JPS59112703A - Antenna driver - Google Patents

Antenna driver

Info

Publication number
JPS59112703A
JPS59112703A JP22270782A JP22270782A JPS59112703A JP S59112703 A JPS59112703 A JP S59112703A JP 22270782 A JP22270782 A JP 22270782A JP 22270782 A JP22270782 A JP 22270782A JP S59112703 A JPS59112703 A JP S59112703A
Authority
JP
Japan
Prior art keywords
antenna
actuator
fitted
satellite
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22270782A
Other languages
Japanese (ja)
Inventor
Yoichi Kawakami
川上 用一
Kazuo Nakagawa
一夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22270782A priority Critical patent/JPS59112703A/en
Publication of JPS59112703A publication Critical patent/JPS59112703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To eliminate a mechanical friction part in antenna expansion and in fine adjustment driving and to eliminate a backlash by inserting an antenna reflection mirror into a fixed shaft in a noncontacting float state magnetically by a magnetic float body. CONSTITUTION:The antenna reflection mirror 2 is supported by a supporting metallic fixture 9 projecting from the magnetic float body 10 inserted into the fixed shaft 8 fixed to a satellite body 1 in the noncontacting float state. An electromagnetic actuator 19 is fitted to the satellite body 1, and a control piece 20 faces the actuator 19 when the antenna reflection mirror 2 fitted to the magnetic float body 10 is expanded and is made of a permanent magnet entirely or fitted with a permanent magnet on the facing side of the actuator 19 to generate mutually separating resiliency as to the actuator 19, thereby performing control while the resulting force of rotation is opposed to that by a spring 17. Consequently, there is no mechanical friction part in antenna expansion and in fine adjustment driving and any backlash is not caused.

Description

【発明の詳細な説明】 本発明は人工衛星搭載のアンテナ駆動装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna driving device mounted on an artificial satellite.

代表的な三軸安定型静d−衛星は第1図に示すようなも
のである。すなわち1は衛星本体、2はアンテナ反射鏡
、3はアンテナ駆動装置、4は一次放射器、5はノーラ
バドルである。アンテナ反射鏡2は打上げ時には図中鎖
線で示すように衛星本体に畳み込んでおき、静止軌道上
でアンテナ駆動装置3によって反射鏡を展開させ、アン
テナ指向方向を地球方向6へ向ける。展開のための駆動
源は一般にばねを用いている。従来アンテナ駆動装置3
の回転摩擦部分は、固定潤滑剤によって摩擦の低減を図
っているが、展開時の衝撃を小さくするため極力弱いハ
ネを用いているため、回転部分の摩擦で途中で引っ掛か
り展開しないなどの問題が生ずることもあった。またア
ンテナ指向方向を高精度に制御する場合は、指向方向を
微小に変化させる機能をアンテナ駆動装置に付加するた
め、ステップモータと減速用ギヤを用いてアンテナ反射
鏡の角度を微小、駆動させている。
A typical three-axis stabilized geostationary d-satellite is shown in Figure 1. That is, 1 is a satellite main body, 2 is an antenna reflector, 3 is an antenna drive device, 4 is a primary radiator, and 5 is a Norabador. At the time of launch, the antenna reflector 2 is folded into the satellite main body as shown by the chain line in the figure, and the reflector is expanded by the antenna drive device 3 on the geostationary orbit, and the antenna pointing direction is directed towards the earth direction 6. The driving source for deployment generally uses a spring. Conventional antenna drive device 3
The friction of the rotating friction part is reduced by using a fixed lubricant, but since the weakest spring is used to reduce the impact when deployed, there are problems such as the rotating part getting caught in the middle and not being able to deploy. Sometimes it occurred. In addition, when controlling the antenna pointing direction with high precision, a step motor and a reduction gear are used to minutely drive the angle of the antenna reflector in order to add a function to the antenna drive device that changes the pointing direction minutely. There is.

しか[〜将来0.01 de9程度のアンテナ指向方向
精度と千年以上の長期間の使用の保証が要求されると、
不明な点が多い真空中において回転摩擦部の潤滑および
ギヤ部におけるバソクラノ/ユが問題となる。
However, in the future, antenna pointing accuracy of about 0.01 de9 and guarantee of long-term use of over 1000 years will be required.
In a vacuum, where there are many unknown points, lubrication of rotating friction parts and lubrication of gear parts become problems.

