JPS59113121A - Production of low carbon hot rolled steel sheet - Google Patents

Production of low carbon hot rolled steel sheet

Info

Publication number
JPS59113121A
JPS59113121A JP22335882A JP22335882A JPS59113121A JP S59113121 A JPS59113121 A JP S59113121A JP 22335882 A JP22335882 A JP 22335882A JP 22335882 A JP22335882 A JP 22335882A JP S59113121 A JPS59113121 A JP S59113121A
Authority
JP
Japan
Prior art keywords
rolling
temperature
hot rolled
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22335882A
Other languages
Japanese (ja)
Inventor
Kazuaki Sato
佐藤 一昭
Kameo Matsukura
松倉 亀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22335882A priority Critical patent/JPS59113121A/en
Publication of JPS59113121A publication Critical patent/JPS59113121A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce economically a low carbon hot rolled steel sheet in the stage of rolling directly a continuous casting slab as it is or with heating of only the end part thereof after continuous casting by rolling the slab to a final thickness at a specific temp. and allowing the sheet to cool or annealing the sheet after coiling the rolled sheet. CONSTITUTION:A low carbon steel contg. 0.005-0.15% C, <0.03% Si, 0.10- 0.60% Mn is continuously cost and the continuous casting slab thereof is directly hot rolled as it is at a temp. of 900-1,150 deg.C or with heating only the end part tending to cool earlier, whereby a hot rolled steel sheet is produced. The steel sheet is hot rolled to a final thickness at 20-60% draft in a temp. range of the Ar3 transformation point temp. -600 deg.C and after the sheet is coiled at 500- 700 deg.C, the coil is allowed to cool or is annealed at 700-550 deg.C, whereby a hot rolled steel sheet for general fabrication is produced. Since the heat retained by the continuous casting slab is effectively utilized, the low carbon hot rolled steel sheet is produced at a low cost with good thermal efficiency.

Description

【発明の詳細な説明】 本発明は低炭素熱延鋼板の製造法に関し、その目的は曲
げ、絞り、張出し加工用等の一般加工用品質上欠点のな
い低炭素熱延鋼板の製造法を研究し、O0,15X以下
、Si0.01X以下、 Mn 0.60%以下、残が
Feおよび不可避不純物からなる低炭素鋼スラブを90
0〜1150℃に加熱後、熱間圧延を行なうにあたり、
人r3変態点温度〜600℃の温度範囲において20〜
60%の仕上圧下率で最終板厚に圧延し、続いてコイル
巻取シ後、放冷することを特徴とする低炭素熱延鋼板の
製造方法を開発し、省エネルギー効果が高く、また品質
面でも問題を生ずることのない製造法を確立することに
成功した。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a low carbon hot rolled steel sheet, and its purpose is to research a method for manufacturing a low carbon hot rolled steel sheet that has no defects in quality for general processing such as bending, drawing, and stretching. A low carbon steel slab consisting of O 0.15X or less, Si 0.01X or less, Mn 0.60% or less, and the balance Fe and unavoidable impurities was made into a 90%
After heating to 0 to 1150°C, hot rolling is performed,
Human r3 transformation point temperature ~ 20 ~ in the temperature range of 600℃
We have developed a manufacturing method for low-carbon hot-rolled steel sheets that is characterized by rolling to the final thickness at a finishing reduction rate of 60%, then winding into coils, and then letting it cool. However, they succeeded in establishing a manufacturing method that did not cause any problems.

こnは従来1200〜1300℃とする高温加熱が常識
とされていたのを900〜1150℃と云う低温加熱で
製造する新規な方法に係るものであったが、本発明者等
はさらに低炭素熱延鋼板について省エネルギー効果の高
い製造方法を研究した結果、連続鋳造されたままの高温
スラブを直ちに圧延加工する新規な方法即ち本発明の方
法を開発した。
This was related to a new method of manufacturing by heating at a low temperature of 900 to 1150°C, instead of the conventional high-temperature heating of 1200 to 1300°C, but the present inventors have developed an even lower carbon As a result of research into a highly energy-saving manufacturing method for hot-rolled steel sheets, we have developed a new method for immediately rolling a high-temperature slab that has been continuously cast, that is, the method of the present invention.

