JPS5898943A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5898943A
JPS5898943A JP19784881A JP19784881A JPS5898943A JP S5898943 A JPS5898943 A JP S5898943A JP 19784881 A JP19784881 A JP 19784881A JP 19784881 A JP19784881 A JP 19784881A JP S5898943 A JPS5898943 A JP S5898943A
Authority
JP
Japan
Prior art keywords
silicon
film
groove
silicon dioxide
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19784881A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19784881A priority Critical patent/JPS5898943A/en
Publication of JPS5898943A publication Critical patent/JPS5898943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To remarkably reduce the pattern conversion difference from the space for isolating between elements and the size of the mask by containing the step of forming an element isolating groove vertical to a silicon crystal substrate. CONSTITUTION:A dioxidized silicon film 42 and a nitrided silicon film 43 are formed on a silicon substrate 41, and a photoresist 44 is formed thereon. With the resist 44 as an etching resistant mask a groove 45 is formed, impurity ions are implanted as a dioxidized silicon film 46 and a channel stopper 47 on the groove 45, a polycrystalline silicon 48 is then grown on the groove, and the groove is buried. Subsequently, with a nitrided silicon film 43' on the element region as an etching resistant mask the silicon 48 is etched and removed to the surface of the silicon substrate, and a dioxidized silicon film 49 is formed on the nitrided silicon film and the groove. A photoresist 50 which covers the entire element is removed to the boundary of the film 49. Subsequently, the film 49 is etched and removed to the surface of the substrate 41.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に複数の半導
体素子を集積形成した集積回路の系子関分離方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for separating system relationships in an integrated circuit in which a plurality of semiconductor elements are integrally formed.

従来、集積回路の素子間分離法にはPh接合分離や誘電
体分離などがあるが、いずれの方法でも分離に要する面
積が集積M友に大きくfk/411するので、分離に喪
する面積を小さくする試みが多くなされている。
Conventionally, methods for separating elements in integrated circuits include Ph junction separation and dielectric separation, but in either method, the area required for separation is fk/411, which is larger than that for integrated circuits, so it is necessary to reduce the area lost for separation. Many attempts have been made to do so.

第1図は従来の素子分離層の一例の断面図であるO シリコン基板11にチャンネルストッパ領域17を設け
、表面に薄い二酸化珪素8112、窒化珪素膜13を設
けた後、熱酸化して8108分離層18を選択形成する
。この方法で形成したsio、分離層18の端部は窒化
珪素膜13の端部を持上げ、鳥のくちばし状になって素
子領域へ侵入してくる。
FIG. 1 is a cross-sectional view of an example of a conventional element isolation layer. After a channel stopper region 17 is provided on a silicon substrate 11, and a thin silicon dioxide film 8112 and a silicon nitride film 13 are provided on the surface, thermal oxidation is performed to separate 8108 layers. Layer 18 is selectively formed. The end of the sio separation layer 18 formed by this method lifts the end of the silicon nitride film 13 and invades the element region in the shape of a bird's beak.

この侵入分だけ分離に要する面積が大きくなるので集積
密度を低下させるという欠点がおる。
This intrusion increases the area required for separation, which has the disadvantage of lowering the integration density.

第2図+a)〜(c)は従来の素子分離層の形成方法の
一例を説明する丸めの工程断面図である。
FIGS. 2A to 2C are rounded cross-sectional views illustrating an example of a conventional method for forming an element isolation layer.

まず、第2図((転)に示すように、シリコン基板21
0上に選択的に窒化珪素膜23を形成した後、ホトレジ
スト24を形成する。
First, as shown in FIG.
After selectively forming a silicon nitride film 23 on the silicon nitride film 23, a photoresist 24 is formed.

次に、第2図(b)に示すように、ホトレジスト24を
耐エツチングマスクとし、反応性スパッタエツチング等
を用いて窒化珪素膜23およびシリコン基板21をエツ
チングして、溝25を形成する。
Next, as shown in FIG. 2(b), using the photoresist 24 as an etching-resistant mask, the silicon nitride film 23 and the silicon substrate 21 are etched using reactive sputter etching or the like to form a groove 25.

