPS591989B2 JP50151906A JP15190675A JPS591989B2 JP S591989 B2 JPS591989 B2 JP S591989B2 JP 50151906 A JP50151906 A JP 50151906A JP 15190675 A JP15190675 A JP 15190675A JP S591989 B2 JPS591989 B2 JP S591989B2
Authority
JP
Japan
Prior art keywords
scanning
optical
signal
filter
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50151906A
Other languages
Japanese (ja)
Other versions
JPS5275601A (en
Inventor
方晴 寺園
俊一 中辻
敬 津田
慶郷 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP50151906A priority Critical patent/JPS591989B2/en
Publication of JPS5275601A publication Critical patent/JPS5275601A/en
Publication of JPS591989B2 publication Critical patent/JPS591989B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は1つの視野の、互いに相異なる2つの輻射波長
領域に於ける像を同時に得るためのマルチスペクトルス
キャナーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multispectral scanner for simultaneously obtaining images of one field of view in two different radiation wavelength regions.

例えば、地質、水又は石油資源或いは公害などの学術調
査においては1つの対象視野の可視映像と赤外映像とが
ともに要求されることがあり、このため資源探査衛星で
はマルチスペクトルスキャナーを塔載している。
For example, in academic research on geology, water or oil resources, or pollution, both visual and infrared images of one target field of view may be required, and for this reason, resource exploration satellites are equipped with multispectral scanners. ing.

従来のマルチスペクトルスキャナーは走査鏡からの可視
及び赤外成分を含む走査出力光をダイクロイックミラー
によつて可視領域及び赤外領域に分離し、これらの各出
力光を夫々赤外領域、及び可視領域の検知器によつて相
応する電気信号に変換し、それぞれ別個の増幅器によつ
て増幅し、例えばブラウン管等の表示装置によつてその
対象視野の可視像と赤外像とを同時に得ていた。このた
め検知器から増幅器までの装置が可視光用及び赤外用の
2つ必要となり、このようにして得られた両映像信号を
伝送する場合には両映像信号の最高周波数を共にfma
xであるとすれば2fmaxの伝送帯域帯を必要とする
ので、装置の寸法、重量、消費電力が増大する欠点を有
する。本発明の目的は小型、軽量で消費電力が少ないマ
ルチスペクトルスキャナーを提供することにある。
Conventional multispectral scanners separate scanning output light containing visible and infrared components from a scanning mirror into visible and infrared regions using dichroic mirrors, and separate these output lights into infrared and visible regions, respectively. The signal was converted into a corresponding electrical signal by a detector, each amplified by a separate amplifier, and a display device such as a cathode ray tube provided a visible and infrared image of the field of view at the same time. . Therefore, two devices are required from the detector to the amplifier, one for visible light and one for infrared light, and when transmitting both video signals obtained in this way, the highest frequency of both video signals is set to FMA.
If x, a transmission band of 2 fmax is required, which has the drawback of increasing the size, weight, and power consumption of the device. An object of the present invention is to provide a multispectral scanner that is small, lightweight, and consumes little power.

上記目的を達成するための本発明の特徴は、対象を光学
的に往復走査し往走査期間中及び復走査期間中共に光走
査信号を得る光学走査装置と、前記光走査装置通過後の
光を電気信号に変換する光検知器と、前記光学走査装置
と前記検知器との光路間に配置され前記往走査期間中又
は前記復走査期間中のいずれか一方の期間中に第1波長
領域のフィルタが挿入され前記往走査期間中他方の期間
中に第2波長領域フィルタが挿入される光学フィルタ装
置とを備えたことにある。以下図示の実施例により本発
明を詳細に説明する。
The features of the present invention for achieving the above object include an optical scanning device that optically scans an object back and forth and obtains optical scanning signals during both the forward scanning period and the backward scanning period; a photodetector that converts into an electrical signal; and a filter in a first wavelength range that is disposed between the optical path of the optical scanning device and the detector and is used during either the forward scanning period or the backward scanning period. and an optical filter device into which a second wavelength range filter is inserted during the other period of the forward scanning period. The present invention will be explained in detail below with reference to the illustrated embodiments.