周知の通り連続鋳造された高温スラブをそのまま圧延し
て製品とする直接圧延法は省エネルギー効果と高生産性
から業界において種々提案さ几るようになったが、低炭
素熱延鋼板については、仕 ′上圧延温度の確保の困難
さから材質的に難点が生じやすいため、品質上問題のな
い製造法は提案されていない。
As is well known, the direct rolling method, in which continuously cast high-temperature slabs are rolled directly into products, has been proposed in various ways in the industry due to its energy-saving effect and high productivity. 'Difficulty in securing the top rolling temperature tends to cause problems with the material, so no manufacturing method has been proposed that does not cause quality problems.

さて、連続鋳造法では、ブレークアウトの問題があって
、1200〜1300℃と云う高温のスラブを得ること
は現在の技術水準では工業的に不可能であって、本出願
人の高速鋳造と緩冷却技術開発によっても1150℃(
スラブ全断面の平均温度)が最高である。
Now, with the continuous casting method, there is a problem of breakout, and it is industrially impossible to obtain a slab at a high temperature of 1,200 to 1,300 degrees Celsius with the current state of technology. Thanks to the development of cooling technology, temperatures of 1150℃ (
The average temperature of the entire slab cross section) is the highest.

また通常連続鋳造設備と熱間圧延設備は距離的に離れて
設備されることが多くそのため移送途中での失熱があり
温度降下が著しい。
Further, continuous casting equipment and hot rolling equipment are usually installed at a distance, and as a result, heat is lost during transportation, resulting in a significant temperature drop.

本発明者等は、前述のように温度的な制約を克服し、ま
た鋳造組織のスラブから品質的に問題のない一般加工用
の熱延鋼板を直接圧延製造することをねらいとして研究
し、本願発明方法を開発した0本願発明の要旨L 00.005〜0.15%、SIo、03%以下、Mn
0.10〜0.60X1残がFe および不可避不純物
よりなる鋼を連続鋳造して得た900〜1150℃の高
温スラブをそのit又は端部加熱して粗および仕上圧延
工程で直接圧延するにあた9、kr2変態点温度〜60
0℃の温度範囲において20〜60%の仕上圧下率で最
終板厚に圧延し、続いて巻取源[’ 700℃〜500
℃でコイルに巻取り後、放冷するか又は700℃〜55
0℃の温度範囲で焼鈍を行なうことを特徴とする低炭素
熱延鋼板の製造法にあたり、以下さらに詳細に説明する
The present inventors have conducted research with the aim of overcoming the temperature constraints as mentioned above and directly rolling manufacturing hot-rolled steel sheets for general processing with no quality problems from slabs with a cast structure, and have developed the present application. 0 Summary of the Invention L 00.005 to 0.15%, SIo, 03% or less, Mn
0.10~0.60 9.kr2 transformation point temperature ~60
Rolling to the final thickness at a finishing reduction of 20-60% in a temperature range of 0°C, followed by a winding source ['700°C-500°C]
After winding into a coil at ℃, leave it to cool or heat from 700℃ to 55℃.
A method for producing a low carbon hot rolled steel sheet characterized by annealing in a temperature range of 0° C. will be described in more detail below.

本発明において0の下限を0.005%に限定する理由
は0.005%未満ではAr3変態点が高くなシ過ぎる
結果、圧延条件を如何に工夫しても目的とする材質が得
ら几ず、また製鋼技術上コスト高となって実用的利益が
得られないためである。また0の上限を0.15 Nと
する理由は、015X超になると材質が硬質となシ目的
とする一般加工用には不適となるためである。Siにつ
いて上限を0.03Nとするのは0.03N超ではやは
シ材質が硬質となシ使用時のメッキ、表面処理時に問題
をおこし易く目的が達成できないためであシ、又Mnの
下限を0.10%とするのは010%未満ではOの場合
と同様1cAr3変態点が高くなり目的とする材質が得
られないうえに、硫化物割れが発生し易くなるためであ
る。父上限を0.60 Nとするのは0.6ON超では
材質が硬くなり過ぎて一般加工用には不向きな鋼板とな
るためである。
The reason why the lower limit of 0 is limited to 0.005% in the present invention is that if it is less than 0.005%, the Ar3 transformation point is too high, and as a result, the desired material cannot be obtained no matter how the rolling conditions are devised. This is also because the cost of steel manufacturing technology is high and practical benefits cannot be obtained. The reason why the upper limit of 0 is set to 0.15 N is that if it exceeds 015X, the material becomes hard and is not suitable for general processing purposes. The upper limit for Si is set at 0.03N because if it exceeds 0.03N, the Si material becomes hard, which tends to cause problems during plating and surface treatment during use, and the purpose cannot be achieved.Also, the lower limit of Mn The reason why is set to 0.10% is that if it is less than 0.10%, the 1cAr3 transformation point will be high as in the case of O, making it impossible to obtain the desired material quality, and sulfide cracking will likely occur. The upper limit is set to 0.60 N because if it exceeds 0.6 N, the material becomes too hard and becomes a steel plate unsuitable for general processing.

