JPS5913097A - Material for insoluble anode for electroplating - Google Patents
Material for insoluble anode for electroplatingInfo
- Publication number
- JPS5913097A JPS5913097A JP12042182A JP12042182A JPS5913097A JP S5913097 A JPS5913097 A JP S5913097A JP 12042182 A JP12042182 A JP 12042182A JP 12042182 A JP12042182 A JP 12042182A JP S5913097 A JPS5913097 A JP S5913097A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- electroplating
- insoluble anode
- titanium
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は亜鉛メッキ、錫メッキ、ニッケルメッキ、銅メ
ッキ等の電気メッキにおいて使用される極、銅電極等が
従来から広く一般的に使用されてきている。然し、これ
らの電極はメッキ時における電解による溶解及び化学溶
解により、電極が溶解していく。その為電極がメッキを
行うことにより、消耗していくので、メッキ時にメッキ
素材と電極の間隔(極間距離)が一定に保たれなければ
メッキ製品の品質がばらつくので、極間距離を一定に保
つための調整或いは電極を消耗度に応じてひんばんに取
り代え軽ければならないという工程上の煩雑さを生じて
いる。DETAILED DESCRIPTION OF THE INVENTION In the present invention, electrodes, copper electrodes, etc. used in electroplating such as zinc plating, tin plating, nickel plating, and copper plating have been widely used. However, these electrodes dissolve due to electrolytic dissolution and chemical dissolution during plating. Therefore, the electrode wears out as it is plated, so if the distance between the plating material and the electrode (distance between the electrodes) is not kept constant during plating, the quality of the plated product will vary, so the distance between the electrodes must be kept constant. This creates a complicated process in which the electrodes must be adjusted or replaced frequently depending on the degree of wear.
更にはこれら電極の溶解により、メッキ浴中に金属イオ
ンが補給されていくという利点がある反面、メッキ速度
によってはメッキ浴中の金属イオンが増加しすぎて、メ
ッキ材の品質に悪影響を及ぼすため、これら溶解金属イ
オンを除去しなければならない等の欠点も生じる。Furthermore, while the dissolution of these electrodes has the advantage of replenishing metal ions into the plating bath, depending on the plating speed, the metal ions in the plating bath may increase too much, which may have a negative effect on the quality of the plated material. There are also drawbacks such as the need to remove these dissolved metal ions.
これらの欠点を解決するための方法に、従来からこれら
の電気メッキに対して電解による溶解又は化学溶解によ
る溶解の非常に少ない陽極材料、即ち不溶性陽極を使う
方法が従来から行われている。しかし、このようなメッ
キ方法における不溶性陽極材料が、現在完全に満足する
ものが少なく種々の欠点を生じている。In order to solve these drawbacks, a conventional method has been used for electroplating using an anode material that is very unlikely to be dissolved by electrolytic dissolution or chemical dissolution, that is, an insoluble anode. However, there are currently few insoluble anode materials in such plating methods that are completely satisfactory, resulting in various drawbacks.
例えば、亜鉛メッキにおいては、鉛−錫合金が陽鵬材刺
として一部に使用されているが、この陽極からメッキ浴
中に微量溶出する鉛イオンがメッキ層中に含有されると
、メッキ材の性能に種々の悪影響を及ぼすことが知られ
ている。For example, in galvanizing, a lead-tin alloy is used in some cases as a positive material, but if a small amount of lead ions eluted from this anode into the plating bath are contained in the plating layer, the plating material may is known to have various adverse effects on the performance of
従って、メッキ浴中に着出される鉛イオンを除去する等
の面倒な方法を講じなければならない等の欠点がある。Therefore, there are drawbacks such as the need to take troublesome methods such as removing lead ions deposited in the plating bath.
