JPS59116541A - Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning - Google Patents
Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanningInfo
- Publication number
- JPS59116541A JPS59116541A JP57233944A JP23394482A JPS59116541A JP S59116541 A JPS59116541 A JP S59116541A JP 57233944 A JP57233944 A JP 57233944A JP 23394482 A JP23394482 A JP 23394482A JP S59116541 A JPS59116541 A JP S59116541A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- electronic
- probe
- flaw detection
- square steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/262—Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0234—Metals, e.g. steel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0421—Longitudinal waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/106—Number of transducers one or more transducer arrays
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、角鋼片の表面皮下を含む内部欠陥を有効に検
出するための超音波探傷法に関するもの探傷を可能なら
しめることを目的としている。DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to enable flaw detection related to an ultrasonic flaw detection method for effectively detecting internal defects including subsurface defects of a square steel piece.
線材、棒鋼の二次加工段階では、近年省力・省エネルギ
・コストダウンを目的とした工程省略が進められてお9
、線材、棒鋼に対する加工条件は過酷になる一方である
。そのため線材、棒鋼の内部に存在する微細な介在物に
起因する冷間鍛造時、の加工割れ、伸線時の断線が問題
化され、この対策として、製銑、製鋼段階での介在物の
除去及び混入防止のだめの炉外精錬技術と共に、品質保
証の観点から微細な介在物含有の有無を検出する検査技
術の確立が必要不可欠なものとなってきている。In recent years, in the secondary processing stage of wire rods and steel bars, process omissions have been promoted with the aim of saving labor, energy, and reducing costs.
, processing conditions for wire rods and steel bars are becoming increasingly severe. As a result, processing cracks during cold forging and wire breakage during wire drawing due to minute inclusions existing inside wire rods and steel bars have become a problem, and as a countermeasure, removal of inclusions during the ironmaking and steelmaking stages has become a problem. In addition to out-of-furnace refining technology to prevent contamination, the establishment of inspection technology to detect the presence or absence of fine inclusions has become essential from the perspective of quality assurance.
このための検査技術として、棒鋼製品については棒鋼を
回転させるかもしくは棒鋼の回りを探触子を回転させ乍
ら収束超音波ビームを材中に入射させる超音波探傷法も
知らnているが、線材製品については径が細いため同様
の探傷法は適用できず、またコイル状にされた最終段階
での全周全長に亘る機器探傷は現状では不可能である。As an inspection technique for this purpose, an ultrasonic flaw detection method is known for steel bar products, in which the bar is rotated or a probe is rotated around the bar while a focused ultrasonic beam is directed into the material. Similar flaw detection methods cannot be applied to wire products due to their small diameters, and it is currently impossible to perform flaw detection with equipment over the entire circumference and length of the final coiled product.
ところで、問題となる線材、棒鋼中の介在物は、その素
材段階から存在するものであゃ、従って角鋼片の段階で
介在物を検出すれば製品の内部品質を保証することにも
なり、特に線材の場合では製品の内部探傷の代用として
、角鋼片内部の超音波探傷が活用される。そして、この
中間工程への内部探傷の導入は、欠陥鋼片を事前に除去
することができること、また製品段階での探傷に比較し
て被探傷材の長さが短く探傷処理能率が良いこともあっ
て、多大な効用が得られるが、反面その信頼性を確保す
るために微細な介在物に対しても高い検出精度を発揮す
るものであることが要求されている。Incidentally, the problematic inclusions in wire rods and steel bars are present from the material stage, so detecting inclusions at the stage of rectangular steel pieces guarantees the internal quality of the product. In the case of wire rods, ultrasonic flaw detection inside square steel pieces is used as a substitute for flaw detection inside the product. By introducing internal flaw detection into this intermediate process, defective pieces of steel can be removed in advance, and compared to flaw detection at the product stage, the length of the tested material is shorter and the flaw detection process is more efficient. However, in order to ensure its reliability, it is required to exhibit high detection accuracy even for minute inclusions.
従来、角鋼片の超音波探傷法としては、2分割探か子に
より垂直探傷する方法が知られている。Conventionally, as an ultrasonic flaw detection method for square steel pieces, a vertical flaw detection method using a two-piece probe is known.
しかしこの方法では、内部に存在する欠陥は検出し得る
が、角鋼片の表面皮下に存在する欠陥は検出できないと
いう大きな問題がある。すなわち、実際に角鋼片から製
品に加工するさい、加工割れ等で問題となる介在物はそ
の表面皮下に存在することが多く、表面皮下を含む内部
欠陥を検出する探傷法の確立が望寸れているためである
。However, this method has a major problem in that, although defects existing inside can be detected, defects existing beneath the surface of the square steel slab cannot be detected. In other words, when actually processing square steel pieces into products, inclusions that cause problems such as processing cracks are often present under the surface skin, and it is highly desirable to establish a flaw detection method that detects internal defects including under the surface skin. This is because
このような技術的課題に鑑み、本発明は角鋼片の表面皮
下を含む内部欠陥を有効に検出することができる新しい
超音波探傷法を開発したものであって、これによって有
害な欠陥の有無を角鋼片のめたものである。In view of these technical issues, the present invention has developed a new ultrasonic flaw detection method that can effectively detect internal defects, including subsurface defects, in square steel pieces. It is made of square steel pieces.