連続鋳造された高温スラブの温度範囲の下限を900℃
とする理由はこれ以下では移送にともなう不可避的な失
熱によってスラブの端部温度が下シ途中の軽加熱によっ
ても温度は回復し難く、脆化による割れが発生する率が
高いためである。
The lower limit of the temperature range of continuously cast high-temperature slabs is 900℃.
The reason for this is that if the slab temperature is lower than this, the temperature at the end of the slab will be difficult to recover even by light heating during lowering due to the inevitable loss of heat that accompanies the transfer, and the probability of cracking due to embrittlement is high.

さらに、温度の上限を1150℃とするのは、連続鋳造
における現在技術水準でブレークアウトの懸念なしに実
現できる最高温度であ勺、鋳造における比水量の低減、
高速引抜、二次冷却ゾーンにおける気水を用いた緩冷却
などの技術によって達成することが可能な温度であって
、これが上限を1150℃とする理由である。次に仕上
圧下率の点について説明する。
Furthermore, setting the upper limit of the temperature to 1150°C is the highest temperature that can be achieved with the current state of the art in continuous casting without worrying about breakouts, and it also reduces the specific water content in casting.
This is the temperature that can be achieved by techniques such as high speed drawing and slow cooling with air and water in a secondary cooling zone, which is why the upper limit is set at 1150°C. Next, the finishing rolling reduction ratio will be explained.

第1図は仕上厚み2.0mlの低炭素熱延鋼板の仕上圧
延温度、仕上圧延圧下率を種々変えて圧延した結果をプ
ロットしたグラフであって横軸は仕上圧下率、縦軸は伸
び値でコイル幅方向1/4の位置から採取したJI85
号引張試験片による圧延と直角方向の伸び値を示したも
のである。
Figure 1 is a graph plotting the results of rolling a low carbon hot-rolled steel sheet with a finishing thickness of 2.0 ml at various finishing rolling temperatures and finishing rolling reductions, where the horizontal axis is the finishing rolling reduction and the vertical axis is the elongation value. JI85 sampled from 1/4 position in the width direction of the coil.
This figure shows the elongation value in the direction perpendicular to rolling using a No. 1 tensile test piece.

前記仕上圧延温度とは仕上最終ロールを出た直後の鋼板
温度をいい、仕上圧延圧下率とは仕上圧延温度がAr3
変態点以上の場合は、最終ロールスタンPでの圧下率、
仕上圧延温度がkrB変態点以下の場合は鋼板温度がA
r3変態点以下になった時点からそ几以後に圧延される
各段のロールスタンドでの圧下率の合計を云うものであ
シ、本発明では前記仕上圧延圧下率を仕上圧下率と略称
する。
The finishing rolling temperature refers to the temperature of the steel sheet immediately after leaving the final finishing roll, and the finishing rolling reduction ratio refers to the temperature at which the finishing rolling temperature is Ar3.
If the temperature is above the transformation point, the rolling reduction rate at the final roll stun P,
If the finish rolling temperature is below the krB transformation point, the steel plate temperature is A.
It refers to the sum of the rolling reductions in the roll stands of each stage from the time when the temperature reaches or below the r3 transformation point, and in the present invention, the finishing rolling reduction ratio is abbreviated as the finishing rolling reduction ratio.

本発明において圧延直角方向の伸びを鋼板材質の指標と
して選んだのは低炭素熱延鋼板がAr3変態点以下圧延
となって材質劣化する場合この値が最も良くその劣化の
程度を表わすためである。
In the present invention, the elongation in the direction perpendicular to rolling was selected as an index of the steel sheet material quality because when a low carbon hot rolled steel sheet is rolled below the Ar3 transformation point and deteriorates in quality, this value best represents the degree of deterioration. .