又、チタンに白金をメッキ(厚さ3〜5μ)した電極が
錫メッキ或いは亜鉛メッキ等に使用されているが、この
白金メッキti 1% Kついても、白金メッキのコス
トが可成り高く、また白金が軟質のためメッキ浴中に生
成する固体状浮遊物(スラッジ)−により白金メッキ層
が電解による溶解□に加うるに、摩4等により剥離され
、その寿命があまり長くなく、経済性及び電極取り代え
の煩雑さの点で問題となっている1゜
本発明はこうした亜鉛陽極、銅陽極、ニッケル陽極、銅
陽極の電解(よる欠点及び現在一部で使用されている前
記の不溶性陽極による欠点を解決する陽棲材刺を提供せ
んとするもので、その要旨とするところは、鉄を51尾
以上(重量%)、ニッケルを1096り上含有し、且つ
鉄とニッケルの合計量が20〜40%を含有して、残部
がチタンと不可縫的不純物から成る電気メッキ用不溶性
陽椿である。In addition, electrodes made by plating titanium with platinum (thickness 3 to 5 μm) are used for tin plating or zinc plating, but even with this platinum plating, the cost of platinum plating is quite high, and Because platinum is soft, the platinum plating layer is not only dissolved by electrolysis but also peeled off by polishing etc. due to the solid floating matter (sludge) generated in the plating bath, and its lifespan is not very long, making it difficult to improve economic efficiency and There is a problem in terms of the complexity of replacing electrodes.1゜The present invention solves the problem of electrolysis of zinc anodes, copper anodes, nickel anodes, and copper anodes (due to the drawbacks caused by the electrolysis of zinc anodes, copper anodes, nickel anodes, and copper anodes) and the insoluble anodes currently used in some cases. The purpose is to provide a positive material that solves the drawbacks, and its gist is that it contains 51 or more iron (by weight), 1096 or more nickel, and the total amount of iron and nickel is 20 ~40%, with the remainder consisting of titanium and non-sewable impurities.
次に本発明の詳細を以下に述べろ。Next, the details of the present invention will be described below.
本発明の電極基材としてチタンを使用する。チタンは軽
くて強く、加工性がありしかも耐食性が良好である。し
かしながらチタンは電極材料として長時間使用すると、
表面に不働態性被膜を形成して通電性を低下する。その
低下を防止するために鉄とニッケルな配合する。鉄は安
価でチタンに□ 通電性な付方する有効な成分で、5%
未満の少ない含有量ではその効果が得られない。またニ
ッケルはチタンと鉄の溶融金属を鋳造後冷却過程におい
て発生する割れを防止し、鉄より貴なる自然電位をもつ
性質によって通電性を著しく向上せしめ通電時の消襄量
を著し2く少なめる抑制効果がある。Titanium is used as the electrode base material of the present invention. Titanium is light, strong, easy to work with, and has good corrosion resistance. However, when titanium is used as an electrode material for a long time,
Forms a passive film on the surface to reduce electrical conductivity. In order to prevent this deterioration, iron and nickel are mixed. Iron is a cheap and effective component that makes titanium □ conductive, with a 5%
If the content is less than that, the effect cannot be obtained. In addition, nickel prevents cracks that occur during the cooling process of molten titanium and iron after casting, and because it has a higher natural potential than iron, it significantly improves electrical conductivity and significantly reduces the amount of waste when energized. It has a suppressive effect.
その効果は10%以上で確保される。これらの鉄および
ニッケルは配合量の増加にその効果が高められるが、過
剰の配合はチタンの効果を抑制する。The effect is ensured at 10% or more. The effects of these iron and nickel are enhanced by increasing their blending amounts, but excessive blending suppresses the effects of titanium.
従ってその配合量はチタンの効果を失わせることなく、
電極材料として必要な通電性、通電消耗抑制効果を付与
する量として20〜40%に限定した。Therefore, the blending amount can be adjusted without losing the effect of titanium.
The amount was limited to 20 to 40% to provide the necessary electrical conductivity and the effect of suppressing electrical consumption as an electrode material.
本発明による陽極電極はその通電時に極く微量ずつメッ
キ液中K fj 解されていくので、メッキ材の性能v
cE!ぼす影響が比較的少ない利点がある。Since the anode electrode according to the present invention is dissolved in the plating solution in extremely small amounts when energized, the performance of the plating material v
cE! It has the advantage of having relatively little impact.
り下実施例を述べる。An example will be described below.
1・1表に示す如く、電気亜鉛メッキ浴、同錫メッキ浴
、同ニッケルメッキ浴にて各々30Δ/ dm2の電流
密度で電解した時の各電極の通電時消耗量(電極の重量
減を厚み減に換算)の例から見て、本発明の電極は成形
容易で通電状態、通電時消耗量の点で秀れている。As shown in Table 1.1, the amount of wear of each electrode during energization (the weight loss of the electrode is expressed as the thickness The electrode of the present invention is easy to mold and is excellent in terms of energization state and amount of wear during energization.