本発明による超音波探傷法は、要約すると、次のような
技術的手段を結合して構成されるものである。In summary, the ultrasonic flaw detection method according to the present invention is constructed by combining the following technical means.
a、電子走査アレイ型探触子を用いて、角鋼片の縦波斜
角探傷を行なうこと。a. Performing longitudinal wave angle flaw detection on a square steel piece using an electronically scanned array probe.
b、探触子は、角鋼片軸方向に垂直な面内で材表面から
所定の距離だけ離れた位置に材面に対して所定の角度で
固定すること。b. The probe shall be fixed at a predetermined angle to the material surface at a position a predetermined distance from the material surface within a plane perpendicular to the axial direction of the square steel piece.
C0超音波ビームを入射面の中央部から入射し、電子セ
クター+リニア走査することによって1、(D 、”
k%る側面の表面層を探傷すること。By inputting the C0 ultrasonic beam from the center of the incident surface and scanning the electron sector + linearly, 1, (D, ”
Detect flaws on the surface layer of the side surface.
以下、上記の本発明に係る探傷手段について、各々詳述
して行く。The flaw detection means according to the present invention described above will be explained in detail below.
先ず本発明で斜角探傷法を導入することについて説明す
る。First, the introduction of the angle angle flaw detection method in the present invention will be explained.
従来角鋼片の内部欠陥の探傷には、前述の如く、超音波
垂直探傷法が応用されているが、この場合には第1図に
示すように、探触子(1)から角鋼片(2)に発信され
た超音波(S)がその入射面で反射エコー(Sl)、底
面で反射エコー(Bl)を生じ、表面近傍は不感帯とな
る欠点がある。これに対して斜角探傷法を用いる場合に
は、第2図に示すように、超音波(S)の入射面からの
反射エコー(Sl)は相当残存しているが、角鋼片(2
)の側面からの反射エコー(C2)は下方に進向するた
め、側面では反射エコーによる不感帯を生じない。そこ
で斜角探傷法を用い、その入射面に隣接する側面を探傷
域とすることによって、角鋼片(2)の表面から内部ま
で不感帯なしすることを基本原理とするものである。Conventionally, as mentioned above, the ultrasonic vertical flaw detection method has been applied to detect internal defects in square steel slabs.In this case, as shown in Figure 1, the square steel slab (2 ) The ultrasonic wave (S) emitted at the surface produces a reflected echo (Sl) at the incident surface and a reflected echo (Bl) at the bottom surface, resulting in a dead zone near the surface. On the other hand, when using the angle angle flaw detection method, as shown in Fig. 2, the reflected echo (Sl) from the incident surface of the ultrasonic wave (S) remains considerably, but the square steel piece (2
) from the side surface (C2) travels downward, so no dead zone is caused by the reflected echoes on the side surface. Therefore, the basic principle is to use the oblique angle flaw detection method, and by setting the side surface adjacent to the entrance surface as the flaw detection area, there is no dead zone from the surface to the inside of the square steel piece (2).
次に超音波に縦波を用いることおよび縦波斜角探傷によ
る探傷領域について説明する。Next, the use of longitudinal waves for ultrasonic waves and the flaw detection area by longitudinal wave oblique angle flaw detection will be explained.
先ず縦波を用いる理由は次の通りである。すなわち、斜
角探傷法に横波を用いた場合では、第8図からも判るよ
うに、屈折角84°以下では往復通過率が小さいこと、
屈折角80°〜40°の範囲で探傷する場合では入射面
の形状、入射角の設定のわずかな誤差によって往復通過
率が激変すること、また往復通過率の変動の少ない屈折
角50°〜65°の範囲を使用すると、幾何学的に探傷
領域である入射面に隣接する側面の下方が探傷できない
ことの欠点がある。一方縦波を用いた場合では、屈折角
の変化による往復通過率の変動が比較的少なく連続的で
あることの利点がおり、かかる点から縦波を導入する。First, the reason for using longitudinal waves is as follows. In other words, when a transverse wave is used in the oblique angle flaw detection method, as can be seen from Figure 8, the round-trip passage rate is small at a refraction angle of 84° or less.
When detecting flaws in the refraction angle range of 80° to 40°, the round-trip pass rate changes drastically due to slight errors in the shape of the entrance surface and the settings of the incident angle. When using a range of 100°, there is a disadvantage that the lower part of the side surface adjacent to the entrance surface, which is the geometrically defect detection area, cannot be detected. On the other hand, when longitudinal waves are used, there is an advantage that fluctuations in the round trip pass rate due to changes in the refraction angle are relatively small and continuous, and longitudinal waves are introduced from this point.
該縦波斜角探傷法を用いてセクター走査する場合の有効
な探傷領域について説明すると、屈折角が大きくなると
横波の影響を受けること(第8図参照)、また側面反射
エコーの受信によシ側表面近傍のS/Nが低下すること
から、屈折角は最大に限定される。To explain the effective detection area when sector scanning is performed using the longitudinal wave oblique angle flaw detection method, the larger the refraction angle, the more influenced by transverse waves (see Figure 8), and the fact that the reception of side reflection echoes Since the S/N near the side surfaces decreases, the refraction angle is limited to a maximum.
上記のような斜角探傷法を用いて目的とする角鋼片の全
面全長に亘ってオンラインで探傷するためには、超音波
ビームを高速で走査させなければならない。この場合、
走査方式を大別すると機械的走査と電子走査とに分けら
れるが、後述する如く、高速走査性、指向性、欠陥位置
推定精度等の諸点で、後者の走査方式によるのが遥かに
有利である。また電子走査による場合でも、さらに電子
リニア走査と電子セクター走査とが対比される。In order to perform online flaw detection over the entire length of the target square steel piece using the above-mentioned angle angle flaw detection method, the ultrasonic beam must be scanned at high speed. in this case,
Scanning methods can be roughly divided into mechanical scanning and electronic scanning, but as will be explained later, the latter scanning method is far more advantageous in terms of high-speed scanning, directivity, defect position estimation accuracy, etc. . Even in the case of electronic scanning, electronic linear scanning and electronic sector scanning are further compared.
そこで電子走査の原理を下記に概説する。Therefore, the principle of electronic scanning is outlined below.
先ず電子走査アレイ型探触子は、第5図に示すように、
多数の振動子素子(3)を基体(4)平面上に一列に配
列させ、その表面にコーティング(5)を施して構成さ
れる。該探触子からの超音波ビームの制御は、各素子(
3)の送受波のタイミングを遅延時間制御回路で調整す
ることにより行なわれる。例えば第6図(I)に示すよ
うに遅延時間を設定しない場合には、その超音波ビーム
Sは単一の大口径振動子からの波面と等価な波面を形成
するが、この遅延時間を適宜に設定すると、第6図(n
a)のようにビームSを傾けたり、第6図(IIb)の
ように絞ったりあるいは第6図(IIC)のようにビー
ムSを絞って傾ける波面を自在に形成することができる
。First, the electronic scanning array type probe, as shown in Figure 5,
It is constructed by arranging a large number of transducer elements (3) in a line on the plane of a base (4), and applying a coating (5) to the surface thereof. The ultrasonic beam from the probe is controlled by each element (
3) is performed by adjusting the timing of wave transmission and reception using a delay time control circuit. For example, if the delay time is not set as shown in FIG. 6(I), the ultrasonic beam S forms a wavefront equivalent to the wavefront from a single large-diameter transducer. When set to , Figure 6 (n
It is possible to freely form a wavefront that tilts the beam S as shown in a), constricts it as shown in FIG. 6 (IIb), or constricts and tilts the beam S as shown in FIG. 6 (IIC).
このような探触子を電子走査し、超音波ビームを入射面
上に平行移動させるがもしくは振る電子リニアもしくは
セクター走査の特徴を要約すると、次の通シである。The characteristics of electronic linear or sector scanning, in which such a probe is electronically scanned and the ultrasonic beam is translated or swung on the incident surface, can be summarized as follows.
(1)高速走査性 機械的走査に比べて高速走査が容易である。(1) High-speed scanning performance High-speed scanning is easier than mechanical scanning.
(i)鋭い指向性
電子走査型探触子は多数の振動子エレメントを同時に動
作させるため、全体としては大口径の振動子と同じでお
り鋭い指向性を有している。(i) Sharp Directivity Since an electronic scanning probe operates a large number of transducer elements simultaneously, the probe as a whole is the same as a large-diameter transducer and has sharp directivity.
(1)電子収束
電子走査型探触子は、前述の通り、送受波信号に所定の
遅延時間を与えることにより、凹面振動子やレンズ付き
振動子と同様にビームを細く絞り分解能を上げた探傷を
可能にする。そしてこの焦点距離は任意に設定できるた
め、材中の探傷領域にビームを収束させることによって
微小な欠陥の検出精度を向上させることができると同時
に、欠陥位置推定精度も向上する。参考とし′そ、角鋼
片探傷時の超音波ビーム径と02の横穴に対するS/H
の関係を第7図に示す。(1) As mentioned above, the electron focusing electronic scanning probe is a flaw detection method that narrows the beam and increases resolution, similar to concave vibrators and lensed vibrators, by giving a predetermined delay time to the transmitted and received signals. enable. Since this focal length can be set arbitrarily, the accuracy of detecting minute defects can be improved by focusing the beam on the flaw detection area in the material, and at the same time, the accuracy of estimating the defect position can also be improved. For reference, the ultrasonic beam diameter during flaw detection of a square steel piece and the S/H for the 02 horizontal hole.
The relationship is shown in Figure 7.
叡)探触子を固定した状態で超音波ビームを走査させる
ことが出来るので、一つの探触子で広い探傷域が得られ
る。叡) Since the ultrasonic beam can be scanned with the probe fixed, a wide flaw detection area can be obtained with one probe.
次に、このような特徴を有する電子走査アレイ型探触子
を用いて電子リニア走査する場合と、電子セクター走査
する場合を対比して説明する。Next, a case where electronic linear scanning is performed using an electronically scanned array type probe having such characteristics and a case where electronic sector scanning is performed will be compared and explained.
まず電子リニア走査する場合では、探触子(1)を所定
の状態でセットして、第8図(&) (1)) (e)
に示すよものである。このさい必要な走査回路例を挙げ
れば、第9図に示す通りである。すなわち、例えば総エ
レメント数64個のリニアアレイ探触子を16個のエレ
メントを1セツトとして、探触子(1)と送受信器(6
)とを先に述べた遅延回路(7)に加えてリードリレー
回路(8)を介して接続し、切換スイッチで順次送受信
のエレメントをずらし、超音波ビームを走査するのであ
る。First, in the case of electronic linear scanning, set the probe (1) in a predetermined state, and then
This is a good thing as shown in An example of the scanning circuit required in this case is shown in FIG. That is, for example, if a linear array probe with a total number of 64 elements is set as one set of 16 elements, the probe (1) and the transmitter/receiver (6
) are connected via a reed relay circuit (8) in addition to the delay circuit (7) mentioned above, and the transmitting and receiving elements are sequentially shifted using a changeover switch to scan the ultrasonic beam.
一方電子セクター走査する場合では、やはり探触子(1
)を所定の状態にセットして、第10図(a)(b)(
C)傷して行くものである。このさいの必要な走査回路
例を挙げれば、第11図に示す通りである。すなわち、
例えば総分割エレメント数82個の探触子(1)と送受
信器(6)とを遅延回路(7)を介して1対1に対応さ
せて接続し、その遅延回路(7)による遅延時間設定を
順次変えることによって、超音波ビームの傾き角を変化
させ、ビームを振る走査をするのである。On the other hand, in the case of electronic sector scanning, the probe (1
) in the predetermined state, and as shown in Figure 10 (a), (b)
C) It is something that will cause damage. An example of the scanning circuit required in this case is shown in FIG. That is,
For example, a probe (1) with a total of 82 divided elements and a transmitter/receiver (6) are connected in a one-to-one correspondence via a delay circuit (7), and the delay time is set by the delay circuit (7). By sequentially changing the angle of inclination of the ultrasonic beam, scanning is performed by swinging the beam.
しかして本発明では、次のような理由から電子セクター
に電子リニア走査を組み合わせて走査する電子セクター
+リニア走査を行なうことを特徴とするものである。Therefore, the present invention is characterized by performing electronic sector + linear scanning, which is a combination of electronic sector and electronic linear scanning, for the following reasons.
上記電子リニア走査と電子セクター走査とを比較すると
、後者は前記のもつ下記の欠点が解消される点で有利な
ものといえる。Comparing the above-mentioned electronic linear scanning and electronic sector scanning, the latter can be said to be advantageous in that the following disadvantages mentioned above are overcome.
(1)電子リニア走査の場合、送受信エレメントを順次
ずらすため、エレメント総数が多くなり全体として振動
子径が大きくなる。(1) In the case of electronic linear scanning, since the transmitting and receiving elements are sequentially shifted, the total number of elements increases and the transducer diameter increases as a whole.
(li)切り換えに多数のリレーが必要であり、このリ
レーの寿命が短い。(li) A large number of relays are required for switching, and the lifespan of these relays is short.
偵)送受信エレメントを順次ずらすため、送受信器(T
/ RUnit )とエレメントが1対1の対応ニナ
ラないため、感度バラツキの調整が困難である。Transmitter/receiver (T)
/RUnit) and elements do not have a one-to-one correspondence, making it difficult to adjust sensitivity variations.
(IV)超音波ビームの入射点の移動量が大きいため、
角鋼片の表面凹凸の影響を受は屈折角が変化し、欠陥位
置推定精度が劣化する。(IV) Because the amount of movement of the incident point of the ultrasonic beam is large,
The refraction angle changes due to the surface irregularities of the square steel piece, and the accuracy of defect position estimation deteriorates.
しかし乍ら、他面において電子セクター走査の場合では
、第12図CI)に示すように、超音波ビームSを振る
ことによって、角鋼片(2)の入射面における入射点が
ずれる問題点がある。However, on the other hand, in the case of electronic sector scanning, as shown in Fig. 12 (CI), there is a problem in that by swinging the ultrasonic beam S, the incident point on the incident surface of the square steel piece (2) is shifted. .
そこで木発明では電子セクター走査のもつ上記問題点を
解決するため、リニア走査を組み合わせテ行ナイ、第1
2図〔IIaXIIbXIIC)に示すように、各ビー
ム傾斜角に応じて送受信エレメントをシフトさせ、これ
によって入射点のずれを最小限におさえ、電子セクター
走査以上に入射面の影響を受は難く、従って欠陥位置推
定精度の向上される走査方法を採用する。Therefore, in order to solve the above-mentioned problems with electronic sector scanning, we have combined linear scanning.
As shown in Figure 2 [IIaXIIbXIIC], the transmitter/receiver element is shifted according to each beam inclination angle, thereby minimizing the deviation of the incident point, making it less susceptible to the influence of the incident surface than in electronic sector scanning. Adopt a scanning method that improves defect position estimation accuracy.
次に、このような特徴を有する電子セクター+リニア走
査を行なうための探触子セット方法について説明する。Next, a probe setting method for performing electronic sector + linear scanning having such characteristics will be explained.
電子走査アレイ型探触子においては、グレーティングロ
ーブの発生を防ぐために必要とされる振動子エレメント
間隔aH1超音波ビーム(B)の最大傾斜角を±θ0と
すれば、
】
λ:超超音波伝播媒質中波長
で表わされる。よって超音波ビーム(S)の傾斜角を大
きくするためには、λ一定ではそのエレメント間隔dを
小さくしなければならない(第18図(a) (1))
にエレメント幅と最大ビーム傾斜角θ。との関係を示す
)。すなわち、エレメント幅は小さくする必要がある。In an electronically scanned array type probe, the transducer element spacing required to prevent the generation of grating lobes is aH1.If the maximum inclination angle of the ultrasound beam (B) is ±θ0, λ: Ultrasonic propagation It is expressed by the wavelength in the medium. Therefore, in order to increase the inclination angle of the ultrasonic beam (S), the element spacing d must be decreased when λ is constant (Fig. 18(a) (1)).
element width and maximum beam inclination angle θ. ). That is, the element width needs to be made small.
探触子のセット法は、この特性を利用して次の二通りの
方法を提案することができる。The following two methods for setting the probe can be proposed using this characteristic.
(1)一つは、角鋼片軸方向に垂直な面内でその材表面
から所定の距離に位置して、探触子をその入射面に対し
て水平にセットする方法である。(1) One method is to position the probe at a predetermined distance from the surface of the square steel piece in a plane perpendicular to the axial direction of the piece, and set the probe horizontally to the plane of incidence.
但し、この場合にけ探触子の各エレメント幅を小さくシ
、分割数を多くする。とのセット法による場合の特徴は
、最大ビーム傾斜角が大きいので、入射面に隣接する両
側面の探傷が可能となることである。However, in this case, the width of each element of the probe is made smaller and the number of divisions is increased. The feature of the set method is that since the maximum beam inclination angle is large, it is possible to detect flaws on both sides adjacent to the entrance surface.
(it)もう一つは、やはり角鋼片軸方向に垂直な面内
でその材表面から所定の距離に位置して、探触子をその
入射面に対してセクター走査の振りの中心となる入射角
分だけ傾斜させてセットする方法である。このセット法
による場合の特徴は、ビーム傾斜角の絶対値が小さくな
るので、最大遅延時間が小さくて済むことである。また
ビーム傾斜角の絶対値が小さくなるので、探触子のエレ
メント分割数が大きくてもよい。(it) The other method is to place the probe at a predetermined distance from the surface of the square steel piece in a plane perpendicular to the axial direction of the piece, and place the probe at the center of incidence for sector scanning with respect to the incidence plane. This is a method of setting it by tilting it by an angle. A feature of this set method is that since the absolute value of the beam inclination angle becomes small, the maximum delay time can be shortened. Furthermore, since the absolute value of the beam inclination angle becomes small, the number of element divisions of the probe may be large.
第14図と第15図は角鋼片(2)に対する探触子(1
)の配置状態の応用例を示す。まず第14図の例の場合
では、角鋼片(2)の各面に対して平行に一個づつ探触
子(1)が配置される。すなわち、1個の探触子(1)
で図示の如く入射面に隣接する角鋼片(2)の両側面下
半分を探傷するのであシ、4個の探触子(1)で角鋼片
(2)の全表面層を探傷するのである。一方第15図の
例の場合では、角鋼片(2)の各面に対して所定の角度
をもって2個づつ探触子(1)が配置される。Figures 14 and 15 show the probe (1) for the square steel piece (2).
) is shown below. First, in the case of the example shown in FIG. 14, one probe (1) is arranged parallel to each surface of a square steel piece (2). That is, one probe (1)
As shown in the figure, the lower half of both sides of the square steel piece (2) adjacent to the entrance surface is detected for flaws, and the entire surface layer of the square steel piece (2) is detected using four probes (1). . On the other hand, in the case of the example shown in FIG. 15, two probes (1) are arranged at a predetermined angle to each surface of the square steel piece (2).
すなわち、この場合には1個の探触子(1)で図示の如
く入射面に隣接する角鋼片(2)の片側面下半分を探傷
し、合計8個の探触子(1)を用いて角鋼片全長面層を
探傷するのである。いずれの配置による場合でも、オン
ラインで嬌鋼片全表面層に亘る高速探傷が可能とされる
。That is, in this case, one probe (1) is used to detect the lower half of one side of the square steel piece (2) adjacent to the entrance plane as shown in the figure, and a total of eight probes (1) are used. The entire length of the rectangular steel slab is inspected for flaws. In either arrangement, high-speed flaw detection can be performed online over the entire surface layer of the steel piece.
次に角鋼片の表面欠陥を弁別するための処理について説
明する。上記に述べた木発明の電子リニア走査による斜
角探傷法によれば、目的とする角鋼片の全表面に亘りそ
の表面皮下痢を含む内部欠陥を高速で精度よく検出する
ことができる。ところで、角鋼相の表面層を探傷すると
、表面皮下欠陥のみならず表面疵も同時に検出され、そ
の探傷結果には表面欠陥探傷によジ検出した情報も含ま
れている。しかるに、表面疵については鋼片加工工程の
チッピングやグラインダによる加工によって除去するこ
とができ、製品の二次加工時に問題となるものではなく
、それ故表面疵を含まない内部欠陥(もちろん表面皮下
欠陥を含む)のみを検出することが必要である。Next, a process for identifying surface defects in square steel pieces will be described. According to the above-mentioned oblique flaw detection method using electronic linear scanning of the invention, internal defects including surface skin defects can be detected at high speed and accurately over the entire surface of a target square steel piece. By the way, when the surface layer of a square steel phase is flaw-detected, not only surface subcutaneous defects but also surface flaws are detected at the same time, and the flaw detection results also include information detected by the surface flaw detection. However, surface defects can be removed by chipping or grinding in the billet processing process, and do not pose a problem during secondary processing of the product. Therefore, internal defects that do not include surface defects (of course surface subcutaneous defects) It is necessary to detect only the
しかして内部欠陥の検出には、既述の角鋼片内部からの
超音波斜角探傷の結果より表面欠陥探傷の結果を差q引
けばよい。下記表に各表面欠陥探傷法をその検出能と共
に示す。Therefore, in order to detect internal defects, it is sufficient to subtract q the result of the surface defect detection from the result of the ultrasonic angle inspection from the inside of the square steel piece described above. The table below shows each surface defect detection method along with its detection ability.
表面欠陥の検出能がその表面欠陥探傷法により異なるこ
とから判るように、どの表面欠陥探傷法と組み合せるか
によって内部欠陥の検出特性が決定される。As can be seen from the fact that the surface defect detection ability varies depending on the surface defect detection method, the internal defect detection characteristics are determined by which surface defect detection method is used in combination.