第1図は本発明によるマルチスペクトルスキャナー10
を示し、このマルチスペクトルスキャナj−10は人工
衛星に塔載されていて地上を光学走査し、可視域の走査
信号と赤外域の走査信号とを得、図示しないフロセッサ
ーによつてこれらの両信号を処理して図示しない送信装
置によつて地上に送信するようになつている。
FIG. 1 shows a multispectral scanner 10 according to the present invention.
This multispectral scanner J-10 is mounted on an artificial satellite and optically scans the ground to obtain a scanning signal in the visible range and a scanning signal in the infrared range. The information is processed and transmitted to the ground by a transmitting device (not shown).

マルチスベクトルスキヤナ一10は地上を瞬時視野で往
復走査して往走査期間中及び復走査期間中共に光出力を
得る光学走査装置20を備え、光学走査装置20は回転
軸21を中心に矢印A方向に往復動し地上を光学走査す
る走査鏡22と、この視野像を検知器上に結像するため
の反射鏡23,24、及びリレーレンズ25,26とを
主体に構成されている。この走査鏡22の往復動作は回
転軸21に取付けられたトルクモータから成るトルカ一
27によつて与えられ、トルカ一27は地上からの走査
幅切換信号S1によつて制御されるトルカ一駆動回路2
8によつて所定の幅を走査するように駆動されている。
この往復動作を確実にするたちトルカ一27の往復動作
を検出して電気信号に変換するエンコーダ29が設けら
れており、この出力電気信号S2はトルカ一,駆動回路
28に入力されてトルカ一27に所望の往復動作をさせ
ることができる。このスキヤナ一の塔載された衛星は図
示しない姿勢制御装置によつて走査鏡22の往復方向と
は直角の方向、即ち第1図で紙面に対して垂直方向に飛
行しており、この走査鏡22の往復走査によつて視野は
所謂線走査を行なわれる。第2図には走査鏡22による
視野1の走査状態が示してあり、走査鏡22はトルカ一
27に第3図に示す如き駆動電圧Etが与えられて第2
図で矢印A方向に往復走査しており、且つこのスキヤナ
一は衛星によつて矢印B方向に飛行しているので往走査
によつてA,b,c,・・・・・・の如く視野が光学走
査され、復走査によつてa/,b′,c′・・・・・・
の如く視野が光学走査される。
The multi-vector scanner 10 includes an optical scanning device 20 that scans the ground reciprocatingly with an instantaneous field of view and obtains optical output during both the forward scanning period and the backward scanning period. It mainly consists of a scanning mirror 22 that reciprocates in the A direction and optically scans the ground, reflecting mirrors 23 and 24 and relay lenses 25 and 26 that form this visual field image on a detector. The reciprocating movement of the scanning mirror 22 is provided by a torquer 27 consisting of a torque motor attached to the rotating shaft 21, and the torquer 27 is a torquer drive circuit controlled by a scanning width switching signal S1 from the ground. 2
8 to scan a predetermined width.
To ensure this reciprocating motion, an encoder 29 is provided to detect the reciprocating motion of the torquer 27 and convert it into an electrical signal.This output electrical signal S2 is input to the torquer drive circuit 28 to can perform the desired reciprocating motion. The satellite mounted on the scanner tower is flying in a direction perpendicular to the reciprocating direction of the scanning mirror 22 by an attitude control device (not shown), that is, in a direction perpendicular to the plane of the paper in FIG. By the 22 reciprocating scans, the visual field is subjected to so-called line scanning. FIG. 2 shows a state in which the field of view 1 is scanned by the scanning mirror 22.
In the figure, the scanner is scanning back and forth in the direction of arrow A, and since this scanner is flying in the direction of arrow B by the satellite, the field of view is A, b, c, etc. by forward scanning. is optically scanned, and by backward scanning a/, b', c'...
The field of view is optically scanned as shown in FIG.

従つて第4図に示す如く、各光学走査線A,a′,B,
bl,に対応した光走査信号Stが得られ、A,b,c
,の往走査期間に得られた光走査信号と、Al,b/c
′,・・・・・・の復走査期間に得られた光走査信号と
は、以下述べるようにして、夫々赤外像及び可視隊の視
野を作ることができる。尚第1図において符号30で示
されるのはリレーレンズ切換モータであり、地上からの
分解能切換信号S3によつてリレーレンズ25,26を
適宜に切換えて分解能を変えることができる。
Therefore, as shown in FIG. 4, each optical scanning line A, a', B,
An optical scanning signal St corresponding to bl, is obtained, and A, b, c
, and the optical scanning signal obtained during the forward scanning period of , Al,b/c
The optical scanning signals obtained during the backward scanning periods of ', . In FIG. 1, reference numeral 30 indicates a relay lens switching motor, which can change the resolution by appropriately switching the relay lenses 25 and 26 in response to a resolution switching signal S3 from the ground.