本発明は上記の点にかんがみ、機械的摩擦部を除き且つ
バツクラツンユのない人工衛星搭載のアンテナ駆動装置
を提供するものであって以下図而について詳細に説明す
る。
In view of the above-mentioned points, the present invention provides an antenna driving device mounted on an artificial satellite that does not include a mechanical friction part and is free from bumps.The present invention will be described in detail below.

第2図は本発明の実施例を示し、第1図に示した部分と
対応する部分は同符号で示し、7は固定軸8を衛星本体
1に固定する軸固定金具、10は第6図に示すように固
定軸8に挿入されている磁気浮上体であって、この浮上
体10から突設した支持金具9にアンテナ反射鏡が支持
されている。
FIG. 2 shows an embodiment of the present invention, parts corresponding to those shown in FIG. As shown in FIG. 1, this is a magnetically levitated body inserted into a fixed shaft 8, and an antenna reflector is supported by a support fitting 9 protruding from this levitated body 10.

11は固定軸側永久磁石、12は浮上体側永久磁石であ
って、これら両永久磁石11 、12は回転軸8の軸方
向に互いに吸引するよう着磁されている。
11 is a permanent magnet on the fixed shaft side, and 12 is a permanent magnet on the floating body side. Both permanent magnets 11 and 12 are magnetized so as to attract each other in the axial direction of the rotating shaft 8.

これにより固定軸8と磁気浮上体10とが偏心すると、
その偏心をなくすような半径方向の分力が働き、常に両
者が同心状態になるように保ち、侮気軸受の剛性を大き
くしている。13は制御電磁部であって、対向する浮上
体つば部14との間隔をセンサー等の間隔検出具による
信号によって常に一定に保つよう電流調整によって制御
される。
As a result, when the fixed shaft 8 and the magnetically levitated body 10 become eccentric,
A component force in the radial direction acts to eliminate the eccentricity, keeping both parts concentric at all times, increasing the rigidity of the air bearing. Reference numeral 13 denotes a control electromagnetic section, which is controlled by current adjustment so that the distance between the opposing floating body flange 14 is always kept constant by a signal from a distance detecting device such as a sensor.

]5はベアリングであって、制御電磁部13へ電力を供
給できないとき、磁気浮上体側永久磁石12と固定軸側
永久磁石11が密着し危いようにするものであシ、衛星
打上げ後はその役目は終る。16は衛星本体1に取りつ
けた引留金具であって、この引留金具はばね17の一端
を止着している。はね17の他端には弾性ひも18が継
がれ、また弾性ひも18は磁気浮上体10上に巻きつけ
られて端部が止着され、ばね17はアンテナ反射鏡展開
時の駆動源となる。19は衛星本体1に取りつけた電磁
アクチェータ、20は磁気浮上体1oに取りつけられア
ンテナ反射鏡展開時にアクチェ〜り19と対面する制御
片であって、全体が永久磁石よりなるかアクチェータ対
向側に永久磁石が取りつけられており、電磁アクチェー
タ料との間に互いに離間するような磁気的反発力が働ら
くようになっており、それによる回転力とはね17によ
って生ずる回転力とを対抗させながら制御する。
] 5 is a bearing, which prevents the permanent magnet 12 on the magnetically levitated body side and the permanent magnet 11 on the fixed shaft side from coming into close contact with each other when power cannot be supplied to the control electromagnetic part 13, and after the satellite is launched. The role is finished. Reference numeral 16 denotes a retaining fitting attached to the satellite body 1, and this retaining fitting fixes one end of the spring 17. An elastic string 18 is connected to the other end of the spring 17, and the elastic string 18 is wrapped around the magnetically levitated body 10 and the end is fixed, and the spring 17 serves as a driving source when the antenna reflector is deployed. . 19 is an electromagnetic actuator attached to the satellite body 1, and 20 is a control piece that is attached to the magnetically levitated body 1o and faces the actuator 19 when the antenna reflector is deployed. A magnet is attached so that a magnetic repulsion force is exerted between the electromagnetic actuator material and the actuator material to separate them from each other, and the rotational force generated by the magnet is opposed to the rotational force generated by the spring 17 for control. do.