表面欠陥弁別のための情報処理法として、基本的には第
16図に示すように、情報1から情報2を差し引けばよ
いが、超音波斜角探傷は欠陥位置推定精度を低下させる
要因を多く含んでいるため、情報1は表面欠陥探傷から
の欠陥位置情報(情報2)に比べて信頼性が低く、欠陥
位置推定誤差範囲が太きい。そのため第17図に示すよ
うな表面欠陥に対して、欠陥位置情報として図中の印の
位置に欠陥があるものとして情報1、情報2を得た場合
、これらの情報をそのまま情報処理すると、別個の欠陥
と判断され、清瀬1は内部欠陥情報として残される。す
なわち、内部欠陥を有しないのに内部欠陥材とされる。As an information processing method for surface defect discrimination, basically information 2 can be subtracted from information 1 as shown in Fig. 16, but ultrasonic angle flaw detection can eliminate the factors that reduce defect position estimation accuracy. Since the information 1 contains a large amount of information, it has lower reliability than the defect position information (information 2) from surface defect detection, and the error range for estimating the defect position is wide. Therefore, for a surface defect as shown in Figure 17, if information 1 and information 2 are obtained as defect position information indicating that the defect is located at the position of the mark in the figure, if these pieces of information are processed as they are, they will be separated into is determined to be a defect, and Kiyose 1 is left as internal defect information. In other words, it is considered an internally defective material even though it does not have any internal defects.
これを防ぐために情報2に一定の領域をもたせ、その領
域に入る情報1はキャンセルすることによって表面欠陥
を内部欠陥と誤検出することを防止する。ここで情報2
にもたせる領域をどの程度にするかけ情報1の精度の良
否によるが、この精度は超音波ビーム径(細い程よい即
ち絞った状態)、入射面形状(入射面に凹凸があると見
かけ上布折角が変化するので入射点の変動が少なくかつ
入射面が平担である程よい)に起因するところ大であり
、この面で電子リニア走査に比較すると電子セクター走
査並びに(電子セクタ+リニア走査)は有利である。In order to prevent this, information 2 is provided with a certain area, and information 1 that falls within that area is canceled to prevent surface defects from being erroneously detected as internal defects. Information 2 here
This accuracy depends on the accuracy of the information 1, but the accuracy depends on the ultrasonic beam diameter (the thinner the better, i.e., the narrowed state), the shape of the incident surface (if the incident surface is uneven, the apparent cloth angle will be affected). This is largely due to the fact that the incidence point changes less and the plane of incidence is better).In this respect, electronic sector scanning and (electronic sector + linear scanning) are advantageous compared to electronic linear scanning. be.
そこで電子セクター+リニア走査によって斜角探傷する
場合では、より一層欠陥位置推定精度を向上するために
次の二つの方法を併用す、ることかできる。Therefore, when performing oblique flaw detection using electronic sector + linear scanning, the following two methods can be used in combination to further improve defect position estimation accuracy.
一つは入射面の凹凸の影響が最も少ないと考えられる血
中央部から超音波を入射することである。One method is to inject the ultrasonic waves from the center of the blood, where the influence of irregularities on the incident surface is thought to be least.
つまりこうすることにょシ、第18図Ca) (b)に
示す如く、角鋼片(2)の表面に凹凸があっても、血中
央部ではほぼ平担と近似することができる。In other words, by doing this, even if the surface of the square steel piece (2) is uneven, as shown in FIG.
もう一つの方法は、第19図に示すような入射面の傾斜
による見かけ上の屈折角の変化(So−S )を補正す
るために、コーナ一部からのエコーを検出し、その最大
値を示す入射角を求めることである。そしてその値より
入射面の傾斜を算出し、所以上述べたように、本発明の
超音波探傷法によれば、従来の内部探傷法では鋼片表面
から数量の領域は探傷不能であるに対し、角鋼片の全表
面層を未探傷域なくオンラインで高速探傷することが可
能で、角鋼片の表面層全長に亘シ、ひいては製品として
の棒鋼、線材の表面皮下並びに内部に亘す、迅速的確に
品質保証を与えることができる。Another method is to detect the echo from a part of the corner and calculate its maximum value in order to correct the apparent change in the angle of refraction (So-S) due to the inclination of the incident surface, as shown in Figure 19. The purpose is to find the angle of incidence shown. Then, the slope of the incident plane is calculated from that value.As mentioned above, according to the ultrasonic flaw detection method of the present invention, flaw detection is possible in a certain area from the surface of the steel piece, whereas with the conventional internal flaw detection method, flaw detection is impossible. , it is possible to perform high-speed online flaw detection on the entire surface layer of a square billet without leaving any undetected areas, and it is possible to quickly and accurately detect flaws over the entire length of the surface layer of a square billet, as well as subcutaneously and inside the surface of steel bars and wire rods as products. can provide quality assurance.
また本発明では電子セクター走査にリニア走査を組合わ
せ走査するものであるため、特に欠陥位置推定精度が向
上される特徴を有する。Furthermore, since the present invention performs scanning in combination with electronic sector scanning and linear scanning, it has a feature that the defect position estimation accuracy is particularly improved.