スキヤナ一10は更に光学走査装置20と検出器40の
間の光走査信号にフイルタをかけるため、の光学フイル
タ装置50を備え、光学フイルタ装置50は入射光中の
或る所定波長領域例えば近赤外域成分のみを通解させる
赤外域フイルタ51,52と入射光中の他の波長領域成
分例えば可視光成分のみを通過させる可視域フイルタ5
3,54とを設けた円板状の光学フイルタホイール55
を有している(第1図、第5図参照)。
The scanner 10 further includes an optical filter device 50 for filtering the optical scanning signal between the optical scanning device 20 and the detector 40. Infrared filters 51 and 52 that pass only the outer range components, and visible range filter 5 that passes only other wavelength range components, such as visible light components, in the incident light.
A disc-shaped optical filter wheel 55 provided with 3 and 54.
(See Figures 1 and 5).

谷フイルタ51乃至54は中心0から等しい間隔をあけ
て900間隔に設けられていて、第1図に示すように、
このフイルタホイール55はその各フイルタが光学走査
装置20と検出器40との間の光路に順次挿入できるよ
うに回転自在に設けられている。このフイルタホイール
55はモータ,駆動回路56によつて駆動されるフイル
タホイールモータ57によつて、光走査信号の往走査期
間中にはいずれかの赤外域フイルタが光路に挿入され、
光走査信号の復走査期間中にはいずれかの可視域フイル
タが光路に挿入されるように走査鏡の往復動作に同期さ
せて間歇回転駆動される。この同期は同期信号発生器5
8に入力されるエンコーダ29からの走査鏡の往復運動
に相応した電気信号S2′によつて作られた同期信号に
よつてなされる。従つて検知器40には、第6図に示す
如く、各走査期間毎に分離された光信号S5である近赤
外光S,l,sr2,・・・・・・と可視光SVl,S
V2,・・・・・・とが交互に入力される。検出器40
は可視域及び近赤外域に感度を有するシリコン・フオト
・ダイオードの如き検出素子から構成されていて、図示
の実施例では検出素子6個を縦に配列して成る多素子検
出器として構成されていて、6系統の電気信号をチヤン
ネルCH,乃至CH2に同時に取出している。このよう
にして、6チヤンネルの並列映像信号はプリアンプル4
1.ポストアンプ42によつて所定のレベルまで増幅さ
れ、クランプ及びブランキンブ装置43によつて直流再
生されると共に同期信号発生器58からの同期信号が付
加され、更にメインアンプ44で増幅されて図示しない
プロセツサに送られ、送信装置により地上に送られる。
第1図中において符号59で示されるのは赤外域、可視
域のいずれのフイルタが光路に挿入されているかを示す
ためのフイルタ識別信号発生器であり、この発生器から
の識別信号S4は同期信号発生器58を介してプロセツ
サに送られ各走査期間の映像信号に付加される。従つて
受信局において映澹信号が2つの波長領域、本実施例で
は赤外域のものか可視域のものかいずれであるかを識別
することができる。また受信側で受信された映像信号の
レベルを較正することができるように、本実施例におい
ては光学走査装置20内に較正用光源31を有しており
、この光源31から出される既知のエネルギーの光を検
知器40に入射して走査信号と走査信号との間に適宜挿
入することによつてそのエネルギーレベルに相当する映
?信号の大きさを知ることができる。また第5図に示す
フイルタホイール55の各フイルタ間において検知器4
0への入射光を遮断して各走査信号間の間のレベルを零
としているのでこの時の映像信号の大きさからエネルギ
ーレベル零に相応する映ほ信号の大きさが判る。従つて
映鐵信号において2つの既知エネルギー放射に対する映
像信号レベルを知ることができるので受側において映像
信号の各部のレベルの絶対値を知ることができる。上記
実施例では1回の光学走査で6チヤンネルの並列映像信
号を得るようにしたが、本発明はチヤンネル数の多少に
無関係に適用できることは勿論である。
The valley filters 51 to 54 are provided at equal intervals of 900 from the center 0, and as shown in FIG.
The filter wheel 55 is rotatably provided so that each filter can be sequentially inserted into the optical path between the optical scanning device 20 and the detector 40. The filter wheel 55 is driven by a motor, and a filter wheel motor 57 driven by a drive circuit 56 inserts one of the infrared filters into the optical path during the forward scanning period of the optical scanning signal.
During the backward scanning period of the optical scanning signal, one of the visible range filters is intermittently rotated in synchronization with the reciprocating movement of the scanning mirror so that it is inserted into the optical path. This synchronization is performed by the synchronization signal generator 5.
This is done by means of a synchronization signal generated by an electrical signal S2' corresponding to the reciprocating movement of the scanning mirror from an encoder 29 inputted to 8. Therefore, as shown in FIG. 6, the detector 40 receives near-infrared light S, l, sr2, ... and visible light SVl, S, which are optical signals S5 separated for each scanning period.
V2, . . . are input alternately. Detector 40
The sensor is composed of detection elements such as silicon photo diodes that are sensitive in the visible and near-infrared regions, and in the illustrated embodiment, it is constructed as a multi-element detector with six detection elements arranged vertically. Thus, six electrical signals are simultaneously taken out to channels CH to CH2. In this way, the 6 channels of parallel video signals are processed by the preamplifier 4.
1. It is amplified to a predetermined level by the post amplifier 42, DC-regenerated by the clamp and blanking device 43, and a synchronization signal from the synchronization signal generator 58 is added.Furthermore, it is amplified by the main amplifier 44 and sent to a processor (not shown). and sent to the ground by a transmitting device.
In FIG. 1, reference numeral 59 indicates a filter identification signal generator for indicating whether an infrared filter or a visible filter is inserted in the optical path, and the identification signal S4 from this generator is synchronized. The signal is sent to the processor via the signal generator 58 and added to the video signal of each scanning period. Therefore, at the receiving station, it is possible to identify whether the image signal is in one of the two wavelength regions, in this embodiment, the infrared region or the visible region. In addition, in this embodiment, the optical scanning device 20 has a calibration light source 31 so that the level of the video signal received on the receiving side can be calibrated, and the known energy emitted from the light source 31 is By entering the light into the detector 40 and appropriately inserting it between the scanning signals, an image corresponding to the energy level can be obtained. You can know the size of the signal. Further, a detector 4 is installed between each filter of the filter wheel 55 shown in FIG.
Since the level between each scanning signal is set to zero by blocking the incident light to zero, the magnitude of the video signal corresponding to the zero energy level can be determined from the magnitude of the video signal at this time. Therefore, since the video signal level for the two known energy radiations can be known in the video signal, the absolute value of the level of each part of the video signal can be known on the receiving side. In the above embodiment, six channels of parallel video signals are obtained in one optical scan, but the present invention can of course be applied regardless of the number of channels.