第4図は本発明装置のアンテナ反射鏡の展開前および同
展開後の状態を示し、アンテナ展開前は同図(a)に示
すように、アンテナ反射鏡2は、これに取りつけた爆管
ナツト20によって衛星本体1に設けた取付金具22に
固定され、ばね17の力により弾性ひも18を介して回
転トルクを得ている。打上げ後、ナツト21の爆管によ
って、これを取付金具22から切離すと、ばね17の力
によって得ていた回転トルクによって磁気浮上体10は
回転し、アンテナ反射鏡2は固定軸8を中心にして回転
して展開し、その指向方向を地球方向へ向ける。太陽輻
射圧や地磁気による磁気トルクなどの外乱によって衛星
の姿勢が変動した場合、地上から発射された電波をセン
サにより検出してその方向との違いの量に比例した信号
によってアクチェータ19の電磁力を制御して磁気浮上
体の位置を微小に調整駆動し、アンテナ反射鏡の指向方
向を高精度に制御する。
FIG. 4 shows the state of the antenna reflector of the device of the present invention before and after deployment. Before the antenna is deployed, as shown in FIG. 20 is fixed to a mounting bracket 22 provided on the satellite body 1, and rotational torque is obtained through an elastic string 18 by the force of a spring 17. After launch, when it is separated from the mounting bracket 22 by the explosion tube of the nut 21, the magnetically levitated object 10 rotates due to the rotational torque obtained by the force of the spring 17, and the antenna reflector 2 rotates around the fixed axis 8. It rotates and unfolds, and its pointing direction is directed toward the earth. When the attitude of the satellite changes due to disturbances such as solar radiation pressure or magnetic torque caused by the earth's magnetism, a sensor detects the radio waves emitted from the ground and uses a signal proportional to the amount of difference from the direction to control the electromagnetic force of the actuator 19. The position of the magnetically levitated body is finely adjusted and driven, and the pointing direction of the antenna reflector is controlled with high precision.

なおアクチェータ19として前記のような電磁式のもの
を用いる代りに圧電素子を用いてもよく、その場合制御
片20に圧電素子を接触させ、その素子20の弾性変形
により電磁アクテエ−メーの場合と同様に微細制御駆動
を行々うことができる1゜制御片20には永久磁石を必
要としない。
Note that a piezoelectric element may be used as the actuator 19 instead of the above-mentioned electromagnetic type. In that case, the piezoelectric element is brought into contact with the control piece 20, and the elastic deformation of the element 20 causes the actuator 19 to actuator 19 in the same manner as in the case of an electromagnetic actuator. Similarly, no permanent magnet is required for the 1° control piece 20, which can provide finely controlled driving.

以北のように本発明装置はアンテナ反射鏡を磁気浮上体
によって固定軸に磁気力によシ非接触浮上状態に挿入し
たので、アンテナ展開時および微小調整駆動時に機械的
な接触による摩擦力をなくすることができて高真空の宇
宙環境下で問題になる潤滑部分を除去することができ、
長期間使用における摩耗をなくし特性劣化を生じにくく
シ、装置全体を高信頼化できる。まだアクチェータによ
って直接アンテナ反射鏡を固着した磁気浮上体を駆動す
るものであるため、従来のようにモータを用いるために
必要な減速ギヤによるバノクラッ7ユの問題がなくなり
、駆動の分解能を向上させることができ高精度な指向方
向制御を行なうことができる。
As mentioned above, in the device of the present invention, the antenna reflector is inserted into the fixed shaft using a magnetic levitation body in a non-contact levitation state, so the frictional force caused by mechanical contact is eliminated when the antenna is deployed and when driving fine adjustment. It is possible to remove the lubrication part that becomes a problem in the high vacuum space environment.
It eliminates wear during long-term use, prevents characteristic deterioration, and makes the entire device highly reliable. Since the actuator directly drives the magnetically levitated body to which the antenna reflector is fixed, there is no problem of reduction gears that are required to use conventional motors, and the drive resolution is improved. It is possible to perform highly accurate pointing direction control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三軸安定型衛星の基本構成図、第2図は本発明
の実施例の斜視図、第6図は磁気軸受部の断面図、第4
図はアンテナ反射鏡の展開時の状態説明図を示す。 1・・・衛星本体、2・・・アンテナ反射鏡、8・・固
定軸、10・・・磁気浮上体、19・・アクチェータ、
20・・制御片 半3(2) キ4図
Fig. 1 is a basic configuration diagram of a three-axis stabilized satellite, Fig. 2 is a perspective view of an embodiment of the present invention, Fig. 6 is a sectional view of the magnetic bearing section, and Fig. 4 is a sectional view of the magnetic bearing section.
The figure shows an explanatory diagram of the state of the antenna reflector when it is deployed. DESCRIPTION OF SYMBOLS 1...Satellite main body, 2...Antenna reflector, 8...Fixed axis, 10...Magnetic levitation body, 19...Actuator,
20... Control piece half 3 (2) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 衛星本体に固定した固定軸に磁気力により非接触浮上状
態で回転自在に挿入された磁気浮上体にアンテナ反射鏡
を取付け、該磁気浮上体外周に制御片を設け、上記アン
テナ反射鏡展開時の該制御片に対面する位置に上記磁気
浮上体の回転位置を微調整駆動するアクチェータを配設
したことを特徴とするアンテナ駆動装置。
An antenna reflector is attached to a magnetically levitated body which is rotatably inserted into a fixed shaft fixed to the satellite body in a non-contact levitation state by magnetic force, and a control piece is provided on the outer periphery of the magnetically levitated body. An antenna driving device characterized in that an actuator for finely adjusting and driving the rotational position of the magnetically levitated body is disposed at a position facing the control piece.
JP22270782A 1982-12-19 1982-12-19 Antenna driver Pending JPS59112703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22270782A JPS59112703A (en) 1982-12-19 1982-12-19 Antenna driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22270782A JPS59112703A (en) 1982-12-19 1982-12-19 Antenna driver

Publications (1)

Publication Number Publication Date
JPS59112703A true JPS59112703A (en) 1984-06-29

Family

ID=16786640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22270782A Pending JPS59112703A (en) 1982-12-19 1982-12-19 Antenna driver

Country Status (1)

Country Link
JP (1) JPS59112703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449158A2 (en) * 1990-03-28 1991-10-02 SELENIA SPAZIO S.p.A. Fine pointing system of a reflector type focussing antenna
JPH08307137A (en) * 1995-05-12 1996-11-22 Nec Corp Antenna driver
JP2018518118A (en) * 2015-06-15 2018-07-05 ノースロップ グラマン システムズ コーポレーション Integrated antenna and RF payload for low-cost intersatellite links using a super elliptical antenna aperture with a single axis gimbal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449158A2 (en) * 1990-03-28 1991-10-02 SELENIA SPAZIO S.p.A. Fine pointing system of a reflector type focussing antenna
JPH08307137A (en) * 1995-05-12 1996-11-22 Nec Corp Antenna driver
JP2018518118A (en) * 2015-06-15 2018-07-05 ノースロップ グラマン システムズ コーポレーション Integrated antenna and RF payload for low-cost intersatellite links using a super elliptical antenna aperture with a single axis gimbal

Similar Documents

Publication Publication Date Title
JP5357558B2 (en) Control moment gyro
US7791007B2 (en) Techniques for providing surface control to a guidable projectile
JP5820099B2 (en) Control moment gyroscope based on momentum control system in small satellite
US6208053B1 (en) Adjustable torque hysteresis clutch
WO2017138165A1 (en) Control moment gyroscope
JPS6011746A (en) Fly wheel device
US4224545A (en) Speed control
EP0015829B1 (en) Electromagnetic process for controlling the orientation of a platform and platform employing this process
EP1532048B1 (en) Radially actuated control moment gyroscope
JPS59112703A (en) Antenna driver
JP2015143450A (en) Resistance generator used in drive unit
US5063336A (en) Mechanical stabilization system using counter-rotation and a single motor
IL163918A (en) Control moment gyro for attitude control of spacecraft
JPS641682B2 (en)
US4658659A (en) Gyroscope
JP3095282B2 (en) A device that supports and rotates a load against a structure
US10053242B2 (en) Low friction reaction wheel system and containment structure with integrated electromagnets
US3554466A (en) Bearing and gimbal lock mechanism and spiral flex lead module
US4395650A (en) Electromagnetic diaphragm disk actuator
US3499333A (en) Means for supporting and torquing a rotors of a multiple degree of freedom gyroscope
JPS63157641A (en) Uniaxial control type magnetic bearing device
CN115096282A (en) Small control moment gyroscope driven by ultrasonic motor
JPS63206005A (en) Rotary driver
JPWO2023176378A5 (en)
JPS6364897A (en) Dynamic balancing regulator for space missile