第1図において通常の再加熱圧延法(再加熱温度125
0℃)である仕上圧延温度850℃、仕上圧下率18X
のAr3変態点以上低仕上圧下車で圧延を行ったものは
平均45%の伸びを示す。これに対し800℃、700
℃、600℃のAr3変態点以下で直接圧延したものは
仕上圧下率の変化に従って20%未満では伸びが従来材
に比べて大幅に劣るが20%以上では良い値を示すよう
になる。これが本発明において仕上圧下率の下限を20
%とする理由である。
In Fig. 1, the normal reheat rolling method (reheat temperature 125
0°C) finish rolling temperature 850°C, finishing reduction rate 18X
Those rolled with a low finish reduction car above the Ar3 transformation point show an average elongation of 45%. On the other hand, 800℃, 700℃
For those directly rolled below the Ar3 transformation point of 600°C, elongation is significantly inferior to conventional materials at less than 20% as the finishing reduction ratio changes, but at 20% or more it shows good elongation. This sets the lower limit of the finishing reduction rate to 20 in the present invention.
This is the reason why it is set as %.

仕上圧下率が6ONまでは非常に良好な値を示し、60
Xを超えると伸びは低下傾向を示す。
It shows a very good value until the finishing reduction rate is 6ON, and 60
When X is exceeded, the elongation tends to decrease.

従って本発明では上限を6ONとする。このように本発
明では通常の再加熱圧延材の伸びと同等の比較的良い値
を示すが、本発明において最も望ましい仕上圧延率は3
0〜50%である。
Therefore, in the present invention, the upper limit is set to 6ON. In this way, the present invention shows a relatively good elongation value equivalent to that of ordinary reheat-rolled material, but the most desirable finish rolling rate in the present invention is 3.
It is 0-50%.

以上説明した通F) A、r3変態点〜600℃の温度
範囲において仕上圧下率を20〜6ONとすることが本
発明の要点であり、600℃未満の温度では圧延が冷間
圧延の範囲となるため得られる鋼板の集合組織は冷間圧
延鋼板と同じく圧延面と平行K(111)面の多いもの
となり、〒値などの深絞り性の指標となるOCv値は非
常に優れたものとなるが、一方600℃未満での圧延に
は極めて高い圧延動力が必要となシ、本発明の目的の1
つである省エネルギー製造が不可能になる。
As explained above, the key point of the present invention is to set the finishing reduction rate to 20 to 6ON in the temperature range from A, r3 transformation point to 600°C, and at temperatures below 600°C, rolling falls into the cold rolling range. Therefore, the texture of the obtained steel sheet has many K(111) planes parallel to the rolling surface, similar to cold rolled steel sheets, and the OCv value, which is an index of deep drawability such as the 〒 value, is extremely excellent. However, on the other hand, extremely high rolling power is required for rolling at temperatures below 600°C.
Energy-saving manufacturing becomes impossible.

さらに直接圧延では、高温スラブを粗および仕上圧延で
圧延するまでKAr3変態点以上に保つことが移送途中
での保熱を行っても非常に困難であり、本発明は00@
片の直接圧延におけるそのよりなAr3変態点以下〜6
00℃までの温度範囲において優f′した一般加工用の
熱延鋼板を製造できる新規な圧延条件を見出した点が特
徴であシ、加えてその対象となる板厚は仕上厚みで1.
2〜2.8111等のいわゆる薄手材であって、その場
合特に有利な製造手段となる。而して、前記高温スラブ
を誘導加熱法などにより温度低下の著しい端部の温度補
償をすると時として非常に効果的である。
Furthermore, in direct rolling, it is extremely difficult to maintain the high-temperature slab above the KAr3 transformation point until it is rolled in rough and finish rolling, even if heat is retained during transfer.
The higher Ar3 transformation point in direct rolling of the piece ~ 6
It is characterized by the discovery of new rolling conditions that can produce hot-rolled steel sheets for general processing with excellent f' in the temperature range up to 00°C, and in addition, the target sheet thickness is 1.
2 to 2.8111, which is a particularly advantageous manufacturing method. Therefore, it is sometimes very effective to compensate for the temperature of the end portion of the high-temperature slab, where the temperature drop is significant, by using an induction heating method or the like.