本発明によれば上記の如く光学走査装置によつて往走査
及び復走査の両走査ともに光走査信号を取出し、且つ光
学フイルタ一をかけることによつて赤外光走査信号と可
視光走査信号とを交互に取り出して1つの検知器で電気
信号に変換しているので、従来の装置に比べ映像信千装
置が1つで済むので寸法、重量を小さく押えることがで
き、また映像信号の帯域帯が約1/2で済むのでS/N
比が大きくなり、また同一のS/N比でよければ送信電
力はその分小さくて済むのでこの面からも電力消費を小
さく押えることができるので、寸法、重量、電力消費が
きびしく要求される衛星用の装置として特に好適なマル
チスベクトルスキヤナ一を提供することができる。
According to the present invention, as described above, the optical scanning device extracts the optical scanning signals for both forward scanning and backward scanning, and by applying an optical filter, the infrared scanning signals and the visible scanning signals are separated. Since the images are taken out alternately and converted into electrical signals using a single detector, only one video signal device is required compared to conventional equipment, making it possible to keep the size and weight small. S/N is only about 1/2
If the S/N ratio is large, and the same S/N ratio is acceptable, the transmission power can be reduced by that amount, so power consumption can be kept low from this aspect as well, so satellites with strict size, weight, and power consumption requirements can be It is possible to provide a multi-vector scanner which is particularly suitable as a device for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の系続図、第2図は第1図の装
置の視野の走査方法を説明するための図、第3図はトル
カ一1駆動回路の1駆動電圧波形図、第4図は光走査信
号Stの波形図、第5図はフイルタホイールの正面図、
第6図は検出器に人力される分離された光走査信号Ss
の波形図である。
Fig. 1 is a series diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining the method of scanning the field of view of the device shown in Fig. 1, and Fig. 3 is a drive voltage waveform diagram of the torquer drive circuit 1. , FIG. 4 is a waveform diagram of the optical scanning signal St, FIG. 5 is a front view of the filter wheel,
Figure 6 shows the separated optical scanning signal Ss input manually to the detector.
FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 観測の対象を光学的に往復走査する光学走査装置と
、前記光学走査装置から出た光を電気信号に変換する検
知器と、前記光学走査装置と前記検知器との光路間に配
置され往走査期間中又は復走査期間中のいずれか一方の
期間中に第1波長領域用フィルタが挿入され、他の一方
の走査期間中に前記第1波長領域と異なる第2波長領域
用のフィルタが挿入される光学フィルタ系とを備えたこ
とを特徴とするマルチスペクトルスキャナー。
1. An optical scanning device that optically reciprocates the observation target, a detector that converts the light emitted from the optical scanning device into an electrical signal, and an optical scanning device that is arranged between the optical path of the optical scanning device and the detector. A filter for a first wavelength region is inserted during either a scanning period or a backward scanning period, and a filter for a second wavelength region different from the first wavelength region is inserted during the other scanning period. A multispectral scanner characterized in that it is equipped with an optical filter system.
JP50151906A 1975-12-22 1975-12-22 multispectral scanner Expired JPS591989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50151906A JPS591989B2 (en) 1975-12-22 1975-12-22 multispectral scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50151906A JPS591989B2 (en) 1975-12-22 1975-12-22 multispectral scanner