次に1第2図(CJに示すように、素子領域を覆つ九鼠
化珪素膜23′を耐酸化マスクとして熱酸化を行ない、
溝部25および非素子領域に二酸化珪素J[28を形成
して素子分離を形成する。
Next, as shown in FIG. 2 (CJ), thermal oxidation is performed using the silicon nitride film 23' covering the element region as an oxidation-resistant mask.
Silicon dioxide J[28 is formed in the groove portion 25 and the non-element region to form element isolation.

しかしながら、この方法による素子分離は、溝部を熱酸
化膜により完全に埋めてしまうということから、素子分
離幅は必ずiスク寸法の倍にな夛、又溝幅に対して成長
する二酸化珪素膜の膜厚の制御性が難しいという欠点が
ある。例えは溝幅に対して薄く二酸化珪素膜を形成した
時、溝部に形成した二酸化珪素膜は完全に擲を埋めず牌
の中央部に二酸化珪素膜の溝が出来る。この二酸化珪素
膜の溝を残したtま、通常の製造方法でnチャンネルシ
リコンゲートMOB型トツンジスタを形成した場合、ポ
リシリコンゲートを形成する丸めにクエハー表面にポリ
シリコンを形成すると、二酸化珪素膜による溝部にポリ
シリコンが埋まってしまう。そして通常のポリシリコン
ゲート加工のエツチングでは、この溝部に埋まったポリ
シリコンを除去することは難しい。このようなポリシリ
コンが溝部に埋まりたままの状態では、#I#部を横切
って並行に走っているポリシリコン間でリークの起こる
原因となシやすい。一方、溝部に厚い二酸化珪素膜を形
成して、溝部を完全に二酸化珪素膜で埋めた場合、二酸
化珪素膜O体積膨張によシ溝部周囲のシリコン基板に応
力がかかり、この結果欠陥が生じ素子間のリーク電流が
増加する。このようなことから溝部に形成する二酸化珪
素膜は、溝幅に対して精度をもって形成される必要があ
るがこの#1幅の制御性は難しい。っまシ、溝幅はホト
レジス)Kよるパターニングや、次のエッチング工程罠
よ)ある程度のばらつきをもつからである。
However, since device isolation using this method completely fills the trench with a thermal oxide film, the device isolation width is always twice the i-sk dimension, and the silicon dioxide film that grows with respect to the trench width is The drawback is that it is difficult to control the film thickness. For example, when a silicon dioxide film is formed thinly relative to the groove width, the silicon dioxide film formed in the groove does not completely fill the tile, leaving a groove of silicon dioxide film in the center of the tile. If an n-channel silicon gate MOB type transistor is formed by a normal manufacturing method while leaving the trench in the silicon dioxide film, if polysilicon is formed on the surface of the wafer in the round shape to form a polysilicon gate, the silicon dioxide film will Polysilicon fills the groove. It is difficult to remove the polysilicon buried in this groove using normal etching for polysilicon gate processing. If such polysilicon remains buried in the trench, leakage may easily occur between polysilicon lines running in parallel across the #I# section. On the other hand, if a thick silicon dioxide film is formed in the groove and the groove is completely filled with the silicon dioxide film, stress is applied to the silicon substrate around the groove due to the volumetric expansion of the silicon dioxide film O, resulting in defects and device failure. The leakage current between the two increases. For this reason, the silicon dioxide film formed in the groove needs to be formed with precision with respect to the groove width, but it is difficult to control this #1 width. This is because the groove width varies to some extent (due to photoresist patterning and the next etching process).

さらに、溝部に二酸化珪素膜を完全に埋めた場合でも溝
の底部において形成される二酸化珪素膜の体積膨張の結
果、シリコン基板に応力を与えることは避けきれない。
Further, even when the trench is completely filled with the silicon dioxide film, stress is inevitably applied to the silicon substrate as a result of the volume expansion of the silicon dioxide film formed at the bottom of the trench.

そして特に溝の底部の角における応力は大きくなる。こ
のような応力によって生じた欠陥は、素子の信頼性にお
いて大きな問題となる。
In particular, the stress at the bottom corner of the groove becomes large. Defects caused by such stress pose a major problem in device reliability.