次に巻取温度を700〜500℃に限定する理由は70
0℃超では結晶粒および炭化物の粗大化を生じて良好な
材質が得られなくなると共にスケールの酸洗性が悪くな
り、酸洗ラインの生産能率を著しく低下させるためであ
る。
Next, the reason why the winding temperature is limited to 700 to 500℃ is 70.
This is because if it exceeds 0°C, crystal grains and carbides become coarse, making it impossible to obtain a good material, and at the same time, the pickling properties of the scale deteriorate, which significantly reduces the production efficiency of the pickling line.

また500℃未満では再結晶軟化が起らなくなり、材質
が硬質となって目的とする鋼板が得られなくなるためで
ある。又本発明では巻取りののち、放冷の手段Kかえて
700”−550℃の温度範囲で焼鈍する手段を採用す
るが、その温度の限定理由については後述する 第1表は本発明法と比較法即ち鋼塊を分塊圧延し、加熱
炉に装入再加熱後熱延する製造法(比較法1)と連続鋳
造した高温鋳片を本発明以外の条件で直接圧延する方法
(比較法2)の実績値を示す表であシ、第2表に示す成
分の低炭素鋼スラブをそれぞれの圧延条件で圧延し、そ
の製品の特性をJI85号引張試験片による圧延直角方
向引張試験値で比較した。該鋼の変態点は820℃であ
った。
Further, if the temperature is lower than 500°C, recrystallization softening will not occur, and the material will become hard, making it impossible to obtain the desired steel plate. In addition, in the present invention, after winding, annealing at a temperature range of 700'' to 550°C is used instead of the cooling means K, but the reason for the temperature limitation is shown in Table 1, which will be described later. Comparative method (comparative method 1), in which a steel ingot is bloom-rolled, charged into a heating furnace, reheated, and then hot-rolled (comparative method 1); and a method in which continuously cast high-temperature slabs are directly rolled under conditions other than those of the present invention (comparative method). This is a table showing the actual values of 2). Low carbon steel slabs with the components shown in Table 2 are rolled under the respective rolling conditions, and the properties of the products are determined by the tensile test values in the direction perpendicular to rolling using a JI No. 85 tensile test piece. The transformation point of the steel was 820°C.

また、この第1表における仕上圧下率は最終仕上ロール
スタンPでの圧下率を示す。
Further, the finishing rolling reduction ratio in Table 1 indicates the rolling rolling ratio at the final finishing roll stamp P.

さて第1表の比較法2の伸びは比較法IK比し、約10
X低い値を示すのに対し、本発明法は比較法1と同等の
値を示してレノろ・ 8 、ρ i−ρ云シ; さらに第1表の本発明法(3)は500℃で巻取シ後6
50℃で1時間焼鈍を行った実施例であるが、巻取り温
度が500℃と低−ため鋼板の結晶組織に一部加工組織
が残存するため650℃Xi hrの焼鈍を行ない完全
に回復再結晶を行なわせたもので、本発明における方法
を実施するにあたり、加工組織が残存するような条件の
場合は焼鈍によって品質確保を行なうことが望ましい。
Now, the growth of Comparative Method 2 in Table 1 is about 10% compared to Comparative Method IK.
In contrast, the method of the present invention shows a value equivalent to that of Comparative Method 1, and the value of After winding 6
In this example, annealing was performed at 50°C for 1 hour, but due to the low coiling temperature of 500°C, some processed structure remained in the crystal structure of the steel sheet, so annealing at 650°C for 1 hour was performed to completely recover. When carrying out the method of the present invention for crystallized materials, if the conditions are such that processed structures remain, it is desirable to ensure quality by annealing.

この場合焼鈍は550℃以上の温度でないと充分に再結
晶しないしまた700℃超では結晶粒の粗大化がおこシ
易くなるうえ、熱経済的にも不利である。これが焼鈍温
度を700〜550℃に限定する理由である。
In this case, the annealing will not be sufficiently recrystallized unless the temperature is 550°C or higher, and if it exceeds 700°C, crystal grains tend to become coarser, and this is also disadvantageous from a thermoeconomic standpoint. This is the reason why the annealing temperature is limited to 700 to 550°C.