第1図は従来の垂直探傷法による不感帯を示す図である
。第2図は本発明に係る斜角探傷法による不感帯を示す
図である。第8図は入射角による縦波、横波の往復通過
率の変化を示す図である。
第4図は本発明に係る縦波斜角探傷による探傷領域を示
す図である。第5図は電子走査アレイ型探触子の構造概
様を示す図である。第6図CI、l)、CIIa)(I
Ib)CUc) は電子走査アレイ型探触子による超
音波ビームの制御態様を示す図である。第7図は角鋼片
探傷時の超音波ビーム径と02横穴に対するS / N
の関係を示す図である。第8図(a) (b) (c)
は角鋼片に対する電子リニア走査の様子を概念的に示す
図である。第9図は電子リニア走査を行なうための回路
構成例を示す図である。第10図(a、) (b) (
C)は角鋼片に対する電子セクター走査の様子を概念的
に示す図である。第11図は電子セクター走査を行なう
ための回路構成例を示す図である。第12図CI)、C
IIaXIIbXIIc〕 は電子セクター走査と電
子セクター+リニア走査を比較して示す図である。第1
8図は電子走査型探触子のもつ振動子エレメント幅と最
大ビーム傾斜角との関係を示す図である。第14図と第
15図は角鋼片に対する探触子の配置状態の応用例を示
す図である。第16図は表面欠陥弁別のための情報処理
と検出パターンを示す図である。
第17図は超音波斜角探傷による欠陥位置情報と表面探
傷による欠陥位置情報との関係から欠陥位置推定情報の
信頼性を高める処理を概念的に示す図である。第18図
(a) (b)は入射面の凹凸の影響と超音波ビームの
入射位置との関係を示す図である。第19図は入射面の
傾斜による見かけ上の屈折角の変化を示す図である。
(1)・・・探触子、(2)・・・角鋼片、S・・・超
音波ビーム。
特 許 出 願 人 株式会社神戸製鋼所ぢS 9図
第16I″′yIFIG. 1 is a diagram showing a dead zone according to a conventional vertical flaw detection method. FIG. 2 is a diagram showing a dead zone obtained by the oblique flaw detection method according to the present invention. FIG. 8 is a diagram showing changes in the round-trip passage rate of longitudinal waves and transverse waves depending on the incident angle. FIG. 4 is a diagram showing a flaw detection area by longitudinal wave oblique flaw detection according to the present invention. FIG. 5 is a diagram showing the general structure of an electronically scanned array type probe. Figure 6 CI, l), CIIa) (I
Ib) CUc) is a diagram showing how an ultrasound beam is controlled by an electronically scanned array probe. Figure 7 shows the ultrasonic beam diameter and S/N for 02 horizontal hole during flaw detection of square steel pieces.
FIG. Figure 8 (a) (b) (c)
1 is a diagram conceptually showing how electronic linear scanning is performed on a square piece of steel. FIG. 9 is a diagram showing an example of a circuit configuration for performing electronic linear scanning. Figure 10 (a,) (b) (
C) is a diagram conceptually showing how electronic sector scanning is performed on a square piece of steel. FIG. 11 is a diagram showing an example of a circuit configuration for performing electronic sector scanning. Figure 12 CI), C
IIaXIIbXIIc] is a diagram showing a comparison between electronic sector scanning and electronic sector+linear scanning. 1st
FIG. 8 is a diagram showing the relationship between the transducer element width and the maximum beam inclination angle of an electronic scanning probe. FIG. 14 and FIG. 15 are diagrams showing an example of how the probe is arranged with respect to a square steel piece. FIG. 16 is a diagram showing information processing and detection patterns for surface defect discrimination. FIG. 17 is a diagram conceptually showing a process for increasing the reliability of defect position estimation information based on the relationship between defect position information obtained by ultrasonic angle flaw detection and defect position information obtained by surface flaw detection. FIGS. 18(a) and 18(b) are diagrams showing the relationship between the influence of irregularities on the incident surface and the incident position of the ultrasonic beam. FIG. 19 is a diagram showing changes in the apparent angle of refraction due to the inclination of the incident surface. (1)...Probe, (2)...Square steel piece, S...Ultrasonic beam. Patent applicant: Kobe Steel, Ltd. S Figure 9, Figure 16I''yI
Claims (1)
あって、前記探触子を、角鋼片軸方向に垂直な面内でそ
の材表面から所定の距離で、かつ又材表面に対して所定
の角度でセットし、前記探触子を電子セクター走査に電
子リニア走査とを特徴とする電子セクター、電子リニア
走査併用による角鋼片の表ホイ探傷法。1. A longitudinal wave angle flaw detection method using an electronic scanning array type probe, in which the probe is placed at a predetermined distance from the material surface in a plane perpendicular to the axial direction of a square steel piece, and also at a predetermined distance from the material surface. 1. A surface flaw detection method for a square steel piece using a combination of electronic sector and electronic linear scanning, characterized in that the probe is set at a predetermined angle to
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57233944A JPS59116541A (en) | 1982-12-24 | 1982-12-24 | Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning |
US06/563,953 US4537073A (en) | 1982-12-24 | 1983-12-21 | Inspection method of square billet using electronic scanning |
DE19833346791 DE3346791A1 (en) | 1982-12-24 | 1983-12-23 | METHOD FOR TESTING A SQUARE STICK WITH ELECTRONIC SCANNING |
CA000444221A CA1222314A (en) | 1982-12-24 | 1983-12-23 | Inspection method of square billet using electronic scanning |
KR1019830006135A KR870001259B1 (en) | 1982-12-24 | 1983-12-23 | Steel piece inspection using electronic beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57233944A JPS59116541A (en) | 1982-12-24 | 1982-12-24 | Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116541A true JPS59116541A (en) | 1984-07-05 |
JPH0146027B2 JPH0146027B2 (en) | 1989-10-05 |
Family