第3図(a)〜G)は従来の素子分離層の形成方法の他
の例を説明するための工程断拘図である。
FIGS. 3(a) to 3(G) are process diagrams for explaining another example of the conventional method for forming an element isolation layer.

まず、第3図<a+に示すように、(100)面のシリ
コン基板31上に熱酸化法によシニ緻化珪素展32管形
成し、さらにその上KCVD (Cheml ca I
Vapor Deposltion)法によりg化珪素
膜33を形成する。
First, as shown in FIG. 3<a+, a silicon densified silicon 32 tube is formed on a (100) plane silicon substrate 31 by a thermal oxidation method, and then KCVD (Cheml ca I
A silicon oxide film 33 is formed by a vapor deposition method.

次に、第3図(blに示すように、素子領域部をホトレ
ジスト34で覆った後、ホトレジスト34を耐エツチン
グマスクとして、窒化珪素g433および二酸化珪素膜
32をエツチング除去し素子分離領域を篇出させる。
Next, as shown in FIG. 3 (bl), after covering the element region with a photoresist 34, using the photoresist 34 as an etching-resistant mask, the silicon nitride G433 and the silicon dioxide film 32 are removed by etching to create an element isolation region. let

次に、第3図(aに示すように、ホトレジスト34を除
去した後、素子領域部を覆った二酸化珪素膜32および
窒化珪素膜を耐エツチングマスクとして水酸化カリウム
郷の異方性エッチャントで(100)面のシリコン基板
をエツチングしてV字型の溝を形成する。
Next, as shown in FIG. 3(a), after removing the photoresist 34, the silicon dioxide film 32 and silicon nitride film covering the device region are etched with an anisotropic etchant of potassium hydroxide as an etching-resistant mask. 100) to form a V-shaped groove in the silicon substrate.

次に、第3図(dJに示すように、窒化珪素膜34を耐
酸化マスクとして熱酸化を行ない、シリコン基板のv字
型露出表面に二酸化珪素膜36を形成する。
Next, as shown in FIG. 3 (dJ), thermal oxidation is performed using the silicon nitride film 34 as an oxidation-resistant mask to form a silicon dioxide film 36 on the V-shaped exposed surface of the silicon substrate.

次に、第3図(e)に示すように、CVD法によシウェ
ハー全面に多結晶シリコン38を成長させ、擲を埋める
Next, as shown in FIG. 3(e), polycrystalline silicon 38 is grown over the entire surface of the wafer by the CVD method to fill the holes.

次に、第3図(flに示すように、電化珪素1x33を
耐エツチングマスクとして多結晶シリコン38をシリコ
ン基板表面までエツチング除去する。
Next, as shown in FIG. 3 (fl), polycrystalline silicon 38 is etched away to the surface of the silicon substrate using electrified silicon 1x33 as an etching-resistant mask.

次に、第3図(至)に示すように、窒化珪素膜33を耐
酸化マスクとして無敵化法によ〕前記多結晶シリコン上
に二酸化珪素膜39を形成する。
Next, as shown in FIG. 3, a silicon dioxide film 39 is formed on the polycrystalline silicon by an invulnerability method using the silicon nitride film 33 as an oxidation-resistant mask.

しかしながら、この従来の素子分離方法は、■字型溝に
埋めたポリシリコン上に厚い酸化膜を形成する必要上か
ら電化珪素膜を耐酸化マスクとして熱酸化を行なってお
シ、このため二酸化珪素膜の素子領域へのしみ込みが大
きくなシ、このしみ込み分をマスク寸法に見込まねばな
らないという欠点を有している。これ拡前述したように
集積密度の向上に対して大きな問題となる。今従来例と
してV字型溝にポリシリコンを埋めたものを上げたが、
U字型溝を用いた同様な素子分離法においても−じ欠点
を有している。
However, in this conventional device isolation method, thermal oxidation is performed using the electrified silicon film as an oxidation-resistant mask because it is necessary to form a thick oxide film on the polysilicon buried in the ■-shaped trench. The disadvantage is that the film penetrates into the element region to a large extent, and this penetration must be accounted for in the mask dimensions. As described above, this poses a major problem in improving the integration density. As a conventional example, we have shown a V-shaped groove filled with polysilicon.
Similar device isolation methods using U-shaped grooves have the same drawbacks.

本発明は上記欠点を除去し、素子間分離用のスペースと
マスク寸法からのパターン変換差を非常に小さくしかつ
シリコン基板に応力を与えず平坦で信頼性の高い高集積
化に適した素子間分離層を形成できる半導体装置の製造
方法を提供するものである0 本発明の半導体装置の製造方法は、シリコン結晶基板表
面に二酸化珪素膜を形成し、その上に窒化珪素膜を形成
する工程と、前記窒化珪1g膜上に素子領域形状を有す
るホトレジストを形成する工程と、前記ホトレジストを
耐エツチングマスクとして前記二酸化珪素膜と窒化珪3
1c膜を選択除去しさらに前記シリコン結晶基板を除去
して溝を形成する工程と、前記窒化珪素膜を耐酸化マス
クとして前記溝部に二酸化珪素膜を形成する工程と、前
記窒化珪素膜を耐イオン注入マスクとして溝部にチャン
ネルストッパとして不純物をイオン注入する工程と、前
記窒化珪素膜上および溝部に多結晶シリコンを成長させ
前記溝部を埋める工程と、素子領域上にある前記窒化珪
素膜を耐エツチングマスクとして前記多結晶シリコンを
シリコン結晶基板表面下までエツチング除去する工程と
、前記窒化珪素膜上および溝部に二酸化珪素膜を形成し
て前記溝部を埋める工程と、ホトレジストにょル前記素
子領域全面を覆う工程と、前記ホトレジストを前記二酸
化珪素膜界面下まで除去する工程と、前記溝部に残留し
ているホトレジストおよび前記素子領域を覆っている窒
化珪素膜を耐エツチングマスクとして前記二酸化珪素膜
をシリコン基板表面までエツチング除去する工程とを含
んで構成される。
The present invention eliminates the above-mentioned drawbacks, makes the difference in pattern conversion from the space for isolation between elements and mask dimensions extremely small, and provides a flat and reliable inter-element structure suitable for high integration without stressing the silicon substrate. The method of manufacturing a semiconductor device of the present invention provides a method of manufacturing a semiconductor device in which a separation layer can be formed. , a step of forming a photoresist having a device region shape on the silicon nitride 1g film; and using the photoresist as an etching-resistant mask, the silicon dioxide film and the silicon nitride 3
a step of selectively removing the 1c film and further removing the silicon crystal substrate to form a groove; a step of forming a silicon dioxide film in the groove portion using the silicon nitride film as an oxidation-resistant mask; A step of implanting impurity ions as a channel stopper into the trench as an implantation mask, a step of growing polycrystalline silicon on the silicon nitride film and in the trench to fill the trench, and etching the silicon nitride film on the element region as an etching-resistant mask. a step of etching away the polycrystalline silicon to below the surface of the silicon crystal substrate; a step of forming a silicon dioxide film on the silicon nitride film and in the trench to fill the trench; and a step of covering the entire surface of the device region with photoresist. and a step of removing the photoresist to below the interface of the silicon dioxide film, and using the photoresist remaining in the groove and the silicon nitride film covering the element region as an etching-resistant mask, removing the silicon dioxide film to the surface of the silicon substrate. The method includes a step of removing by etching.

次に、本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

第4図((転)〜(j)は本発明の一実施例を説明する
ための1根断面図である。
FIG. 4 ((roll) to (j)) are 1-root cross-sectional views for explaining one embodiment of the present invention.

まず、第4図(a) K示すように、P型シリコン基板
41の表面に熱醒化法によシ二酸化珪素膜42を形成し
、その上に窒化珪素膜43を形成し、さらに前記窒化珪
素膜43上に素子領域形状を有するホトレジスト44を
形成する。
First, as shown in FIG. 4(a)K, a silicon dioxide film 42 is formed on the surface of a P-type silicon substrate 41 by a thermal heating method, a silicon nitride film 43 is formed thereon, and then the nitride film 42 is formed on the surface of a P-type silicon substrate 41. A photoresist 44 having a device region shape is formed on the silicon film 43.