以上説明した通う、本発明法は連続鋳造工程と圧延工程
を直結する直接圧延によシ品質のすぐれた一般加工用熱
延鋼板をより経済的に製造する方法を提供するものであ
る。
As explained above, the method of the present invention provides a more economical method for producing hot-rolled steel sheets for general processing with excellent quality by direct rolling, which directly connects the continuous casting process and the rolling process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は仕上圧下率と圧延直角方向の伸びの相関を示す
グラフである。 代理人 弁理士 秋 沢 政 光 他2名
FIG. 1 is a graph showing the correlation between the finishing rolling reduction and the elongation in the direction perpendicular to rolling. Agent: Patent attorney Masamitsu Akizawa and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)  OO,005〜0.15 X 、 Si 0
.03%以下、Mn  0.10−0.60%、残がF
e および不可避不純物よりなる鋼を連続鋳造して得た
900〜1150℃の高温スラブをそのまま又は端部加
熱して粗および仕上圧延工程で直接圧延するにあた’)
、hrs変態点温度〜600℃の温度範囲において20
〜60%の仕上圧下率で最終板厚に圧延し、続いて巻取
温度700℃〜500℃ でコイルに巻取り後、放冷す
るか又は700℃〜550℃の温度範囲で焼鈍を行なう
、ことを特徴とする低炭素熱延鋼板の製造法。
(1) OO,005~0.15X, Si0
.. 03% or less, Mn 0.10-0.60%, balance F
When a high-temperature slab of 900 to 1150 °C obtained by continuous casting of steel containing e and unavoidable impurities is directly rolled in the rough and finish rolling processes as it is or by heating the edges.
, 20 in the temperature range from hrs transformation point temperature to 600°C
Rolling to the final plate thickness at a finishing reduction of ~60%, followed by winding into a coil at a winding temperature of 700°C to 500°C, and then cooling or annealing at a temperature range of 700°C to 550°C. A method for producing low carbon hot rolled steel sheets characterized by:
JP22335882A 1982-12-20 1982-12-20 Production of low carbon hot rolled steel sheet Pending JPS59113121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22335882A JPS59113121A (en) 1982-12-20 1982-12-20 Production of low carbon hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22335882A JPS59113121A (en) 1982-12-20 1982-12-20 Production of low carbon hot rolled steel sheet

Publications (1)

Publication Number Publication Date
JPS59113121A true JPS59113121A (en) 1984-06-29

Family

ID=16796899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22335882A Pending JPS59113121A (en) 1982-12-20 1982-12-20 Production of low carbon hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JPS59113121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194118A2 (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corporation Production of formable thin steel sheet excellent in ridging resistance
EP0196788A2 (en) * 1985-03-06 1986-10-08 Kawasaki Steel Corporation Method of manufacturing formable as rolled thin steel sheets
US6679957B1 (en) * 1998-09-15 2004-01-20 Acciai Speciali S.P.A. Process for thermal treatment of steel strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194118A2 (en) * 1985-03-06 1986-09-10 Kawasaki Steel Corporation Production of formable thin steel sheet excellent in ridging resistance
EP0196788A2 (en) * 1985-03-06 1986-10-08 Kawasaki Steel Corporation Method of manufacturing formable as rolled thin steel sheets
US4861390A (en) * 1985-03-06 1989-08-29 Kawasaki Steel Corporation Method of manufacturing formable as-rolled thin steel sheets
US6679957B1 (en) * 1998-09-15 2004-01-20 Acciai Speciali S.P.A. Process for thermal treatment of steel strip

Similar Documents

Publication Publication Date Title
WO2019057115A1 (en) Production method for inline increase in precipitation toughening effect of ti microalloyed hot-rolled high-strength steel
KR20210138072A (en) Method for manufacturing grain-oriented electrical steel sheet
JPS59113121A (en) Production of low carbon hot rolled steel sheet
JP3823653B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JPS5831034A (en) Production of cold rolled steel plate for drawing
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPS59153832A (en) Heat treatment of hot rolled strip of martensitic stainless steel
JP3858546B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPH05279741A (en) Manufacture of grain-oriented silicon steel sheet
JP2985730B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPS6056017A (en) Production of thick steel plate having excellent low- temperature toughness
JPS60138014A (en) Manufacture of nonoriented silicon steel sheet
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2001071018A (en) Manufacture of hot-rolled steel sheet excellent in pickling property and material homogeneity in coil
JPS5956528A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPH06212263A (en) Production of grain-oriented silicon steel sheet having low iron loss
JPS6235462B2 (en)
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing