JPS59112213A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS59112213A
JPS59112213A JP22357982A JP22357982A JPS59112213A JP S59112213 A JPS59112213 A JP S59112213A JP 22357982 A JP22357982 A JP 22357982A JP 22357982 A JP22357982 A JP 22357982A JP S59112213 A JPS59112213 A JP S59112213A
Authority
JP
Japan
Prior art keywords
light receiving
light beam
measuring device
scanning
parallel scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22357982A
Other languages
Japanese (ja)
Other versions
JPS6341484B2 (en
Inventor
Toshinobu Shibayama
柴山 敏伸
Yoshiharu Kuwabara
義治 桑原
Hiroyoshi Hamada
浜田 啓好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP22357982A priority Critical patent/JPS59112213A/en
Publication of JPS59112213A publication Critical patent/JPS59112213A/en
Publication of JPS6341484B2 publication Critical patent/JPS6341484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To take a measurement easily and speedily by photodeteting at least a part of a parallel scanning light beam by a photodetection body which contains a photodetecting element, and displaying the position of an objective of measurement within the scanning range of the beam on a photodetection plate. CONSTITUTION:The vertical size of the objective 24 of measurement arranged between a light emission part body 52 and the photodetection part body 52 is measured from the length of the time of a dark part formed by cutting off the parallel scanning light beam 20 by the objective 24 of measurement. An optical measuring device 50 is provided with the photodetection plate 56 which is graduated corresponding to the scanning range and also displays the position of the objective 24 of measurement, and this plate is arranged under the photodetection window 54a in front of the photodetection part body 54 rotatably around a pin 58.

Description

【発明の詳細な説明】 本発明は、光学式測定装置に係シー特に、難可視性のレ
ーザ光線を利用して被測定物の寸法を測定する高速度走
査型レーザ測長機に用いるのに好適な、平行走査光線ビ
ーム発生装置と受光素子との間に配置(7た被測定物に
より一平行走査光線ビームが辿ぎられて生じる暗部又は
明部の長さから被測定物の寸法を測定するようにした光
学式測定装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical measuring device, and is particularly suitable for use in a high-speed scanning laser length measuring machine that measures the dimensions of an object using a barely visible laser beam. The dimension of the object to be measured is measured from the length of the dark or bright area generated when the parallel scanning beam is traced by the object (7), which is preferably placed between the parallel scanning light beam generator and the light receiving element. The present invention relates to an improvement of an optical measuring device.

従来から1回転走査光線ビーム(レーザビーム)を−コ
リメータレンズによシーこのコリメータレンズと集光レ
ンズ間を通る平行走査光線ビームに変換し、該コリメー
タレンズと集光レンズの間に被測定物を置き、この被測
定物によって前Sピ平行走査光線ビームが遮ぎられて生
じる暗部又は明部の時間の長さから被測定物の寸法を測
定する高速度走査型レーザ測長機が知られている。
Conventionally, a single rotation scanning light beam (laser beam) is converted into a parallel scanning light beam that passes through a collimator lens and a condenser lens, and an object to be measured is placed between the collimator lens and the condenser lens. A high-speed scanning laser length measuring machine is known that measures the dimensions of an object to be measured based on the length of time of a dark or bright area that occurs when the front S-pi parallel scanning light beam is blocked by the object. There is.

これは、例えば第1図に示す如く、レーザ光源10から
レーザビーム12を固定ミラー14に向けて発振し、こ
の固定ミラー14により反射されたレーザビーム12を
回転ミラー16によって走査ビーム17に変換し、この
走査ビーム17に一コリメータレンズ18によって平行
走査光線ビーム20に変換し、この平行走査光線ビーム
20によシコリメータレンズ18と集光レンズ22の間
に配置した被測定物24を置速走査し、その時被測定物
24によって生じる暗部又は明部の時間の長さから、被
測定物24の走査方向寸法を測定するものである。
For example, as shown in FIG. 1, a laser beam 12 is oscillated from a laser light source 10 toward a fixed mirror 14, and the laser beam 12 reflected by the fixed mirror 14 is converted into a scanning beam 17 by a rotating mirror 16. The scanning beam 17 is converted into a parallel scanning light beam 20 by a collimator lens 18, and the object to be measured 24 placed between the collimator lens 18 and the condensing lens 22 is scanned by the parallel scanning light beam 20. Then, the dimension of the object to be measured 24 in the scanning direction is measured from the length of time of the dark or bright portion generated by the object to be measured 24.

即ち、平行走査光線ビーム20の明暗は、集光レンズ2
2の焦点位置にある受光素子26の出力電圧の変化とな
って検出され、該受光素子26からの信号は−プリアン
プ28に入力され、ここで増幅された後、セグメント選
択回路30に送られる。このセグメント選択回路30は
、被測定物24によシ、前記平行走食光線ビーム20が
迩られて生じる暗部又は明部のうちから、測定対象とな
る暗部又は明部(以下測定セグメントと称する)を°選
択するために、受光素子26の出力を時分割して、被測
定物24の測定セグメントが走査されている時間tの間
だけゲート回路32を開くための電圧v’1発生して、
ゲート回路32に出力するようにされている。このゲー
ト回路32には、クロックパルス’Mk器34からクロ
ックパルスCPが入力されているので、ゲート回路32
は、被測定物24の測定セグメントの走査方向寸法に対
応した時間tに対応するクロックパルスPを計数回路3
6に入力する。計数回路36は、このクロックパルスP
を計数して、デジタル表示器38に計数信号を出力し、
デジタル表示器38は被測定物24の測定セグメントの
走査方向寸法をデジタル表示することになる。
That is, the brightness and darkness of the parallel scanning light beam 20 is determined by the condenser lens 2.
The signal from the light receiving element 26 is inputted to the -preamplifier 28, where it is amplified and then sent to the segment selection circuit 30. This segment selection circuit 30 selects a dark area or a bright area to be measured (hereinafter referred to as a measurement segment) from among the dark areas or bright areas generated when the parallel eclipsing light beam 20 passes through the object to be measured 24. To select °, the output of the light receiving element 26 is time-divided to generate a voltage v'1 for opening the gate circuit 32 only during the time t during which the measurement segment of the object 24 is being scanned.
The signal is output to a gate circuit 32. Since the clock pulse CP is inputted to this gate circuit 32 from the clock pulse 'Mk device 34, the gate circuit 32
is the clock pulse P corresponding to the time t corresponding to the dimension in the scanning direction of the measurement segment of the object to be measured 24 by the counting circuit 3.
Enter 6. The counting circuit 36 receives this clock pulse P
count and output a count signal to the digital display 38,
The digital display 38 will digitally display the dimension of the measurement segment of the object 24 in the scanning direction.

一方、前記回転ミラー16は、前記クロックパルス発振
器34出力と同期して正弦波を発生する同期正弦波発振
器40及びパワーアンプ42の出力により同期駆動され
ている同期モータ44によシ、前記クロックパルス発振
器34出力のクロックパルスCPと同期して回転され、
測定精度を維持するようにされている。
On the other hand, the rotating mirror 16 is driven by a synchronous motor 44 which is synchronously driven by the output of a power amplifier 42 and a synchronous sine wave oscillator 40 that generates a sine wave in synchronization with the output of the clock pulse oscillator 34. Rotated in synchronization with the clock pulse CP of the oscillator 34 output,
Measurement accuracy is maintained.

このような高速度走査型レーザ測長機は、移動する物体
、高温物体の長さ、厚み等全非接触で高精度に測定でき
るので広く利用されつつある。
Such high-speed scanning laser length measuring machines are becoming widely used because they can measure the length, thickness, etc. of moving objects and high-temperature objects with high precision in a completely non-contact manner.

このような高速度走査型レーザ測長様においては、測定
の都度、被測定物24を走査領域の同一箇所に配設する
ことが精度上好ましく、又、長大物においては、被測定
物24が走査領域から飛び出さないように配置する必要
がある。
In such high-speed scanning laser length measurement, it is preferable for accuracy to place the object 24 at the same location in the scanning area each time the measurement is performed. It is necessary to arrange it so that it does not protrude from the scanning area.

しかしながら、通常は、前記レーザ光源10として、ヘ
リウム−ネオンレーザが用いられているので、平行走査
光線ビーム20が難可視性光線となり、平行走査光線ビ
ーム20の走査範囲内の所定位置に被測定物24を配置
したシ1.或いは、配置された被測定物24が走査範囲
内の最適位置にあるかどうかを確認するのが、極めて困
離であった。従って従来は、前出第1図に破線で示す如
く。
However, since a helium-neon laser is normally used as the laser light source 10, the parallel scanning light beam 20 becomes a barely visible light beam, and the object to be measured is placed at a predetermined position within the scanning range of the parallel scanning light beam 20. 24 placed 1. Alternatively, it is extremely difficult to confirm whether the placed object 24 to be measured is at the optimal position within the scanning range. Therefore, the conventional method is as shown by the broken line in FIG. 1 mentioned above.

平行走査光線ビーム20の通過光路中の、被測定物24
と集光レンズ22の間に、白紙46を挿入し、該白紙4
6上の平行走査光線ビーム20の位置から、被測定物2
4の位置が適切であるかどうかを判断するようにしてい
た。しかしながら、このような白紙46を使用する方法
では一位置確認に一手間がかかる。又、被測定物24の
位置を確認するために2白紙46を平行走査光線ビーム
20の通過光路中に挿入している時には、被測定物24
の寸法を同時に測定することが不可能である等の問題点
を有していた。
The object to be measured 24 in the optical path of the parallel scanning light beam 20
Insert a blank sheet of paper 46 between the condensing lens 22 and the blank sheet 4.
From the position of the parallel scanning light beam 20 on 6, the object to be measured 2
I was trying to judge whether position 4 was appropriate. However, this method of using blank paper 46 takes time and effort to confirm one position. Also, when inserting two blank sheets of paper 46 into the optical path of the parallel scanning light beam 20 to confirm the position of the object to be measured 24, the object to be measured 24
It has had problems such as the impossibility of measuring the dimensions of both at the same time.

一方、平行走査光線ビーム20の走査範囲内における、
被測定物24の測定セグメントの中心位置を表示するア
ナログのモニタメータを設けたシ。
On the other hand, within the scanning range of the parallel scanning light beam 20,
An analog monitor meter is provided to display the center position of the measurement segment of the object to be measured 24.

或いは、前記平行走査光線ビーム20の走査範囲に対応
して複数の発光素子を配列し、単一走査時間内の受光素
子26の出力を、前記発光素子数に応じて時分割し、走
査範囲に対する被測定物24の位置に応じて前記発光素
子を発光させるようにしたシすることも考えられるが、
いずれにしても、回路構成が複雑と彦り、生産コストが
上昇してしまうという問題点を有していた。
Alternatively, a plurality of light emitting elements are arranged corresponding to the scanning range of the parallel scanning light beam 20, and the output of the light receiving element 26 within a single scanning time is time-divided according to the number of light emitting elements, and It is also conceivable that the light emitting element emits light depending on the position of the object to be measured 24;
In any case, the problem is that the circuit configuration is complicated and the production cost increases.

本発明は、前at従来の欠点を解消するべくなされたも
ので、回路構成1に複雑化したり、生産コストヲ上昇し
たりすることなく、平行走査光線ビームの走査範囲に対
する被測定物の位置合−容易に且つ正確に知ることがで
き、従って、測定を迅速に行うことができる光学式測定
装置tTh提供することを目的とする。
The present invention has been made in order to eliminate the drawbacks of the prior art, and allows for alignment of the object to be measured with respect to the scanning range of the parallel scanning light beam without complicating the circuit configuration 1 or increasing production costs. It is an object of the present invention to provide an optical measuring device tTh that can be easily and accurately determined, and therefore capable of performing measurements quickly.

本発明は、平行走査光線ビーム発生装置と受光素子との
間に配置した被測定物により一平行走査光線ビームが遮
ぎられて生じる暗部又は明部の長さから被測定物の寸法
を測定するようにし次光学式測定装電において、前記受
光素子が収納された受光部ボディに、前6C平行走査光
線ビームの少くとも一部を受光して、その走査範囲に対
する被測定物の位置を表示する受光板金配設することに
よυ、前目ピ目的′f:達成したものである。
The present invention measures the dimensions of a workpiece from the length of a dark or bright part that is generated when a parallel scanning light beam is blocked by a workpiece placed between a parallel scanning light beam generator and a light receiving element. In the optical measuring device, at least a part of the front 6C parallel scanning light beam is received by the light receiving body in which the light receiving element is housed, and the position of the object to be measured with respect to the scanning range is displayed. By arranging the light-receiving plate, the previous objective 'f was achieved.

又、前記受光板を一前記受光部ボディ正面の、前記平行
走査光線ビームの通過光路に挿入可能な位置に配設して
、本発明が極めて安価に実現できるようにしたものであ
る。
Further, the light receiving plate is disposed in front of the light receiving unit body at a position where it can be inserted into the optical path through which the parallel scanning light beam passes, thereby making it possible to realize the present invention at an extremely low cost.

或いは、前記受光板を、前記平行走査光線ビームの通過
光路に挿入されたハーフミラ−による反射光を受光する
ものとして、被測定物の寸法を同時に測定することがで
きるようにしたものである。
Alternatively, the light receiving plate is configured to receive reflected light from a half mirror inserted in the optical path of the parallel scanning light beam, so that dimensions of the object to be measured can be measured simultaneously.

更に、削口じ受光板を、受光部ボディ側面の、前記平行
走査光線ビームの走査範囲と直接対応する位置に配設し
て、走査範囲に対する被測定物の位置を極めて簡単に知
ることができるようにしたものである。
Furthermore, by arranging the cutter-shaped light receiving plate on the side surface of the light receiving body at a position directly corresponding to the scanning range of the parallel scanning light beam, the position of the object to be measured with respect to the scanning range can be known very easily. This is how it was done.

又、前dじ受光板に、前記平行走査光線ビームの走査範
囲に対応する目盛を付して、走査範囲に対する被測定物
の位置を、簡単に、且つ、定量的に知ることができるよ
うにしたものである。
Furthermore, a scale corresponding to the scanning range of the parallel scanning light beam is attached to the front d light receiving plate so that the position of the object to be measured with respect to the scanning range can be easily and quantitatively determined. This is what I did.

以下図面を参照して1本発明の実施例を詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本発明の第1実施例は、第2図及び第3図に示す如く1
例えば、前記従来例と同様の1回転ミラー16.コリメ
ータレンズ18等が収納された発光部ボディ52と、集
光レンズ22.受光素子26等が収納された受光部ボデ
ィ54と全含み一前記発光部ボディ52と受光部ボディ
54との間に配置した被測定物24により平行走査光線
ビーム20が遮ぎられて生じる暗部の時間の長さから被
測定物24の上下方向寸法全測定するようにした光学式
測定装置50において一前記受光部ボディ54正面の受
光窓54a下部に、前記平行走置光線ビーム20の通過
光路に挿入可能な、平行走査光線ビーム20を直接受光
して、その走査範囲に対する被測定物24の位置を表示
するための。
The first embodiment of the present invention is as shown in FIGS. 2 and 3.
For example, a one-rotation mirror 16 similar to the conventional example. A light emitting unit body 52 in which a collimator lens 18 and the like are housed, a condenser lens 22. A dark area generated when the parallel scanning light beam 20 is blocked by the object to be measured 24 placed between the light emitting body 52 and the light receiving body 54 is In the optical measuring device 50, which measures all vertical dimensions of the object to be measured 24 due to the length of time, a light receiving window 54a on the front side of the light receiving body 54 is placed at the lower part of the light receiving window 54a on the optical path of the parallel traveling light beam 20. For directly receiving the insertable parallel scanning light beam 20 and for indicating the position of the object 24 relative to its scanning range.

走査範囲に対応する目盛が付された受光板56全。A light receiving plate 56 is provided with a scale corresponding to the scanning range.

その下端部に設けられたビン58七中心として回動自在
に配設したものである。他の点については。
A bin 58 provided at its lower end is rotatably disposed about the center. Regarding other points.

前記従来例と同様であるので説明は省略する。Since this is the same as the conventional example, the explanation will be omitted.

本実施例においては、まず、平行走査光線ビーム200
所定位置に被測定物24が配置されたか否かを確認する
際には、第4図に示す如く、受光板56′f:立てて一
該受光板56が受光窓54a’iふさぐような状態とす
る。すると、被測定物24を通過した平行走査光線ビー
ム20が1例えば100回/秒の走査速度で受光板56
に当って。
In this embodiment, first, the parallel scanning light beam 200
When checking whether the object to be measured 24 is placed at a predetermined position, as shown in FIG. shall be. Then, the parallel scanning light beam 20 that has passed through the object to be measured 24 is scanned at the light receiving plate 56 at a scanning speed of, for example, 100 times/second.
Hit me.

該受光板56上に平行走査光線ビーム20の静止軌跡2
0aが表われる。従って、この静止軌跡20aを参考に
位置を確認することかできる。
A stationary trajectory 2 of the parallel scanning light beam 20 is formed on the light receiving plate 56.
0a appears. Therefore, the position can be confirmed with reference to this stationary locus 20a.

一方、測定に際しては、第5図に示す如く、前らCピン
58全中心として受光板52を下方に回動し、受光窓5
4aが開かれた状態とする。すると−受光窓54a’z
通過した平行走査光線ビーム20が受光素子26に入射
して、従来例と同様にして測定が行われる。
On the other hand, during measurement, as shown in FIG.
4a is in an open state. Then - light receiving window 54a'z
The parallel scanning light beam 20 that has passed is incident on the light receiving element 26, and measurement is performed in the same manner as in the conventional example.

本実施例においては、受光板56を受光部ボディ54の
正面に配設するだけでよく、極めて構成が簡単である。
In this embodiment, the light receiving plate 56 only needs to be disposed in front of the light receiving body 54, and the configuration is extremely simple.

次に2本発明の第2実施例を詳細に説明する。Next, a second embodiment of the present invention will be described in detail.

本実施例は、第6図及び第7図に示す如く一前把第1実
施例と同様の、発光部ボディ52及び受先部ボディ54
を含む光学式測定装置50において、前記受光部ボディ
54内部の平行走査光線ビーム20の通過光路に挿入さ
れた。平行走査光線ビーム20の一部を受光部ボディ5
4の正面に向けて反射するための、保護ガラスを兼ねた
ハーフミラ−60と、前dC受光部ボディ54正面の受
光窓54aの横に、該受光窓54aに沿って配置された
。前記ハーフミラ−60により反射された平行走査光線
ビーム20の一部ケ受光して、その走査範囲に対する一
II18測定物24の位1Nを表示するための、走査範
囲に対応する目盛が付された受光用スフガラス62と′
(ll−設けたものである。
As shown in FIGS. 6 and 7, this embodiment has a light emitting part body 52 and a receiving part body 54 which are similar to those of the first embodiment.
In the optical measuring device 50 including the light receiving unit body 54 , the parallel scanning light beam 20 is inserted into the optical path of the parallel scanning light beam 20 . A part of the parallel scanning light beam 20 is transferred to the light receiving body 5.
A half mirror 60, which also serves as a protective glass, is placed next to the light receiving window 54a on the front of the front dC light receiving body 54 and along the light receiving window 54a. A light-receiving device having a scale corresponding to the scanning range for receiving a part of the parallel scanning light beam 20 reflected by the half mirror 60 and displaying the digit 1N of the measuring object 24 for the scanning range. 62 and '
(ll-provided.

本実ti&例においては一半行装置光線ビーム2゜の一
部がハーフミラ−60によって反射され、受光窓54a
の横に配置された受te用すりガラス62に投影される
ので一被測定物24の位置に’J−易に知ることができ
る。しかも、被測定物24の寸法全同時に測定すること
が可能である。
In this example, a part of the light beam 2° of the one-half line device is reflected by the half mirror 60, and the light receiving window 54a
The position of the object to be measured 24 can be easily determined because it is projected onto the receiving frosted glass 62 placed next to the object to be measured. Furthermore, all dimensions of the object to be measured 24 can be measured simultaneously.

本実施例においては、ハーフミラ−60が、保護ガラス
を兼ねるようにしているので、構成が比較的単純である
。勿論、保護ガラスとは別体のハーフミラ−全付加する
ことも可能である。
In this embodiment, the half mirror 60 also serves as a protective glass, so the configuration is relatively simple. Of course, it is also possible to add a complete half mirror separate from the protective glass.

次に、本発明の第3実施例を詳細に説明する。Next, a third embodiment of the present invention will be described in detail.

本実施例は、第8図及び第9図に示す如く、前gt第1
実施例と同様の、発光部ボディ52及び受光部ボディ5
4?含む光学式測定装置50において、前記受光部ボデ
ィ54内部の、平行走査光線ビーム200通過光路に挿
入された、平行走査光線ビーム20の一部を受光部ボデ
ィ54の側面に向けて反射するための、保護ガラスを兼
ねたハーフミラ−64と、前dα受光部ボディ54側面
の。
In this embodiment, as shown in FIGS. 8 and 9, the first GT
Light emitting body 52 and light receiving body 5 similar to the embodiment
4? In the optical measuring device 50 including the light receiving unit body 54, a part of the parallel scanning light beam 20 inserted into the optical path passing through the parallel scanning light beam 200 inside the light receiving unit body 54 is reflected toward the side surface of the light receiving unit body 54. , the half mirror 64 which also serves as a protective glass, and the side surface of the front dα light receiving body 54.

平行走査光線ビーム20の走査範囲と直接対応する位置
に配置された、前記ハーフミラ−64により反射された
平行走査光線ビーム20の一部?受光して、その走査範
囲に対する被測定物24の位置を表示するための、走査
範囲に対応する目盛が付された受光用すりガラス66と
を設けたものである。
A portion of the parallel scanning light beam 20 reflected by the half mirror 64, which is located at a position directly corresponding to the scanning range of the parallel scanning light beam 20? A light-receiving ground glass 66 having a scale corresponding to the scanning range is provided for receiving light and displaying the position of the object to be measured 24 with respect to the scanning range.

本実施例においては、受光用すQガラス66が。In this embodiment, Q glass 66 is used for light reception.

受光部ボディ54側面の、平行走査光線ビーム20の走
査範囲と直接対応する位置に配設されているので、被測
定物24の位置確認作業が、極めて容易である。
Since it is disposed on the side surface of the light receiving unit body 54 at a position directly corresponding to the scanning range of the parallel scanning light beam 20, it is extremely easy to confirm the position of the object to be measured 24.

前6G実施例においては、いずれも、受光板56−或い
は一受光用すシカラス62.66に、目盛が付されてい
たので、平行走査光線ビーム20の走査範囲内における
被測定物24の位置上、極めて簡単に、且つ1足量的に
知ることができる。なお。
In the previous 6G embodiments, since the light receiving plate 56 or the one light receiving cycarus 62,66 was marked with a scale, the position of the object 24 within the scanning range of the parallel scanning light beam 20 , can be known very easily and in one step. In addition.

受光板56、或いは、受光用すシカラス6166におけ
る目盛を省略して、更に安価に構成ツーることも可能で
ある。
It is also possible to omit the scale on the light-receiving plate 56 or the light-receiving cycaras 6166 to achieve a more inexpensive configuration.

以上説明した通り、本発明によれば、平行走査光線ビー
ムが難可視性光線からなる場合においても1回路構成を
複雑化したり一或いは、生埋コストを大幅に上昇したり
することなく一平行走査光線ビームの走査範囲1に対す
る被測定物の位置を、容易に且つ迅速に知ることができ
る。従って、被測定物が走査範囲外に飛び出すことヲ芥
易に阻止できる。又、比較測定に際して、被測定物走査
範囲の略中央位置に設定することが容易である等の優れ
た効果を有する。
As explained above, according to the present invention, even when the parallel scanning light beam consists of hardly visible light beams, one parallel scanning can be performed without complicating one circuit configuration or significantly increasing the buried cost. The position of the object to be measured relative to the scanning range 1 of the light beam can be easily and quickly determined. Therefore, it is possible to easily prevent the object to be measured from jumping out of the scanning range. Further, when performing comparative measurements, it has excellent effects such as being able to easily set the position approximately at the center of the scanning range of the object to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光学式測定装置の一例の構成を示す、
一部ブロック線図を含む平面図、第2図は1本発明に係
る光学式測定装置の第1実施例の構成を示す、一部所面
図を含む側面図、第3図は。 同じく、受光部ボディの正面図、第4図は、同じく、位
置確認状態における受光板の位置を示す。 受光部ボディ要部の正面図、第5図は、同じく、測定状
態における受光板の位置を示す、受光部ボディ要部の正
th図、第6図は、本発明に係る光学式測定装置の第2
実施例の栴成會示す、一部断面図葡含む平面図、第7図
は、同じく、受光部ボディの正面図、第8図は、本発明
に係る光学式測定装置の第3実施例のsM、を示す側面
図、第9図は。 同じく、受光部ボディを示す平断面図である。 lO・・・レーザ光源、14・・・固定ミラー、16・
・・回転ミラー、18・・・コリメータレンズ、20・
・・平行走査光線ビーム、22・・・集光レンズ、24
・・・被測定物、26・・・受光素子、50・・・光学
式測定装置。 52・・・発光部ボディ、54・・・受光部ボディ、5
4a・・・受光窓、56・・・畳光板、58・・・ビン
。 60.64・・・ハーフミラ−,62−66・・・受光
用すシガラス。 代理人  高 矢   論 (ほか1名)
FIG. 1 shows the configuration of an example of a conventional optical measuring device.
2 is a plan view partially including a block diagram, FIG. 2 is a side view partially including a top view, and FIG. 3 is a side view showing the configuration of the first embodiment of the optical measuring device according to the present invention. Similarly, FIG. 4, a front view of the light receiving unit body, similarly shows the position of the light receiving plate in the position confirmation state. FIG. 5 is a front view of the main part of the light receiving part body, and FIG. Second
FIG. 7 is a plan view including a partial sectional view showing the construction of the embodiment, and FIG. 7 is a front view of the light-receiving unit body. FIG. FIG. 9 is a side view showing the sM. Similarly, it is a plane sectional view showing a light receiving part body. lO...Laser light source, 14...Fixed mirror, 16.
...Rotating mirror, 18...Collimator lens, 20.
... Parallel scanning light beam, 22 ... Condensing lens, 24
. . . Object to be measured, 26 . . . Light receiving element, 50 . . . Optical measuring device. 52... Light emitting part body, 54... Light receiving part body, 5
4a...Light receiving window, 56...Tatami light plate, 58...Bin. 60.64...half mirror, 62-66...glass for light reception. Agent Takaya Ron (and 1 other person)

Claims (5)

【特許請求の範囲】[Claims] (1)  平行走査光線ビーム発生装置と受光素子との
間に配置した被測定物により、平行走査光線ビームが遮
ぎられて生じる暗部又は明部の長さから被測定物の寸法
を測定するようにした光学式測定装置において、前記受
光素子が収納された受光部ボディに一前配平行走査光線
ビームの少くとも一部を受光して、その走査範囲に対す
る被測定物の位置を表示する受光板を配設したことを特
徴とする光学式測定装置。
(1) Measure the dimensions of the object placed between the parallel scanning light beam generator and the light receiving element from the length of the dark or bright area that occurs when the parallel scanning light beam is blocked by the object placed between the parallel scanning light beam generator and the light receiving element. In the optical measuring device according to the present invention, the light receiving body in which the light receiving element is housed includes a light receiving plate that receives at least a part of the parallel scanning light beam and displays the position of the object to be measured with respect to the scanning range. An optical measuring device characterized by being equipped with.
(2)  前6じ受光板が、前記受光部ボディ正面の。 前記平行走査光線ビームの通過光路に挿入可能な位置に
配設されている特許請求の範囲第1項に81載の光学式
測定装置。
(2) The front 6th light receiving plate is on the front side of the light receiving unit body. 81. The optical measuring device according to claim 1, wherein the optical measuring device is disposed at a position where it can be inserted into the optical path through which the parallel scanning light beam passes.
(3)  前@C受光板が、前記平行走査光線ビームの
通過光路に挿入されたハーフミラ−による反射光を受光
するようにされている特許請求の範囲第1項に記載の光
学式測定装置。
(3) The optical measuring device according to claim 1, wherein the front @C light receiving plate receives reflected light from a half mirror inserted in the optical path through which the parallel scanning light beam passes.
(4)  前記受光板が、受光部ボディ側面の、前記平
行走査光線ビームの走査範囲と直接対応する位置に配設
されている特許請求の範囲第3項にBd載の光学式測定
装置。
(4) The optical measuring device according to claim 3, wherein the light receiving plate is disposed on a side surface of the light receiving unit body at a position directly corresponding to the scanning range of the parallel scanning light beam.
(5)  前記受光板に、前Bじ千行走青光線ビームの
走査範囲に対応する目盛が付されている特許請求の範囲
第1項に6C載の光学式測定装置。
(5) The optical measuring device as set forth in claim 1, wherein the light receiving plate is provided with a scale corresponding to the scanning range of the front B-zillion blue light beam.
JP22357982A 1982-12-20 1982-12-20 Optical measuring device Granted JPS59112213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22357982A JPS59112213A (en) 1982-12-20 1982-12-20 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22357982A JPS59112213A (en) 1982-12-20 1982-12-20 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS59112213A true JPS59112213A (en) 1984-06-28
JPS6341484B2 JPS6341484B2 (en) 1988-08-17

Family

ID=16800372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22357982A Granted JPS59112213A (en) 1982-12-20 1982-12-20 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS59112213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482831B2 (en) 2008-03-14 2013-07-09 Fuji Xerox Co., Ltd. Optical scanning device and image forming apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512231B (en) 2017-10-10 2024-03-15 恩熙思德国有限公司 Relief precursors with low degree of cup-shaped extrusion and grooving
DK3721293T3 (en) 2017-12-08 2023-07-10 Flint Group Germany Gmbh PROCEDURE FOR MARKING A RELIEF PROCESSOR FOR PRODUCING A RELIEF STRUCTURE
NL2020109B1 (en) 2017-12-18 2019-06-25 Xeikon Prepress Nv Method for fixing and treating a flexible plate on a drum, and flexible plate for use therein
JP7500432B2 (en) 2018-04-26 2024-06-17 エクシス プリプレス エヌ.ブイ. Apparatus and method for processing a relief plate master - Patent application
NL2027003B1 (en) 2020-11-27 2022-07-04 Flint Group Germany Gmbh Photosensitive composition
NL2027002B1 (en) 2020-11-27 2022-07-04 Flint Group Germany Gmbh Photosensitive composition
NL2028207B1 (en) 2021-05-12 2022-11-30 Flint Group Germany Gmbh A relief precursor with vegetable oils as plasticizers suitable for printing plates
NL2028208B1 (en) 2021-05-12 2022-11-30 Flint Group Germany Gmbh Flexographic printing element precursor with high melt flow index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482831B2 (en) 2008-03-14 2013-07-09 Fuji Xerox Co., Ltd. Optical scanning device and image forming apparatus

Also Published As

Publication number Publication date
JPS6341484B2 (en) 1988-08-17

Similar Documents

Publication Publication Date Title
JPS628124B2 (en)
US6137569A (en) Survey instrument
US4130362A (en) Apparatus for determining steering positions of the front wheels of a vehicle
US4432648A (en) Multiple dimension laser gauge
US3870415A (en) Method and means for measuring the refractive properties of an optical system
GB2248109A (en) Non-contact measuring device
US4370058A (en) Digital focimeter and method
JPS59112213A (en) Optical measuring device
US5764367A (en) Method and apparatus for measuring a position of a web or sheet
US3744915A (en) Photoelectric length measuring apparatus
US4410269A (en) Apparatus and method for testing a rotating polygon mirror
US4611115A (en) Laser etch monitoring system
JPH10293029A (en) Surveying machine with machine height measurement function
US4837432A (en) Optical measuring apparatus which employs two synchronously rotating means to measure object
JPS5983007A (en) Optical measuring device
JPH0124251B2 (en)
JP2003021514A (en) Machine height measuring device for surveying machine and surveying machine using it and machine height measuring method for surveying machine
JP2674129B2 (en) Distance measuring device
JPS6230905A (en) Measuring device for between-gauge-mark distance deviation of test piece
JP3357935B2 (en) Distance measuring device
JPH08285594A (en) Laser emitting device
JPH0516488Y2 (en)
JPS61234306A (en) Optical measuring apparatus
JPH09189524A (en) Optical type dimension measuring device
JPH0829131A (en) Optical measuring apparatus