次に、第4図(blに示すように、ホトレジスト44を
耐エツチングマスクとして、非素子領域部における窒化
珪素膜43、二酸化珪素膜42、シリコン基板41をエ
ツチングして、深さ1μm以上の深い溝45を形成する
。エツチング方法は、例えば電化珪素膜、二酸化珪素膜
をエツチングする時はCF、を含むガスを用い、シリコ
ン基板をエツチングする場合はCC1,Fを含むガスを
用いた反応性スパッタが適当である。
Next, as shown in FIG. 4 (bl), using the photoresist 44 as an etching-resistant mask, the silicon nitride film 43, silicon dioxide film 42, and silicon substrate 41 in the non-element region are etched to a depth of 1 μm or more. A groove 45 is formed.The etching method is, for example, when etching an electrified silicon film or silicon dioxide film, a gas containing CF is used, and when etching a silicon substrate, reactive sputtering using a gas containing CC1, F is used. is appropriate.

次に、第4図(C)に示すように、熱酸化法によシ溝4
5の表面に二酸化珪X膜46形成し、次に素子領域表面
を榎っている窒化珪素膜43′を耐イオン注入のマスク
として非素子領域である溝45の底部に例えばホウ累を
注入してチャンネルストッパ領域47を形成する。
Next, as shown in FIG. 4(C), grooves 4 are carved by thermal oxidation.
A silicon dioxide X film 46 is formed on the surface of the groove 45, and then, using the silicon nitride film 43' covering the surface of the element region as a mask for ion implantation resistance, for example, borium is implanted into the bottom of the groove 45, which is a non-element region. A channel stopper region 47 is formed.

次に、第4図(dlに示すように、CVD法により多結
晶シリコン48をウェハー全体に成長させ溝部を完全に
埋める。
Next, as shown in FIG. 4(dl), polycrystalline silicon 48 is grown over the entire wafer by the CVD method to completely fill the trenches.

次に、第4図(6)に示すように、窒化珪素1!143
’と二酸化珪素#[46を耐エツチングマスクとじて多
結晶シリコン48をシリコン基板表面下までエツチング
除去する。多結晶シリコンのエツチングはシリコン基板
の表面よ)1μm以内で止めるのが適当である。
Next, as shown in FIG. 4 (6), silicon nitride 1!143
' and silicon dioxide #[46] are used as an etching-resistant mask, and the polycrystalline silicon 48 is removed by etching to below the surface of the silicon substrate. It is appropriate to stop the etching of polycrystalline silicon within 1 μm (the surface of the silicon substrate).

次に、第4図(flに示すように、プラズマCVD法に
よ)二酸化珪素膜49をクエハー表面全体に成長させる
。仁の時の二酸化珪素膜の厚さは溝における二酸化珪素
膜の界面がシリコン基板の表面付近にくるように設定す
る。
Next, a silicon dioxide film 49 is grown on the entire surface of the wafer by plasma CVD as shown in FIG. 4 (fl). The thickness of the silicon dioxide film is set so that the interface of the silicon dioxide film in the groove is near the surface of the silicon substrate.

次に、第4図(1)に示すように、クエハー表面全体に
ホトレジスト50を形成する。
Next, as shown in FIG. 4(1), a photoresist 50 is formed on the entire surface of the wafer.

次に、第4図(h)に示すように、ホトレジスト5゜を
エツチングしてゆき、溝部の上にだけホトレジス)50
’を残す。ホトレジストのエツチング方法は、例えば敵
素を用いたプラズマエッチ又反応性スパッタエッチが適
当である。
Next, as shown in FIG. 4(h), 5° of photoresist is etched, and 50° of photoresist is etched only on the groove.
' leave. A suitable method for etching the photoresist is, for example, plasma etching using an enemy or reactive sputter etching.

次に、第4図(1)に示すように、ホトレジスト50′
および電化珪素膜43′を耐エツチングマスクとして素
子領域上にある二酸化珪素膜をシリコン基板表面までエ
ツチング除去する。
Next, as shown in FIG. 4(1), a photoresist 50'
Then, using the electrified silicon film 43' as an etching-resistant mask, the silicon dioxide film on the element region is removed by etching down to the surface of the silicon substrate.

次に、第4図N)に示すように、ホトレジスト5σ窒化
珪素$43’および二酸化珪素膜をそれぞれ除去し、素
子分離層を完成させる。
Next, as shown in FIG. 4N), the photoresist 5σ silicon nitride $43' and the silicon dioxide film are removed to complete the element isolation layer.

次に、本発明を適用した絶縁ゲート電界効果トランジス
タの製造方法について説明する。
Next, a method for manufacturing an insulated gate field effect transistor to which the present invention is applied will be described.

第5図(1)〜(C)は本発明を適用し九絶縁ゲート電
界効果トランジスタの製造方法を説明するための工程断
面図である。使用する半導体基板には第4図(j)に示
す素子分離層が既に形成されているものとする。
FIGS. 5(1) to 5(C) are process cross-sectional views for explaining a method of manufacturing nine insulated gate field effect transistors to which the present invention is applied. It is assumed that an element isolation layer shown in FIG. 4(j) has already been formed on the semiconductor substrate to be used.

まず、第5図((転)に示すように、熱酸化法によシゲ
ート酸化膜51を素子領域に形成し九彼、ポリシリコン
からなるゲート電極52を形成する。
First, as shown in FIG. 5, a gate oxide film 51 is formed in the element region by thermal oxidation, and then a gate electrode 52 made of polysilicon is formed.

次に、第5図(粉に示すように、ゲート電極52を耐イ
オン注入のマスクとして砒素または燐をイオン注入し、
ソース・ドレイン領域53.53’を形成する。
Next, as shown in FIG.
Source/drain regions 53 and 53' are formed.

次に、第5図(C)に示すように、熱酸化法によルゲー
ト電極の周〕に二酸化珪素jl154を形成し、さらに
CVD法によシ二酸化珪累膜55形成しこれに導通孔を
あけ、次にアルミニウムなどからなる導体配線56を形
成する。これにより本発明を適用した絶縁ゲート電界効
果トランジスタが得られる〇 上記本発明の適用例11nチヤンネル絶縁ゲート電界効
果トランジスタの場合であるが、本発明祉相補型電界効
果トランジスタおよびパイボー2トランジスタの素子分
離に適用できることはI!r5までもない。
Next, as shown in FIG. 5(C), silicon dioxide 154 is formed around the rug gate electrode by thermal oxidation, and a silicon dioxide deposit 55 is formed by CVD, and conductive holes are formed in this. Then, a conductor wiring 56 made of aluminum or the like is formed. As a result, an insulated gate field effect transistor to which the present invention is applied can be obtained. In the above application example 11n channel insulated gate field effect transistor of the present invention, element isolation of the complementary field effect transistor and the pibo two transistor of the present invention is obtained. What can be applied to I! Not even R5.

以上詳細に説明したように、本発明によれば、素子間分
離用のスペースを小さくしかつマスク寸法からのパター
ン変換差も非常に小さく抑えられさらにシリコン基板に
応用を与えず平坦で信頼性の高い高集積化に適した半導
体装置が容易に得られる0
As explained in detail above, according to the present invention, the space for isolation between elements can be made small, and the difference in pattern conversion from mask dimensions can also be kept very small. Semiconductor devices suitable for high integration can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1囚は従来の素子分離層の一例の断面図、第2図(a
)〜(C)1−i:従来の素子分離層の形成方法の一例
を説明するための工程断面図、第3図(a)〜蓼)は従
来の素子分離層の形成方法の他の例を説明するための工
程断面図、第4図((転)〜(J)は本発明の一実施例
を説明するための工程断面図、#!5図((転)〜(C
Jは本発明を適用した絶縁ゲート電界効果トランジスタ
の製造方法を説明する丸めの工程断面図である。 11.21.31.41・・・・・・シリコン基板、1
2.32゜42・・・・・・二酸化珪素膜、23 、2
3’、 33 、43 、43’・・・・・・電化珪素
膜、24.34.44・・・・・・ホトレジスト、25
.35.45・・・・・・溝部、36.46・・・・・
・二酸化珪素膜、17.47・・・・・・チャンネルス
トッパ領域、18゜28・・・・・・S1偽分離層、3
8 、38’、 48 、48’・・・・・・多結晶シ
リコン、39.49.49’・・・・・・二酸化珪素膜
、50.50’・・・・・・ホトレジスト、51・・・
・・・ゲート酸化膜、52・・・・・・ゲート電極、5
3.53’・・・・・・ソース・ドレイン領域、54・
・・・・・二酸化珪素膜、55・・・・・・CVD法に
よる二酸化珪素膜、56・・・・・・導体配線。 第5図
The first figure is a cross-sectional view of an example of a conventional element isolation layer, and FIG.
) to (C) 1-i: Process cross-sectional views for explaining an example of a conventional method for forming an element isolation layer, Figures 3(a) to 3) show other examples of a conventional method for forming an element isolation layer. Figures 4 ((roll) to (J) are process cross-sectional views for explaining one embodiment of the present invention, and Figures #!5 ((roll) to (C)
J is a rounded process sectional view illustrating a method of manufacturing an insulated gate field effect transistor to which the present invention is applied. 11.21.31.41...Silicon substrate, 1
2.32゜42...Silicon dioxide film, 23, 2
3', 33, 43, 43'...Electrified silicon film, 24.34.44...Photoresist, 25
.. 35.45...Groove, 36.46...
・Silicon dioxide film, 17.47...Channel stopper region, 18°28...S1 pseudo separation layer, 3
8, 38', 48, 48'...Polycrystalline silicon, 39.49.49'...Silicon dioxide film, 50.50'...Photoresist, 51...・
... Gate oxide film, 52 ... Gate electrode, 5
3.53'...source/drain region, 54.
... Silicon dioxide film, 55 ... Silicon dioxide film by CVD method, 56 ... Conductor wiring. Figure 5

Claims (1)

【特許請求の範囲】[Claims] シリコン結晶基板表面に二酸化珪素膜を形成し、その上
に電化珪素膜を形成する工程と、前記電化珪Xg上に素
子領域形状を有するホトレジストを形成する工程と、前
記ホトレジストを耐エツチングマスクとして前記二酸化
珪素膜と電化珪素膜を選択除去しさらに前記シリコン結
晶基板を除去して陶を形成する工程と、前記電化珪素膜
を耐酸化マスクとして前記溝部に二酸化珪素膜を形成す
る工程と、前記電化珪素膜を耐イオン注入マスクとして
溝部にチャンネルストッパとして不純物をイオン注入す
る工程と、前記電化珪素膜上および溝部に多結晶シリコ
ンを成長させ前記溝部を埋める工程と、素子領域上にあ
る前記輩化珪素膜を耐エツチングマスクとして前記多結
晶シリコンをシリコン結晶基板表面下までエツチング除
去する工程と、前記輩化珪素膜上および溝部に二酸化珪
素膜を形成し前記溝部を埋める工程と、ホトレジストに
よシ素子全面を被う工程と、前記ホトレジストを前記二
酸化珪素膜界面下まで除去する工程と、前記溝部に残留
しているホトレジストおよび前記素子領域を被っている
電化珪素膜を耐エツチングマスクとして前記二酸化珪素
膜をシリコン基板表面までエツチング除去する工程とを
含むことを特徴とする半導体装置の製造方法。
a step of forming a silicon dioxide film on the surface of a silicon crystal substrate and forming an electrified silicon film thereon; a step of forming a photoresist having an element region shape on the electrified silicon Xg; a step of selectively removing the silicon dioxide film and the electrified silicon film and further removing the silicon crystal substrate to form a ceramic; a step of forming a silicon dioxide film in the groove portion using the electrified silicon film as an oxidation-resistant mask; a step of ion-implanting impurities into the groove as a channel stopper using a silicon film as an ion implantation-resistant mask; a step of growing polycrystalline silicon on the electrified silicon film and in the groove to fill the groove; A step of etching away the polycrystalline silicon to below the surface of the silicon crystal substrate using a silicon film as an etching-resistant mask, a step of forming a silicon dioxide film on the enhanced silicon film and in the groove to fill the trench, and a step of using photoresist to fill the groove. a step of covering the entire surface of the device; a step of removing the photoresist to below the interface with the silicon dioxide film; and a step of removing the photoresist remaining in the groove and the electrified silicon film covering the device region as an etching-resistant mask to remove the silicon dioxide. 1. A method for manufacturing a semiconductor device, comprising the step of etching a film down to the surface of a silicon substrate.
JP19784881A 1981-12-09 1981-12-09 Manufacture of semiconductor device Pending JPS5898943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19784881A JPS5898943A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19784881A JPS5898943A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5898943A true JPS5898943A (en) 1983-06-13

Family

ID=16381340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19784881A Pending JPS5898943A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5898943A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961045A (en) * 1982-09-29 1984-04-07 Fujitsu Ltd Manufacture of semiconductor device
JPS609138A (en) * 1983-02-25 1985-01-18 Fujitsu Ltd Manufacture of semiconductor device
JPS6113643A (en) * 1984-06-25 1986-01-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming voidless isolation structure and semiconductor device having same structure
US4835115A (en) * 1987-12-07 1989-05-30 Texas Instruments Incorporated Method for forming oxide-capped trench isolation
US4876217A (en) * 1988-03-24 1989-10-24 Motorola Inc. Method of forming semiconductor structure isolation regions
US5106777A (en) * 1989-09-27 1992-04-21 Texas Instruments Incorporated Trench isolation process with reduced topography
JP2001148418A (en) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp Semiconductor device
JP2014236014A (en) * 2013-05-30 2014-12-15 ローム株式会社 Semiconductor device, and method of manufacturing the same
US10622443B2 (en) 2013-05-30 2020-04-14 Rohm Co., Ltd. Semiconductor device with different material layers in element separation portion trench and method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961045A (en) * 1982-09-29 1984-04-07 Fujitsu Ltd Manufacture of semiconductor device
JPS609138A (en) * 1983-02-25 1985-01-18 Fujitsu Ltd Manufacture of semiconductor device
JPS6113643A (en) * 1984-06-25 1986-01-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming voidless isolation structure and semiconductor device having same structure
JPH0344417B2 (en) * 1984-06-25 1991-07-05 Intaanashonaru Bijinesu Mashiinzu Corp
US4835115A (en) * 1987-12-07 1989-05-30 Texas Instruments Incorporated Method for forming oxide-capped trench isolation
US4876217A (en) * 1988-03-24 1989-10-24 Motorola Inc. Method of forming semiconductor structure isolation regions
US5106777A (en) * 1989-09-27 1992-04-21 Texas Instruments Incorporated Trench isolation process with reduced topography
JP2001148418A (en) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp Semiconductor device
JP2014236014A (en) * 2013-05-30 2014-12-15 ローム株式会社 Semiconductor device, and method of manufacturing the same
US10622443B2 (en) 2013-05-30 2020-04-14 Rohm Co., Ltd. Semiconductor device with different material layers in element separation portion trench and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4502913A (en) Total dielectric isolation for integrated circuits
JPH0513566A (en) Manufacture of semiconductor device
JPH01276641A (en) Manufacture of semiconductor device
KR100270464B1 (en) Method of forming recessed oxide isolation
JPS5898943A (en) Manufacture of semiconductor device
JPS6355780B2 (en)
JPS60226136A (en) Complementary type metal insulated semiconductor device and manufacture of the same
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
US6261966B1 (en) Method for improving trench isolation
KR19990021366A (en) Device Separation Method of Semiconductor Device
JP2002184854A (en) Method for fabricating semiconductor device
JP2000031489A (en) Manufacturing semiconductor device
JPS5893252A (en) Semiconductor device and manufacture thereof
US6436831B1 (en) Methods of forming insulative plugs and oxide plug forming methods
KR100861791B1 (en) Method for forming the semiconductor device
JPS5919349A (en) Semiconductor device and manufacture thereof
JPS6025247A (en) Manufacture of semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
KR100269623B1 (en) A method of isolating semiconductor devices
KR940001123B1 (en) Method of separating semiconductor device
KR100373710B1 (en) manufacturing method of shallow trench isolation of semiconductor devices
JPH0230160A (en) Semiconductor device
JPS63122146A (en) Semiconductor device
JPS63257244A (en) Semiconductor device and manufacture thereof
JPH0358179B2 (en)