Publications (2)

Publication Number Publication Date
JPS5275601A JPS5275601A (en) 1977-06-24
JPS591989B2 true JPS591989B2 (en) 1984-01-14

Family

ID=15528767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50151906A Expired JPS591989B2 (en) 1975-12-22 1975-12-22 multispectral scanner

Country Status (1)

Country Link
JP (1) JPS591989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732476A (en) * 1985-07-26 1988-03-22 Barspec Ltd. Continuously rotating grating rapid-scan spectrophotometer
JPH0424590A (en) * 1990-05-18 1992-01-28 Tokimec Inc Identification device for moving object

Also Published As

Publication number Publication date
JPS5275601A (en) 1977-06-24

Similar Documents

Publication Publication Date Title
EP0509822B1 (en) Image pickup system with an image pickup device for control
EP0388658B1 (en) Color balanced image detector system
EP0298606A3 (en) Imaging system
JPH04340993A (en) Display structure
NL8401618A (en) INFRARED MONITORING DEVICE.
EP0226231A2 (en) IR scanning device for producing a stereoscopic image
EP0366008B1 (en) Detector array for high velocity/height ratios infrared linescanners.
CN105758523B (en) The Hyperspectral imaging devices of high speed spectrum channel switching based on cycle type
AU579222B2 (en) Multiple field of view sensor
US4245240A (en) Color camera having linear scanning arrays and vertical scanning mirror
US3708666A (en) Multiple detector scanner with detectors spaced across scan direction
JPS591989B2 (en) multispectral scanner
JPS60111571A (en) Radiation picture information reader
JP3382530B2 (en) Optical imaging device
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
US5297762A (en) Optical navigation sensor with single two-dimensional CCD
RU2324151C1 (en) Multichannel scanning radiometer with wide swath
RU2808963C1 (en) Three-spectrum video surveillance system
JPH07236040A (en) Color line sensor camera
CN214177434U (en) Visible-infrared integrated camera system
RU2051398C1 (en) Method and device for analyzing and synthesizing images
CN2156637Y (en) Portable narrow band multi-spectrum television imaging instrument
RU2318225C2 (en) Airborne multi-spectral system
RU2024212C1 (en) Method of infra-red imaging identification of shape of objects
SU553444A1 (en) Device for automatic identification of identical points on color images of a stereo pair