JPS59121015A - Photographic lens subjected to short distance correction - Google Patents

Photographic lens subjected to short distance correction

Info

Publication number
JPS59121015A
JPS59121015A JP22753782A JP22753782A JPS59121015A JP S59121015 A JPS59121015 A JP S59121015A JP 22753782 A JP22753782 A JP 22753782A JP 22753782 A JP22753782 A JP 22753782A JP S59121015 A JPS59121015 A JP S59121015A
Authority
JP
Japan
Prior art keywords
lens
positive
lenses
negative
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22753782A
Other languages
Japanese (ja)
Other versions
JPH0553242B2 (en
Inventor
Yasushi Matsui
靖 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP22753782A priority Critical patent/JPS59121015A/en
Publication of JPS59121015A publication Critical patent/JPS59121015A/en
Publication of JPH0553242B2 publication Critical patent/JPH0553242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To correct satisfactorily various aberrations even in case of photographing of a short distance, and to make a titled lens durable enough even in a state that a diaphragm is opened by setting a prescribed air space by a refererence image magnification state between a positive lens component of an object side and a lens group of an image side, reducing the space at the time of focusing to a short distance object, and also magnifying the space behind a negative lens component. CONSTITUTION:As for a deformed Gauss type lens of an F1.4 class, the image surface moves in the positive direction as an image magnification is raised, therefore, the image surface is corrected to the negative direction by magnifying an air space d6 behind a negative maniscus lens L3, and also an asymmetrical property of a comatic aberration is corrected. In this case, the lenses L2, L3 can be moved to the front side as one body in a state that the lenses L1, L4-L7 remain fixed by setting a correcting amount of an air space d2 between a positive lens L1 and a positive meniscus lens L2, and a correcting amount of the space d6 to the same amount, and also the correcting amount can be decided independently to the lenses L2, L3, respectively. Accordingly, in a fast photographic lens of an area extending from a standard to a telephoto, various aberrations are corrected satisfactorily even in case of a short distance photographing, and an excellent image-forming performance can be maintained at all times.

Description

【発明の詳細な説明】 本発明は、近距離撮影の際にレンズ系の一部を移動させ
ることによって性能の向上を図った写真レンズに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photographic lens whose performance is improved by moving a part of the lens system during close-range photography.

最近写真レンズの性能は電子計算機の目覚しい発展と相
俟って極めて秀れたものとなって来ている。しかしなが
ら、写真レンズの設計は一般的には無限遠方の撮影状態
でなされるだめ、近距離撮影になってくると、即ち撮影
倍率を上げていくと性能が著しく劣化してしまう。この
傾向は大口径比レンズになるほど著しく絞り開放状態で
の使用は実用に耐えられず、特に暗い被写体の近距離撮
影では大変な不都合を余儀なくされていた。
Recently, the performance of photographic lenses has become extremely superior due to the remarkable development of electronic computers. However, since photographic lenses are generally designed for shooting at an infinite distance, their performance deteriorates significantly when shooting at close range, that is, when the magnification is increased. This tendency becomes more pronounced as the aperture ratio lens becomes larger, making it impractical to use the lens with the aperture wide open, which is particularly inconvenient when photographing dark subjects at close range.

いわゆる逆望遠タイプと呼ばれる広角レンズについては
、かなり前から近距離撮影状態における収差補正のため
に一部のレンズ間隔を合焦の際に変化させる手法が採用
されており、最近は標準レンズの領域においても近距離
補正が種々提案されてきている。しかしながら、標準レ
ンズやこれよりやや長焦点距離を有する大口径比レンズ
において、絞り開放状態での近距離性能を向上させるだ
めには、レンズ構成の複雑化が必要となり簡単な構成で
近距離補正を行なうことは難しかった。
Regarding wide-angle lenses, so-called reverse telephoto types, a method of changing the spacing of some lenses during focusing has been used for a long time to correct aberrations in close-up shooting conditions, and recently it has moved into the area of standard lenses. Various short-range corrections have also been proposed. However, in order to improve close-range performance with a standard lens or a large aperture ratio lens with a slightly longer focal length than this, it is necessary to complicate the lens configuration, and short-range correction is not possible with a simple configuration. It was difficult to do.

本発明の目的は、上述の欠点を解消すべく、画角11°
〜50°程度の標準レンズ或は望遠レンズにおいて無限
遠撮影等の基準倍率での撮影状態同様、より近距離の撮
影においても諸収差を良好に補正し、絞り開放状態でも
充分実用に耐える大口径比の写真レンズを提供すること
にある。
An object of the present invention is to solve the above-mentioned drawbacks by providing a view angle of 11°.
The large aperture of the ~50° standard lens or telephoto lens effectively corrects various aberrations even when shooting at closer distances, as well as when shooting at standard magnification such as infinity shooting, and is sufficiently large for practical use even when the aperture is wide open. Our goal is to provide a photographic lens of the same standard.