ID=16963059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57233944A Granted JPS59116541A (en) | 1982-12-24 | 1982-12-24 | Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS59116541A (en) |
KR (1) | KR870001259B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11326293A (en) * | 1998-04-24 | 1999-11-26 | Smiths Ind Plc | Monitoring system |
EP1839050A1 (en) * | 2005-01-21 | 2007-10-03 | Fluor Technologies Corporation | Ultrasound phased array devices and methods for use with stainless steel |
JP2018100852A (en) * | 2016-12-19 | 2018-06-28 | 株式会社東芝 | Ultrasonic inspection device, ultrasonic inspection method and joint block material manufacturing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041313A1 (en) * | 2007-09-28 | 2009-04-02 | Krautkramer Japan Co., Ltd | Ultrasonic flaw detecting method and its device |
JP5260045B2 (en) * | 2007-12-27 | 2013-08-14 | 昭和電工株式会社 | Method and apparatus for ultrasonic inspection of cast bar |
WO2009122904A1 (en) * | 2008-03-31 | 2009-10-08 | 日本クラウトクレーマー株式会社 | Ultrasonic flaw detection method and device thereof |
JP5638052B2 (en) * | 2012-10-16 | 2014-12-10 | 昭和電工株式会社 | Ultrasonic flaw detection inspection method for cast bars |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5284884A (en) * | 1975-10-13 | 1977-07-14 | Commw Of Australia | Method of checking ultrasonic wave and device therefor |
JPS53140879A (en) * | 1977-05-13 | 1978-12-08 | Hitachi Ltd | Method of and device for transmitting and receiving electron2scan of ultrasonic wave |
JPS56126761A (en) * | 1980-03-12 | 1981-10-05 | Nippon Steel Corp | Ultrasonic flaw-detecting method for square bar |
-
1982
- 1982-12-24 JP JP57233944A patent/JPS59116541A/en active Granted
-
1983
- 1983-12-23 KR KR1019830006135A patent/KR870001259B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5284884A (en) * | 1975-10-13 | 1977-07-14 | Commw Of Australia | Method of checking ultrasonic wave and device therefor |
JPS53140879A (en) * | 1977-05-13 | 1978-12-08 | Hitachi Ltd | Method of and device for transmitting and receiving electron2scan of ultrasonic wave |
JPS56126761A (en) * | 1980-03-12 | 1981-10-05 | Nippon Steel Corp | Ultrasonic flaw-detecting method for square bar |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11326293A (en) * | 1998-04-24 | 1999-11-26 | Smiths Ind Plc | Monitoring system |
EP1839050A1 (en) * | 2005-01-21 | 2007-10-03 | Fluor Technologies Corporation | Ultrasound phased array devices and methods for use with stainless steel |
JP2008528963A (en) * | 2005-01-21 | 2008-07-31 | フルオー・テクノロジーズ・コーポレイシヨン | Ultrasonic phased array apparatus and method for stainless steel |
EP1839050A4 (en) * | 2005-01-21 | 2014-03-05 | Fluor Tech Corp | Ultrasound phased array devices and methods for use with stainless steel |
JP2018100852A (en) * | 2016-12-19 | 2018-06-28 | 株式会社東芝 | Ultrasonic inspection device, ultrasonic inspection method and joint block material manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR870001259B1 (en) | 1987-06-29 |
KR840007180A (en) | 1984-12-05 |
JPH0146027B2 (en) | 1989-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6391554A (en) | Method and apparatus for ultrasonic flaw detection of welded part in steel pipe | |
WO1999034204A1 (en) | Method and apparatus for ultrasonic flaw detection of weld portion | |
JPS59116541A (en) | Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning | |
WO2020250379A1 (en) | Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material | |
JP2013234886A (en) | Ultrasonic flaw detection method and device by tofd method | |
JP6871534B2 (en) | Comparison test piece and ultrasonic phased array flaw detection test method | |
JP3671819B2 (en) | Ultrasonic flaw detector for welded steel pipe | |
JP6992678B2 (en) | Ultrasonic flaw detection method, ultrasonic flaw detector, steel manufacturing equipment line, steel manufacturing method, and steel quality assurance method | |
KR20150023434A (en) | Steel material quality evaluation method and quality evaluation device | |
JPS59116542A (en) | Method for detecting flaw of square steel piece by electronic linear scanning | |
JPS59116543A (en) | Method for detecting flaw of square steel piece by electronic sector scanning | |
JP2531873B2 (en) | Surface defect inspection method | |
JPH0350989B2 (en) | ||
JPH03257363A (en) | Ultrasonic flaw detection apparatus | |
JP2001050941A (en) | Variable angle ultrasonic probe and variable angle ultrasonic flaw-detecting device | |
Hesse et al. | Defect detection in rails using ultrasonic surface waves | |
JPH0455754A (en) | Ultrasonic flaw detecting method of steel piece | |
JPS59148864A (en) | Ultrasonic flaw detecting method of square billet | |
JPH0550706B2 (en) | ||
JPS59148863A (en) | Transversal wave oblique flaw detecting method of square steel piece | |
JPH02259560A (en) | Method and device for ultrasonic flaw detection of steel tube weld zone | |
JPH0545346A (en) | Ultrasonic probe | |
JPS5649955A (en) | Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like | |
JPH0278949A (en) | Ultrasonic flaw detecting device | |
JPH0379664B2 (en) |