Claims (1)
で且つその合計量が20〜40%を含有して残部がチタ
ンおよび不可避的不純物からなることを特徴とする電気
メッキ用不溶性陽極材刺。(1) Insoluble for electroplating characterized by containing 5% or more (wt%) of iron, 10% or more of nickel, and a total amount of 20 to 40%, with the remainder consisting of titanium and inevitable impurities. Anode material thorn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12042182A JPS5913097A (en) | 1982-07-10 | 1982-07-10 | Material for insoluble anode for electroplating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12042182A JPS5913097A (en) | 1982-07-10 | 1982-07-10 | Material for insoluble anode for electroplating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5913097A true JPS5913097A (en) | 1984-01-23 |
Family
ID=14785802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12042182A Pending JPS5913097A (en) | 1982-07-10 | 1982-07-10 | Material for insoluble anode for electroplating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913097A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119766A (en) * | 1985-11-01 | 1987-06-01 | アーカイブ・コーポレイション | Driving mechanism for rectangular cartridge |
US4787570A (en) * | 1986-10-27 | 1988-11-29 | Nakamichi Corporation | Apparatus for guiding a leader block in a tape cartridge for a magnetic instrument |
US4793569A (en) * | 1986-11-10 | 1988-12-27 | Nakamichi Corporation | Apparatus for guiding a leader block and a tape in a tape cartridge for a magnetic instrument |
US4832284A (en) * | 1986-10-27 | 1989-05-23 | Nakamichi Corporation | Apparatus for drawing out a leader block in a tape cartridge for a magnetic instrument |
-
1982
- 1982-07-10 JP JP12042182A patent/JPS5913097A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119766A (en) * | 1985-11-01 | 1987-06-01 | アーカイブ・コーポレイション | Driving mechanism for rectangular cartridge |
US4787570A (en) * | 1986-10-27 | 1988-11-29 | Nakamichi Corporation | Apparatus for guiding a leader block in a tape cartridge for a magnetic instrument |
US4832284A (en) * | 1986-10-27 | 1989-05-23 | Nakamichi Corporation | Apparatus for drawing out a leader block in a tape cartridge for a magnetic instrument |
US4793569A (en) * | 1986-11-10 | 1988-12-27 | Nakamichi Corporation | Apparatus for guiding a leader block and a tape in a tape cartridge for a magnetic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101838830B (en) | Electrolyte of electroplating palladium-nickel alloy | |
US2586099A (en) | Bearing | |
JP2009109007A (en) | Sliding element and its manufacturing method | |
US2545566A (en) | Electrodeposition of metals and alloys | |
JP3577084B2 (en) | Multilayer materials for sliding members and methods and means for their production | |
US3864227A (en) | Method for the electrolytic refining of copper | |
US2511395A (en) | Process for the electrodeposition of tin alloys | |
US2923671A (en) | Copper electrodeposition process and anode for use in same | |
JPS5913097A (en) | Material for insoluble anode for electroplating | |
US4264419A (en) | Electrochemical detinning of copper base alloys | |
Jacobs et al. | Improving cathode morphology at a copper electrowinning plant by optimizing Magnafloc 333 and chloride concentrations | |
Faust et al. | Electrodeposition of Silver‐Lead Alloys for Bearings | |
US4923573A (en) | Method for the electro-deposition of a zinc-nickel alloy coating on a steel band | |
JPS586792B2 (en) | Aenion no Metsukiyokuhenokiyoukiyuhouhou | |
JPH1060683A (en) | Electroplating with ternary system zinc alloy, and its method | |
EP0335989B1 (en) | Insoluble anode made of lead alloy | |
JP2639950B2 (en) | Insoluble anode material | |
JP2732972B2 (en) | Reflow tin or reflow tin alloy plating bath | |
JP2529557B2 (en) | Lead alloy insoluble anode | |
US2809929A (en) | Anode for copper plating | |
JPS6024197B2 (en) | Pb alloy insoluble anode for electroplating | |
US2739106A (en) | Method of electroplating copper-lead alloy | |
JP3405669B2 (en) | Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same | |
US2744063A (en) | Electrodeposition of tin-antimonycopper alloys | |
US2439935A (en) | Indium electroplating |