本発明は以下に述べるように、特定のレンズ群を相対的
に移動させることによって、近距離撮影状態で悪化する
これらの収差を非常に良く補正できることを見い出し、
近距離撮影のだめの新たな補正手段を得だものである。
As described below, the present invention has discovered that by relatively moving specific lens groups, these aberrations that worsen in close-up shooting conditions can be very well corrected.
This provides a new means of correction for close-up photography.

すなわち、本発明は画角が11°から50°程度のいわ
ゆる標準レンズから望遠レンズといわれるものであって
、F 2.0以上の明るさを有し、最も物体1111に
正レンズ成分とその後方レンズ群中に負レンズ成分を有
する写真レンズにおいて、最も物体側の正レンズ成分と
それより像側のレンズ群との間に基準撮影倍率状態、例
えば無限遠合焦状態にて所定の空気間隔を設定し、より
近距離の物体への合焦時にこの空気間隔を縮小すると共
に、前記負レンズ成分の後の空気間隔全拡大することに
よっ(3) て、近距離合焦時の諸収差の劣化を補正するものである
That is, the present invention is a so-called standard lens to a telephoto lens with an angle of view of about 11° to 50°, has a brightness of F2.0 or more, and has a positive lens component closest to the object 1111 and a lens behind it. In a photographic lens having a negative lens component in the lens group, a predetermined air gap is provided between the positive lens component closest to the object side and the lens group closer to the image side in a standard shooting magnification state, for example, in a focused state at infinity. By reducing this air gap when focusing on an object at a closer distance, and by fully expanding the air gap after the negative lens component (3), various aberrations when focusing on a closer distance can be reduced. This is to correct deterioration.

一般に、最も物体イ目11に正レンズ成分とその像側の
レンズ群中に負レンズ成分を有し、画角11°〜50°
程度及びFナンバー2.0より明るいレンズ基において
は、撮影倍率を上げていくと球面収差は負方向に変化し
、またこれに伴って非対称のコマ収差も増大する。本発
明ではまず第1に、最も物体側の正レンズ成分とこの後
方レンズ群との空気間隔を近距離撮影時に縮小すること
によって、上述の負方向に変化する球面収差を補正する
と共に、非対称のコマ収差を減少させている。最も物体
1111の正レンズ成分とそれに続くレンズ成分との間
隔を縮小することによって、この正レンズ成分を通過し
た後の近軸光線は後続の負レンズ成分において光軸から
より離れた位置を通りここでのより強い発散作用を受け
るため、球面収差が正方向に補正され、まだこれに伴っ
てコマ収差の非対称性も軽減されるのであ(4) る。
Generally, it has a positive lens component at the most object eye 11 and a negative lens component in the lens group on the image side, and the angle of view is 11° to 50°.
In a lens base with a brightness and an F number of 2.0 or higher, as the imaging magnification is increased, the spherical aberration changes in the negative direction, and the asymmetric coma aberration also increases accordingly. In the present invention, first of all, by reducing the air distance between the positive lens component closest to the object and this rear lens group during close-range photography, the above-mentioned spherical aberration that changes in the negative direction is corrected, and the asymmetric Reduces coma aberration. By reducing the distance between the most positive lens component of the object 1111 and the following lens component, the paraxial ray after passing through this positive lens component passes through a position further away from the optical axis in the subsequent negative lens component. As a result of this, the spherical aberration is corrected in the positive direction, and the asymmetry of comatic aberration is also reduced accordingly (4).

像面の倍率による変化の少いレンズ基あるいは変化が問
題とならない倍率範囲ではこれで事が足りるが、像面の
変化も大きくそれに伴う非対称のコマ収差が著しいレン
ズ基或はその様な倍率範囲では前記の間隔補正に加えて
更にこれを補正するだめの工夫が必要となる。このため
に本発明では第2に、レンズ系中で前記間隔補正箇所よ
りも像fillの負レンズ成分の後の空気間隔を拡げる
方向に附加的に動かすことによりこの劣化を防止してい
る。
This is sufficient for lens bases where the image plane changes little due to magnification, or for magnification ranges where changes are not a problem, but for lens bases where the image plane changes significantly and associated asymmetrical coma aberration is significant, or for such magnification ranges. Therefore, in addition to the above-mentioned interval correction, it is necessary to devise a method for further correcting this. For this reason, in the present invention, secondly, this deterioration is prevented by additionally moving the air gap after the negative lens component of the image fill in the lens system beyond the gap correction point.

同、具体的には倍率変化による像面の変化の方向は種々
のレンズタイプによって微妙に異なるだめ、上記の基本
思想に基づいて各レンズタイプによって適切な補正個所
を選定することが必要である。
Specifically, since the direction of change in the image plane due to a change in magnification varies slightly depending on the various lens types, it is necessary to select an appropriate correction location for each lens type based on the above basic idea.

例えばFl、4クラスの大口径比のいわゆる変形ガウス
タイプレンズでは一般に撮影倍率を上げるに従って像面
は正の方向に移動するものが多いので、この場合は第1
図に示した第1実施例の如く、負メニスカスレンズL3
の後の空気間隔d6  を拡大することにより像面を負
の方向に補正し、あわせてコマ収差の非対称性を更に補
正することが出来る。ここでは正レンズL1  と正メ
ニスカスレンズL。
For example, in the case of so-called modified Gauss type lenses with large aperture ratios such as Fl and 4 classes, the image plane generally moves in the positive direction as the photographing magnification increases.
As in the first embodiment shown in the figure, the negative meniscus lens L3
By enlarging the air gap d6 after the d6, the image plane can be corrected in the negative direction, and at the same time, the asymmetry of comatic aberration can be further corrected. Here, a positive lens L1 and a positive meniscus lens L are used.

との間の空気間隔d2 の補正量及び絞り空間d、の補
正量を同量にしてレンズ”I + ”4 +L、、L6
.L7を固定した一!まレンズL2 + L3を一体と
して前側に移動させても良いし、レンズL2 、 L3
に対して個々独立に補正量を決定しても良い。同じガウ
スタイプレンズでも第2図に示す第2実施例の様に倍率
の変化によって像面が負の方向に変化する場合もある。
The amount of correction for the air space d2 between the lenses and the amount of correction for the aperture space d are the same, and the lens "I + "4 +L, , L6
.. The one who fixed L7! Alternatively, lenses L2 + L3 may be moved forward as a unit, or lenses L2 and L3 may be moved forward as a unit.
The correction amount may be determined independently for each. Even with the same Gauss type lens, the image plane may change in the negative direction due to a change in magnification, as in the second embodiment shown in FIG.

この場合には負メニスカスレンズし、と正メニスカスレ
ンスL5との貼合せからなる負レンズの後の空気間隔d
、を拡げることにより像面を正方向に補正すると共に全
体のバランスをとることが出来る。第2実施例でも両外
側の正レンズ、LI + ”6を固定し残るレンズ”2
 r’ ”3 + ”4 + ”5  を一体として移
動させることによって補正を行っても良いし、補正量を
変えて個々に補正しても良い。
In this case, a negative meniscus lens is used, and an air gap d after the negative lens is made up of a negative meniscus lens and a positive meniscus lens L5.
By expanding , the image plane can be corrected in the positive direction and the overall balance can be maintained. In the second embodiment, both outer positive lenses, LI + "6" are fixed and the remaining lens 2 is used.
The correction may be performed by moving r' ``3 + ``4 + ''5 as a unit, or may be corrected individually by changing the amount of correction.

上記第1.第2実施例を示した第1図及び第2図におい
て、(A)はレンズ構成図であり、(B)及び(C)は
共に撮影倍率β−17,0の収差図であり、(B) V
iレレン系全体を一体的に繰り出して合焦した場合であ
り、(0は本発明による近距離補正を行なって合焦した
場合である。
Above 1. In FIGS. 1 and 2 showing the second embodiment, (A) is a lens configuration diagram, (B) and (C) are both aberration diagrams at an imaging magnification of β-17.0, and (B )V
This is the case where the entire i-relen system is integrally extended and focused, (0 is the case where the short distance correction according to the present invention is performed and the image is focused.

各レンス構成図中簀印の間隔は補正のだめの可変間隔で
あることを示す。また各収差図には球面収差(Sph)
、非点収差(Ast)、コマ収差(Cowa )  を
示し、コマ収差図中には対称性の比較のために球面収差
の横収差を点線で併記した。(こrしらのことは後記の
実施例についても同様である。) 本発明による第3実施例は第3図に示したごときシナ−
タイプ或はエルノスタータイプともいうべき大口径比望
遠レンズであり、第4実施例は第4図に示したごときい
わゆるクセツタ−タイプの変形よりなる大口径比の準(
7) 望遠レンズである。これらの第3.第4実施例に於ても
前述した実施例と同様、撮影倍率を上げていくと像面の
変化は負の方向であるが、第3実施例では正レンズL4
と負レンズL、との貼合せからなる負レンズ成分の後の
空気間隔d8 を、又第4実施例では負メニスカスレン
ズL4の後の空気間隔d8をそれぞれ拡げることにより
像面を正方向に補正し球面収差と像面のバランス及びコ
マ収差のバランスを改善している。第3図、第4図の各
収差図に見る如く、補正前に較べ補正後は格段に良くな
っており効果の程が良くわかる。ここでも前後の両空気
間隔の補正量を同じにし、第3実施例では両外側の正レ
ンズL1及びL6を固定し、残る内fII11のレンズ
L2〜L5を一体として移動させ、第4実施例でも両外
1111Iの正レンズL、、L、を固定し、残る内側の
レンズL2〜L4を一体として移動させることによって
補正しても良いし、前後の両空気間隔の補正量を変えて
個々に補正しても良いことは第(8) ■、第2実施例の場合と同様である。
The intervals between the marks in each lens configuration diagram indicate variable intervals for correction. In addition, each aberration diagram shows spherical aberration (Sph).
, astigmatism (Ast), and coma aberration (Cowa), and in the coma aberration diagram, lateral aberration of spherical aberration is also shown with a dotted line for comparison of symmetry. (The same applies to the embodiments described later.) The third embodiment of the present invention has a scenario as shown in FIG.
This is a large aperture ratio telephoto lens that can also be called an Ernostar type or Ernostar type, and the fourth embodiment is a large aperture ratio quasi (
7) It is a telephoto lens. The third of these. In the fourth embodiment, as in the above-mentioned embodiments, as the photographic magnification is increased, the image plane changes in the negative direction, but in the third embodiment, the positive lens L4
The image plane is corrected in the positive direction by widening the air gap d8 after the negative lens component consisting of the bonded negative lens L and the negative meniscus lens L4 in the fourth embodiment. This improves the balance between spherical aberration and image plane, as well as the balance between coma aberration. As seen in the aberration diagrams of FIGS. 3 and 4, the aberrations are much better after the correction than before the correction, and the extent of the effect can be clearly seen. Here, too, the amount of correction for both the front and rear air gaps is the same, and in the third embodiment, both outer positive lenses L1 and L6 are fixed, and the remaining lenses L2 to L5 of the inner fII 11 are moved as a unit. Correction can be made by fixing both outer 1111I positive lenses L, L, and moving the remaining inner lenses L2 to L4 as a unit, or by changing the amount of correction for the front and rear air gaps individually. What may be done is the same as in the case of (8) (8) and the second embodiment.

以下に上記各実施例の諸元を示す。各表中、rけ各レン
ズ面の曲率半径、dは各レンズの中心厚及び空気間隔、
n及びνはそれぞれda(λ= 587.6.、nm)
  に対する屈折率及びアラへ数を表わし、また各添数
字は物体側からの順序を表わす。
The specifications of each of the above embodiments are shown below. In each table, r is the radius of curvature of each lens surface, d is the center thickness and air gap of each lens,
n and ν are each da (λ=587.6., nm)
The refractive index and the number are shown in the figure, and each subscript number shows the order from the object side.

i、4    、J−一一一一 9   リ   哨   痴 曽   リ   0叩 
0 ■ ト0−− 寸   の   へ   N 寸   (イ)   の
         ■ ■≧    ユ   ≧   
Δ 為    ≧   ム          ℃ づ
0                        
    く く!1 1 寸 II  II  II  II  II  II  I
I  II  II  II  II  II  II
−4口−tJ    − II    II    11   1111   1
1111 qコ 一 J−−一 − 一   〜 ψ   啼 喰   ロ        
1111へ                    
   〈 く■ l+−7 II  II  II  II  II  II  I
I  II  II  II(11) め                        
   11110フ II  II  II  II  II  II  I
I  II  II  II(12) 各実施例の比較収差図から、本発明による補正前(各図
(B))の球面収差、像面彎曲(メリデイオナル像面と
サジツタル像面とのバランス)及びコマ収差のバランス
が、補正後(各図(C))では格段に良くなっているこ
とがわかる。
i, 4, J-11119 ri shu sō ri 0 hit
0 ■ To 0-- To the size N Size (I) ■ ■≧ Yu ≧
Δ for ≧ ℃ zu0
Ku Ku! 1 1 Dimension II II II II II II I
I II II II II II II II
-4 mouths-tJ-II II 11 1111 1
1111 q ko 1 J--1 - 1 ~ ψ 啼 喰 ro
Go to 1111
< Ku■ l+-7 II II II II II I
I II II II (11) Me
11110fu II II II II II I
I II II II (12) From the comparative aberration diagrams of each example, spherical aberration, curvature of field (balance between meridional image surface and sagittal image surface), and coma aberration before correction by the present invention (each diagram (B)) It can be seen that the balance is much better after correction (each figure (C)).

同上記のごとく間隔補正量は各レンズタイプ及び仕様、
更に倍率の変化による収差の変化量によって異なるが各
実施例のタイプ及び仕様、倍率(β= −暑。)に於て
次の範囲が望ましい。但し、2つの可変間隔を共に△で
代表させることとする。fは全系の焦点距離である。
As mentioned above, the distance correction amount depends on each lens type and specification.
Furthermore, the following ranges are desirable for the type, specifications, and magnification (β=−heat) of each embodiment, although it varies depending on the amount of change in aberration due to change in magnification. However, both of the two variable intervals are represented by △. f is the focal length of the entire system.

〔実施例1〕  0く△(2,4f 〔実施例2〕  O〈△(1,4f 〔実施例3〕  0〈△(1,2f 〔実施例4〕  0〈△〈0.7f 第1実施例に於ては」二限を越えて第1の間隔d2  
の補正量を増大すると球面収差が正方向に変化するのに
反して像面が負方向に動くため、第2の間隔d6の間隔
補正時の像面の負方向への動きと重なって中上・と周辺
の補正バランスがくずれるだめ好ましくない。捷だ、第
2.第3.第4実施例に於ては第1の間隔d2の補正時
に球面収差、像面ともに正方向に向うため、上限を越え
て補正が行われると後方の負レンズ成分の後の間隔を拡
げても像面を負方向に補正しきれなくなってし捷い全体
の収差バランス上杆1しくない。
[Example 1] 0ku△(2,4f [Example 2] O〈△(1,4f [Example 3]) 0〈△(1,2f [Example 4] 0〈△〈0.7f 1st In the embodiment, the first interval d2 exceeds two limits.
When the correction amount is increased, the spherical aberration changes in the positive direction, but the image plane moves in the negative direction.・This is not preferable because the correction balance in the surrounding areas will be disrupted. It's good, number two. Third. In the fourth embodiment, since both the spherical aberration and the image plane move in the positive direction when correcting the first distance d2, if the correction exceeds the upper limit, even if the distance after the rear negative lens component is widened. The image plane cannot be fully corrected in the negative direction, and the overall aberration balance is not good.

以上のごとく、本発明によれば標準から望遠に至る領域
の大口径比写真レンズにおいて、近距離撮影時において
も諸収差が良好に補正され常に優れた結像性能を維持す
ることができる。
As described above, according to the present invention, in a large aperture ratio photographic lens ranging from standard to telephoto, various aberrations are well corrected even during close-range shooting, and excellent imaging performance can always be maintained.

尚、上記実施例ではいずれも設計基準が無限遠撮影状態
である場合ケ示したが、これに限らず所定の撮影倍率と
なるある程度の近距離撮影状態を設計の基準とし、この
状態よりもより近距離で、すなわちより高倍率の撮影を
行なう場合にも本発明り補正手法を適用す(15) ることかできる。
In the above embodiments, the design standard is an infinity shooting state, but the design standard is not limited to this, but the design standard is a certain close-range shooting state that provides a predetermined shooting magnification, and it is possible to The correction method of the present invention can also be applied when photographing at a close distance, that is, at a higher magnification (15).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明のそれぞれ第1〜第4実施例
のレンズの断面図及び収差図を示したもので、(A)は
レンズ構成断面図、(B)及び((jは各実施例に示し
だ倍率即ちβ−’/10に於ける球面収差、非点収差、
コマ収差の収差図を補正前、補正後についてそれぞれ示
したものである。 〔主要部分の符号の説明〕 第1図(蜀において L3・・負メニスカスレンズ d、・・空気間隔(絞り空間) L、・・正レンズ L2・・・正メニスカスレンズ d2・・空気間隔 (16)
1 to 4 show cross-sectional views and aberration diagrams of lenses of the first to fourth embodiments of the present invention, respectively, (A) is a cross-sectional view of the lens structure, (B) and ((j is Spherical aberration and astigmatism at the magnification, that is, β-'/10, are shown in each example.
Aberration diagrams of coma aberration are shown before and after correction, respectively. [Explanation of symbols of main parts] Fig. 1 (In Shu L3...Negative meniscus lens d,...Air spacing (aperture space) L,...Positive lens L2...Positive meniscus lens d2...Air spacing (16 )

Claims (1)

【特許請求の範囲】[Claims] 最も物体側に正レンズ成分とその後方レンズ群中に負レ
ンズ成分を有する写真レンズに於て、該正レンズ成分と
それより像側のレンス群との間に基準撮影倍率状態にて
所定の空気間隔を設定し、より近距離物体への合焦時に
該空気間隔を縮小すると共に、前記負レンズ成分の後の
空気間隔を拡大することにより近距離合焦時の収差を補
正することを特徴とする写真レンズ。
In a photographic lens that has a positive lens component closest to the object side and a negative lens component in the rear lens group, a predetermined amount of air is placed between the positive lens component and the lens group on the image side at the standard photographing magnification state. The lens is characterized by setting an interval, and reducing the air interval when focusing on a closer object, and expanding an air interval after the negative lens component to correct aberrations when focusing on a closer distance. A photographic lens.
JP22753782A 1982-12-28 1982-12-28 Photographic lens subjected to short distance correction Granted JPS59121015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22753782A JPS59121015A (en) 1982-12-28 1982-12-28 Photographic lens subjected to short distance correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22753782A JPS59121015A (en) 1982-12-28 1982-12-28 Photographic lens subjected to short distance correction

Publications (2)

Publication Number Publication Date
JPS59121015A true JPS59121015A (en) 1984-07-12
JPH0553242B2 JPH0553242B2 (en) 1993-08-09

Family

ID=16862452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22753782A Granted JPS59121015A (en) 1982-12-28 1982-12-28 Photographic lens subjected to short distance correction

Country Status (1)

Country Link
JP (1) JPS59121015A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156413A (en) * 1989-11-14 1991-07-04 Dainippon Screen Mfg Co Ltd Projection lens
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10317647B2 (en) 2013-07-04 2019-06-11 Corephotonics Ltd Miniature telephoto lens assembly
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US10948696B2 (en) 2017-07-23 2021-03-16 Corephotonics Ltd. Compact folded lenses with large apertures
US11106018B2 (en) 2017-07-07 2021-08-31 Corephotonics Ltd. Folded camera prism design for preventing stray light
US11333845B2 (en) 2018-03-02 2022-05-17 Corephotonics Ltd. Spacer design for mitigating stray light
US11336830B2 (en) 2019-01-03 2022-05-17 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11391919B2 (en) 2019-08-16 2022-07-19 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US11668910B2 (en) 2019-08-21 2023-06-06 Corephotonics Ltd. Low total track length for large sensor format including seven lenses of +−+−++− refractive powers
US11689708B2 (en) 2020-01-08 2023-06-27 Corephotonics Ltd. Multi-aperture zoom digital cameras and methods of using same
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11803106B2 (en) 2020-12-01 2023-10-31 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US11914117B2 (en) 2020-07-31 2024-02-27 Corephotonics Ltd. Folded macro-tele camera lens designs including six lenses of ++−+−+ or +−++−+, seven lenses of ++−++−+, or eight lenses of ++−++−++ refractive powers
US11930263B2 (en) 2021-01-25 2024-03-12 Corephotonics Ltd. Slim pop-out wide camera lenses
US11966147B2 (en) 2020-09-18 2024-04-23 Corephotonics Ltd. Pop-out zoom camera
US11985407B2 (en) 2021-11-02 2024-05-14 Corephotonics Ltd. Compact double folded tele cameras including four lenses of +−+−, +−++; OR +−−+; or six lenses of +−+−+− or +−+−−− refractive powers
US12001078B2 (en) 2021-03-22 2024-06-04 Corephotonics Ltd. Folded cameras with continuously adaptive zoom factor
US12019363B2 (en) 2021-09-23 2024-06-25 Corephotonics Lid. Large aperture continuous zoom folded tele cameras
US12050308B2 (en) 2020-07-22 2024-07-30 Corephotonics Ltd. Folded camera lens designs including eight lenses of +−+−+++− refractive powers
US12066747B2 (en) 2019-09-24 2024-08-20 Corephotonics Ltd. Slim pop-out cameras and lenses for such cameras
US12078868B2 (en) 2018-05-14 2024-09-03 Corephotonics Ltd. Folded camera lens designs
US12135465B2 (en) 2024-04-24 2024-11-05 Corephotonics Ltd. Folded cameras with continuously adaptive zoom factor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642813B1 (en) * 2015-05-06 2016-07-26 (주)케이원메탈 Missing prevention system of magnesium mixing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181128A (en) * 1975-01-13 1976-07-15 Olympus Optical Co
JPS56114918A (en) * 1980-02-15 1981-09-09 Canon Inc Large-diameter lens with easy focusing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181128A (en) * 1975-01-13 1976-07-15 Olympus Optical Co
JPS56114918A (en) * 1980-02-15 1981-09-09 Canon Inc Large-diameter lens with easy focusing

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156413A (en) * 1989-11-14 1991-07-04 Dainippon Screen Mfg Co Ltd Projection lens
US10841500B2 (en) 2013-06-13 2020-11-17 Corephotonics Ltd. Dual aperture zoom digital camera
US12069371B2 (en) 2013-06-13 2024-08-20 Corephotonics Lid. Dual aperture zoom digital camera
US11470257B2 (en) 2013-06-13 2022-10-11 Corephotonics Ltd. Dual aperture zoom digital camera
US10904444B2 (en) 2013-06-13 2021-01-26 Corephotonics Ltd. Dual aperture zoom digital camera
US11838635B2 (en) 2013-06-13 2023-12-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10326942B2 (en) 2013-06-13 2019-06-18 Corephotonics Ltd. Dual aperture zoom digital camera
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US11287668B2 (en) 2013-07-04 2022-03-29 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10620450B2 (en) 2013-07-04 2020-04-14 Corephotonics Ltd Thin dual-aperture zoom digital camera
US11835694B2 (en) 2013-07-04 2023-12-05 Corephotonics Ltd. Miniature telephoto lens assembly
US10330897B2 (en) 2013-07-04 2019-06-25 Corephotonics Ltd. Miniature telephoto lens assembly
US10324277B2 (en) 2013-07-04 2019-06-18 Corephotonics Ltd. Miniature telephoto lens assembly
US10488630B2 (en) 2013-07-04 2019-11-26 Corephotonics Ltd Miniature telephoto lens assembly
US10317647B2 (en) 2013-07-04 2019-06-11 Corephotonics Ltd Miniature telephoto lens assembly
US10437020B2 (en) 2013-07-04 2019-10-08 Corephotonics Ltd. Miniature telephoto lens assembly
US11614635B2 (en) 2013-07-04 2023-03-28 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10795134B2 (en) 2013-07-04 2020-10-06 Corephotonics Ltd. Miniature telephoto lens assembly
US11125980B2 (en) 2013-07-04 2021-09-21 Corephotonics Ltd. Miniature telephoto lens assembly
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US12072475B2 (en) 2013-07-04 2024-08-27 Corephotonics Ltd. Miniature telephoto lens assembly
US10962745B2 (en) 2013-07-04 2021-03-30 Corephotonics Ltd Miniature telephoto lens assembly
US11953659B2 (en) 2013-07-04 2024-04-09 Corephotonics Ltd. Miniature telephoto lens assembly
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11543633B2 (en) 2014-08-10 2023-01-03 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10509209B2 (en) 2014-08-10 2019-12-17 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11042011B2 (en) 2014-08-10 2021-06-22 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11262559B2 (en) 2014-08-10 2022-03-01 Corephotonics Ltd Zoom dual-aperture camera with folded lens
US11002947B2 (en) 2014-08-10 2021-05-11 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US12105268B2 (en) 2014-08-10 2024-10-01 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US12007537B2 (en) 2014-08-10 2024-06-11 Corephotonics Lid. Zoom dual-aperture camera with folded lens
US11982796B2 (en) 2014-08-10 2024-05-14 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10571665B2 (en) 2014-08-10 2020-02-25 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10976527B2 (en) 2014-08-10 2021-04-13 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
US11994654B2 (en) 2015-01-03 2024-05-28 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
US11125975B2 (en) 2015-01-03 2021-09-21 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
US11347016B2 (en) 2017-02-23 2022-05-31 Corephotonics Ltd. Folded camera lens designs
US12066683B2 (en) 2017-02-23 2024-08-20 Corephotonics Ltd. Folded camera lens designs
US10670827B2 (en) 2017-02-23 2020-06-02 Corephotonics Ltd. Folded camera lens designs
US11668894B2 (en) 2017-02-23 2023-06-06 Corephotonics Ltd. Folded camera lens designs
US10571644B2 (en) 2017-02-23 2020-02-25 Corephotonics Ltd. Folded camera lens designs
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US11347020B2 (en) 2017-02-23 2022-05-31 Corephotonics Ltd. Folded camera lens designs
US11106018B2 (en) 2017-07-07 2021-08-31 Corephotonics Ltd. Folded camera prism design for preventing stray light
US12105259B2 (en) 2017-07-23 2024-10-01 Corephotonics Ltd. Compact folded lenses with large apertures
US10948696B2 (en) 2017-07-23 2021-03-16 Corephotonics Ltd. Compact folded lenses with large apertures
US11675155B2 (en) 2018-03-02 2023-06-13 Corephotonics Ltd. Spacer design for mitigating stray light
US11333845B2 (en) 2018-03-02 2022-05-17 Corephotonics Ltd. Spacer design for mitigating stray light
US12078868B2 (en) 2018-05-14 2024-09-03 Corephotonics Ltd. Folded camera lens designs
US11611706B2 (en) 2019-01-03 2023-03-21 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US12052502B2 (en) 2019-01-03 2024-07-30 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11336830B2 (en) 2019-01-03 2022-05-17 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11477386B2 (en) 2019-01-03 2022-10-18 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11743587B2 (en) 2019-01-03 2023-08-29 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11391919B2 (en) 2019-08-16 2022-07-19 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US12000996B2 (en) 2019-08-21 2024-06-04 Corephotonics Ltd. Low total track length lens assembly including seven lenses of +−+−++− refractive powers for large sensor format
US11668910B2 (en) 2019-08-21 2023-06-06 Corephotonics Ltd. Low total track length for large sensor format including seven lenses of +−+−++− refractive powers
US12066747B2 (en) 2019-09-24 2024-08-20 Corephotonics Ltd. Slim pop-out cameras and lenses for such cameras
US12072609B2 (en) 2019-09-24 2024-08-27 Corephotonics Ltd. Slim pop-out cameras and lenses for such cameras
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US12101455B2 (en) 2020-01-08 2024-09-24 Corephotonics Lid. Multi-aperture zoom digital cameras and methods of using same
US11689708B2 (en) 2020-01-08 2023-06-27 Corephotonics Ltd. Multi-aperture zoom digital cameras and methods of using same
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US12050308B2 (en) 2020-07-22 2024-07-30 Corephotonics Ltd. Folded camera lens designs including eight lenses of +−+−+++− refractive powers
US11914117B2 (en) 2020-07-31 2024-02-27 Corephotonics Ltd. Folded macro-tele camera lens designs including six lenses of ++−+−+ or +−++−+, seven lenses of ++−++−+, or eight lenses of ++−++−++ refractive powers
US11966147B2 (en) 2020-09-18 2024-04-23 Corephotonics Ltd. Pop-out zoom camera
US12111561B2 (en) 2020-09-18 2024-10-08 Corephotonics Ltd. Pop-out zoom camera
US11947247B2 (en) 2020-12-01 2024-04-02 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US12001125B1 (en) 2020-12-01 2024-06-04 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11803106B2 (en) 2020-12-01 2023-10-31 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11930263B2 (en) 2021-01-25 2024-03-12 Corephotonics Ltd. Slim pop-out wide camera lenses
US12001078B2 (en) 2021-03-22 2024-06-04 Corephotonics Ltd. Folded cameras with continuously adaptive zoom factor
US12019363B2 (en) 2021-09-23 2024-06-25 Corephotonics Lid. Large aperture continuous zoom folded tele cameras
US11985407B2 (en) 2021-11-02 2024-05-14 Corephotonics Ltd. Compact double folded tele cameras including four lenses of +−+−, +−++; OR +−−+; or six lenses of +−+−+− or +−+−−− refractive powers
US12135465B2 (en) 2024-04-24 2024-11-05 Corephotonics Ltd. Folded cameras with continuously adaptive zoom factor

Also Published As

Publication number Publication date
JPH0553242B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
JPS59121015A (en) Photographic lens subjected to short distance correction
JPS6113205B2 (en)
JPS6119008B2 (en)
US4185893A (en) Zoom lenses
JPS6128974B2 (en)
JPS6210407B2 (en)
JPS63247713A (en) Photographing lens for which floating is utilized
US4147410A (en) Two group wide angle zoom lens system
JPS5831569B2 (en) A wide-angle lens with a moving lens near the aperture to correct close-up performance.
JP2594450B2 (en) Macro lens
JP3224046B2 (en) Projection lens
JP4187311B2 (en) Medium telephoto lens
JPH0320735B2 (en)
JPH0123763B2 (en)
JPH0410609B2 (en)
US4435049A (en) Telephoto lens system
JPS6148686B2 (en)
JPH0610698B2 (en) Compact zoom lens
JPH0119124B2 (en)
JPH0795143B2 (en) Large aperture ratio telephoto lens
JP3231404B2 (en) Shooting lens
JPH0430564B2 (en)
JPS5847683B2 (en) A wide-angle lens that corrects close-up performance in a front group divergence system.
JPH043526B2 (en)
JPH0718972B2 (en) Large aperture ratio photographic lens