JPS5897340A - Apparatus for aligning position of ophthalmic machine - Google Patents

Apparatus for aligning position of ophthalmic machine

Info

Publication number
JPS5897340A
JPS5897340A JP56197546A JP19754681A JPS5897340A JP S5897340 A JPS5897340 A JP S5897340A JP 56197546 A JP56197546 A JP 56197546A JP 19754681 A JP19754681 A JP 19754681A JP S5897340 A JPS5897340 A JP S5897340A
Authority
JP
Japan
Prior art keywords
light
ophthalmological
receiving element
positioning device
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56197546A
Other languages
Japanese (ja)
Other versions
JPH0359689B2 (en
Inventor
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56197546A priority Critical patent/JPS5897340A/en
Publication of JPS5897340A publication Critical patent/JPS5897340A/en
Publication of JPH0359689B2 publication Critical patent/JPH0359689B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は眼科機器の位置合わせ装置特に被検眼と眼科機
器の作動距離調整及びアライメント調整を同時に為すこ
とのできる位置合わせ装置に関する。更に本発明は、調
整の自動化を指向した位置合わせ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positioning apparatus for ophthalmological equipment, and more particularly to a positioning apparatus capable of simultaneously adjusting the working distance and alignment of an eye to be examined and ophthalmological equipment. Furthermore, the present invention relates to a positioning device directed toward automation of adjustment.

今日、限底カメラ、レフラクトメータ(II、1で 折計)、角膜計等の眼科機器が眼科医、@鏡鳳用いられ
ているが、撮影若しくは計測に際し、被検眼と眼科機器
との光軸方向の調整(作動距離調整)及び光軸に直交す
る面内での調整(アライメント調整)が為されているこ
とが必要である。
Today, ophthalmologists use ophthalmological equipment such as bottom cameras, refractometers (II and 1), and keratometers. It is necessary to perform adjustment in the axial direction (working distance adjustment) and adjustment in a plane perpendicular to the optical axis (alignment adjustment).

従来、眼科機器の被検眼に対する位置合わせ、に関して
、虹彩反射を用いるものとして特公昭56−5533号
公報が知られているが、これはファインダーで見るだけ
で電気的な検出ではなく、自動化を指向するものではな
い。
Conventionally, Japanese Patent Publication No. 56-5533 is known for using iris reflection to align ophthalmological equipment with the subject's eye. It's not something you do.

また本件出願人の先願たる特願昭55−87081号明
細書には、同じく虹彩反射を用い九位置合わせ装置が記
載されているが、虹彩からの反射光量が少なく、角膜反
射のノイズをとりこむことがあシ、十分安定な信号を得
麹い。
Furthermore, in the specification of Japanese Patent Application No. 55-87081, which is an earlier application filed by the present applicant, a nine-position alignment device that also uses iris reflection is described, but the amount of light reflected from the iris is small and noise from corneal reflection is incorporated. As a matter of fact, a sufficiently stable signal can be obtained.

他方、虹彩反射ではなく角膜反射を用いるものとして、
米国特許第3864030号公報、 4I11昭55−
52730号公報が知られているが、前者は可動部があ
り、構造が複雑であり、後者はアライメント調整のみが
可能で、作動距離調整が併せてできないという問題点が
あった。
On the other hand, as one that uses corneal reflex rather than iris reflex,
U.S. Patent No. 3,864,030, 4I11, 1983-
No. 52730 is known, but the former has a movable part and has a complicated structure, and the latter has the problem that only alignment adjustment is possible and working distance adjustment is not possible at the same time.

自動的に為され得る位置合わせ装置を提供することを目
的とする。この目的を達成すべく本発明では、眼科機器
の光軸に対し斜方向に角膜反射光を検出する2つの受光
系を有する仁とを特徴とする。
It is an object of the present invention to provide an alignment device that can be automatically aligned. In order to achieve this object, the present invention is characterized by having two light receiving systems that detect corneal reflected light obliquely to the optical axis of the ophthalmological equipment.

以下、添附する図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail using the accompanying drawings.

第1図は本発明のjlil実施例の図である。光源又は
光源で照明される指Iilがら出た光は対物レンズ2で
眼科flAl光器Xと、平行な無限遠光束となり被検I
IEの角膜Eeを照射する。ここで角膜Heの凸面鏡作
用により角膜反射像1′(虚儂)が形成されるが、角膜
反射像1′は被検眼Eの絶対位置にかかわらず、角膜E
c に対し一定位置に形成される。角膜Eeからの反射
光は、あたかも角膜反射像1′から出射する如く出て、
光軸2に対し傾斜して設けられた2組の受光系に入る。
FIG. 1 is a diagram of a jlil embodiment of the invention. The light emitted from the light source or the finger Iil illuminated by the light source becomes a parallel infinite beam of light through the objective lens 2 and the ophthalmology flAl optical device X, and the subject I.
Irradiate the cornea Ee of IE. Here, a corneal reflected image 1' (imaginary) is formed due to the convex mirror action of the cornea He, but the corneal reflected image 1' is the corneal E regardless of the absolute position of the eye E.
It is formed at a constant position relative to c. The reflected light from the cornea Ee comes out as if from the corneal reflection image 1',
The light enters two sets of light receiving systems installed at an angle with respect to the optical axis 2.

受光系は各々レンズ3m、3bと分割受光素子4m、4
bで構成される。
The light receiving system consists of lenses 3m and 3b and split light receiving elements 4m and 4, respectively.
Consists of b.

分割受光素子4a、 4bは各々4分割受光素子が望ま
しいが、便宜上まず2分割受光素子として説明する。
Although each of the divided light-receiving elements 4a and 4b is preferably a four-divided light-receiving element, for convenience, the description will be made first as a two-divided light-receiving element.

分割受光素子4m、仙の分割される境界すなわち4a、
と4にの境界線若しくは4b、と4−の境界線は角膜反
射像1′とレンズ3a、 3bの瞳中心を結ぶ主光線上
にある。
Divided light-receiving element 4m, the dividing boundary of the center, that is, 4a,
The boundary line between and 4b, and 4- is on the chief ray connecting the corneal reflection image 1' and the pupil center of the lenses 3a and 3b.

ここで角膜反射像1′と分割受光素子4m、 4bとは
レンズ3a、 3bに対し光学的に共役である必要はな
い。
Here, the corneal reflection image 1' and the divided light receiving elements 4m and 4b do not need to be optically conjugate to the lenses 3a and 3b.

共役逐関係とすると、かえって光点が小さくなり、分割
された受光素子の各素子に占める光束の面積が小さく測
定に不都合となる。
If a conjugate-successive relationship is used, the light spot will become smaller, and the area of the light beam occupied by each element of the divided light-receiving element will be small, which will be inconvenient for measurement.

さて、被検眼が第1図の実線で示すような正規の位置に
あるときは、角膜反射光は第2図(4)のように分割受
光素子4m、 4bの各素子4al t 4k +4b
、、4b、に均等にかかるように入射し、各受光出力が
バランスされる。
Now, when the eye to be examined is in the normal position as shown by the solid line in Fig. 1, the corneal reflected light is divided into the divided light receiving elements 4m and 4b as shown in Fig. 2 (4).
, 4b, so that the received light outputs are balanced.

ここで第2図の)K示されるように被検眼が測定系光軸
2から平行にシフトしていると、すなわちアライメント
調整不備の場合には、角膜反射光の分割受光素子4m、
 4bへの入射光束は同方向にシフトする。すなわち、
素子4at t 4b1の出力に比べ素子4aa 、 
4btの出力が高くなる。この出力のアンバランス状態
より、アライメント調整不備が検出され、出力がバラン
スされるよう被検眼との相゛対位置が調整される。
Here, if the eye to be examined is shifted parallel to the optical axis 2 of the measurement system as shown in )K in FIG.
The light flux incident on 4b is shifted in the same direction. That is,
Compared to the output of element 4at t 4b1, element 4aa,
4bt output becomes high. Insufficient alignment adjustment is detected from this unbalanced state of the output, and the relative position with the eye to be examined is adjusted so that the output is balanced.

を九被検@Eが光軸2方向にシフトし破線で示す位置に
あるとすなわち作動距離調整が不備であると1a2図ゆ
で示されるように分割受光素子4ae 4bへの入射光
束は逆方向にシフトする0、すなわち、素子4&の出力
が素子4にの出力に比べ高く、素子4thの出力が素子
4hの出力に比べ低くなる0 この出力のアンバランス状態より作動距離調整不備が検
出され、出力がノ(ランスされるよう被検眼との光軸方
向の相対位置が調整される。
If the test object @E is shifted in the two directions of the optical axis and is at the position shown by the broken line, that is, the working distance adjustment is inadequate.As shown in Figures 1a and 2, the incident light flux to the split light receiving elements 4ae and 4b will be in the opposite direction. 0 to shift, that is, the output of element 4& is higher than the output of element 4, and the output of element 4th is lower than the output of element 4h. 0 From this output imbalance state, a working distance adjustment deficiency is detected, and the output The relative position with respect to the eye to be examined in the optical axis direction is adjusted so that the eye is oriented.

このように分割受光素子4m、 4bの各素子4自と4
−また4blと4btの出力が等しくなるよう調整され
ると、被検眼Eと対物レンズ2の相対位置が特定される
こととなるO 既述したように分割受光素子4m、 4bとして2分割
受光素子を用い九実施例を説明したが、この場合アライ
メント調整に関し紙面内方向のアライメントのみ可能で
紙面に垂直方向の7ライメ/トは為され得ないが、第3
図に示すような4分割受光素子を用いれば紙面内方向の
みならず紙面に垂直方向のアライメント“が可能となる
Oすなわち、紙面内方向のアライメント調整については
、(51Lt + Sag ) t (5at + 5
114 )l (5bs+ 5bs )−(5bt +
 5b4)が各々4asw 4ate 4bl g 4
b鵞に対応することとなる。
In this way, each of the divided light receiving elements 4m and 4b is
- Also, when the outputs of 4bl and 4bt are adjusted to be equal, the relative position between the eye E and the objective lens 2 can be determined. Nine embodiments have been described using the above, but in this case, regarding alignment adjustment, only alignment in the plane of the paper is possible, and alignment perpendicular to the plane of the paper cannot be performed.
By using a 4-split light-receiving element as shown in the figure, alignment not only in the in-plane direction but also in the direction perpendicular to the plane of the paper is possible.In other words, for alignment adjustment in the in-plane direction, (51Lt + Sag) t (5at + 5
114)l (5bs+5bs)-(5bt+
5b4) are each 4asw 4ate 4bl g 4
This corresponds to B.

、奇− (5bs + Sba )が比較されるべき要素となる
O例えば紙面に対し上側にシフトした場合(5al+5
am)の出力が(5ml+ 5a4)の出力に比べ高く
なり、同様K (5bt + 5bt)の出力が(Sb
s +5b4)の出力に比べ高くなる。
, odd - (5bs + Sba) becomes the element to be compared.
The output of am) is higher than the output of (5ml + 5a4), and similarly the output of K (5bt + 5bt) is higher than that of (Sb
s +5b4).

なお作動距離調整については、(sa’、 + sag
)*(5at+5aa) I  (5bt+ 5ba)
 e  (5bt+ 5ha)を比較すべき要素として
用いることとなる0第4図(4)(6)は、本発明の第
2の実施例を示すOここで第4図■は垂直断面、第4図
(6)は水平断面を示す。これは1Iil実施例と異な
り水平面内で斜方向に2つの検出系を設けるものである
O困 位置合わ岑指標としての光源6から出た光は、レンズ7
によド限科機器光軸2に対し斜めの無限遠光束とされ、
被検眼Eを照射する0角114Fjeの凸面鏡作用によ
り光源6の角膜反射像6′が形成され、角膜反射の主光
線8は第4図囚に示す子11に入射する。ここで主光線
8はレンズ10の光軸と一致し、受光素子11の中心位
置はレンズ10の光軸上にある。
Regarding the working distance adjustment, (sa', + sag
)*(5at+5aa) I (5bt+5ba)
e (5 bt + 5 ha) will be used as the element to be compared0 Figures 4 (4) and (6) show the second embodiment of the present invention. Figure (6) shows a horizontal cross section. This differs from the first embodiment in that two detection systems are provided obliquely within the horizontal plane.
It is assumed to be an infinite beam of light oblique to the optical axis 2 of the limited medical device,
A corneal reflection image 6' of the light source 6 is formed by the convex mirror action of the zero angle 114Fje irradiating the eye E to be examined, and the chief ray 8 of the corneal reflection is incident on the lens 11 shown in FIG. Here, the principal ray 8 coincides with the optical axis of the lens 10, and the center position of the light receiving element 11 is on the optical axis of the lens 10.

被検IIEへの照明が無限遠光束でされ、角膜反射主光
線が限科機器光軸2と平行な丸め、被検lIEの絶対位
置にかかわらず角膜反射像は角1IEeに対し一定位置
となる。
The illumination to the subject IIE is an infinite beam, the corneal reflection principal ray is rounded parallel to the optical axis 2 of the limited medical instrument, and the corneal reflection image is at a constant position with respect to the angle 1IEe regardless of the absolute position of the subject IIE. .

ここで既述したように受光素子として分割案りずれてい
ることが照射面積が大きくとれる点で望ましい。
As mentioned above, it is preferable that the light receiving elements are shifted from each other in terms of the division plan, since the irradiation area can be increased.

第4図@に示されるように、水平断面内で主光I/s8
m、 8b ti眼科@@12の対物レンズ90光軸2
から斜方向に設定され、主光線8m、8bK対応してレ
ンズ10m、 10b 、 4分割若しくは2分割の受
光素子11a、 llbが設けられる。
As shown in Figure 4 @, the main light I/s8 in the horizontal section
m, 8b ti ophthalmology@@12 objective lens 90 optical axis 2
Lenses 10m, 10b, and four-split or two-split light-receiving elements 11a, llb are provided corresponding to the principal rays 8m, 8bK.

ここでアライメント、作動距離調整がなされた状態にあ
ると、角膜反射像6′からの主光線81゜8bは受光素
子11a、11bの中心位置へと向かうように設定され
ている。いまアライメント調整が不良であると、例えば
第4図の)に示されるように水平面内で上側に被検眼が
ずれると角膜反 、射像6′からの主光線は受光素子1
1m、 llb K対して同方向に1すなわち共に下側
にずれる。
When the alignment and working distance are adjusted, the principal ray 81.8b from the corneal reflection image 6' is set to go toward the center of the light receiving elements 11a and 11b. If the alignment adjustment is incorrect, for example, if the subject's eye shifts upward in the horizontal plane as shown in Fig.
1m, llb 1 in the same direction with respect to K, that is, both shift downward.

また作動距離調整が不良であると、例えば第4図の)に
示されるように光軸方向、正規の位置より手前に被検眼
がずれると角膜反射66/からの主光線は互いに逆方向
に1すなわち受光素子11mに対しては上側に、受光素
子11bに対しては下側にずれる。
Furthermore, if the working distance adjustment is poor, for example, as shown in Figure 4), if the subject's eye is shifted toward the front of the normal position in the optical axis direction, the principal rays from the corneal reflection 66/ That is, it is shifted upward with respect to the light receiving element 11m and downward with respect to the light receiving element 11b.

ところで第4図囚は垂直断面、第4図俤)は水平断面と
して説明したが逆の系、すなわち第4図(4)が水平断
面、第4図(2)が垂直断面となる系であっても良い。
By the way, although Figure 4 (5) is a vertical cross section and Figure 4 (忤) is a horizontal cross section, it is the opposite system, that is, Figure 4 (4) is a horizontal cross section and Figure 4 (2) is a vertical cross section. It's okay.

ところで以上受光素子は分割受光素子とし、その光量バ
ランスよりアライメント調整及び作動距離調整をするこ
とを述べてきたが、受光素子として分割受光素子でなく
ボジシ嘗ンディテクタ等の位置検出器で光束の重心位置
の素子中心位置からのずれを検出するものであっても良
い。分割受光素子の場合は角膜反射像のレンズによる共
役位置よシずらせて受光素子を設けることが照射面積が
大きくとれ望ましいが、ポジシ璽ンディテクタ等の位置
検出器の場合は角膜反射像のレンズによる共役位置に設
ける方が照射面積が小さくなシ測定精度が良い。
By the way, as described above, the light-receiving element is a split light-receiving element, and the alignment and working distance are adjusted based on the light intensity balance. It may be possible to detect a deviation of the position from the element center position. In the case of a split light-receiving element, it is desirable to provide the light-receiving element at a position shifted from the conjugate position of the lens of the corneal reflection image in order to increase the irradiation area, but in the case of a position detector such as a position detector, it is preferable to provide the light-receiving element at a position shifted from the conjugate position of the lens of the corneal reflection image. Providing it at a conjugate position has a smaller irradiation area and better measurement accuracy.

また、本発明においてレンズ3a、 3b若しくは10
a、 10bは集光するために用いられるが、レンズの
替わシにピンホール等を設け、光束が常に一定位置を通
過するようにしても良い。
Further, in the present invention, the lens 3a, 3b or 10
A and 10b are used to condense light, but a pinhole or the like may be provided instead of a lens so that the light beam always passes through a fixed position.

なお指標1は光源自体でも良いが赤外光源例えば赤外ダ
イオードを用いることKよシ被検眼の縮瞳を防止できる
Although the indicator 1 may be a light source itself, using an infrared light source such as an infrared diode can better prevent miosis of the eye to be examined.

i九本発明を用いればアライメント調整1咋動距離調整
は受光素子の出力例えば光電出力を用い自動的になされ
得る。
By using the present invention, alignment adjustment 1 and chewing distance adjustment can be automatically performed using the output of the light receiving element, for example, the photoelectric output.

以上、本発明においては、可動部が無く自動きる眼科機
器の位置合わせ装置を提供できる。
As described above, according to the present invention, it is possible to provide a positioning device for ophthalmological equipment that has no movable parts and can be automatically closed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例の図、第2図(4)の)((
’)/Ii2分割受光素子と光束との関係図で各々第2
図囚はアライメント調整及び作動圧1I11!IJIの
正しい状態、第2図[F])はアライメント調整が不良
の状態、第2図Cは作動距離調整が不良の状態を示す図
、第3図は4分割受光素子と光束との関係図、第4図囚
の)は本発明の第2実施例の図、図中、EFi被検眼、
&は角膜、Xは眼科機器光軸、1.6は指標(光源)、
a9は対物レンズ、3m、 3b、 7.10a、 1
0bはレンズ、4a+ 4bは2分割受光素子、8a+
 8bは角膜反射主光線、5ae 5be11a、 l
lbは4分割受光素子である。 出願人 キャノン株式会社
Fig. 1 is a diagram of the first embodiment of the present invention, and Fig. 2 (4))((
')/Ii In the relationship diagram between the two-split light receiving element and the luminous flux, each
The figure shows alignment adjustment and operating pressure 1I11! The correct state of IJI, Fig. 2 [F]) shows the state where the alignment adjustment is incorrect, Fig. 2 C shows the state where the working distance adjustment is incorrect, and Fig. 3 is a diagram showing the relationship between the 4-split light receiving element and the luminous flux. , Figure 4) is a diagram of the second embodiment of the present invention, in which the EFi subject's eye,
& is the cornea, X is the optical axis of the ophthalmological equipment, 1.6 is the index (light source),
a9 is objective lens, 3m, 3b, 7.10a, 1
0b is a lens, 4a+ 4b is a two-part light receiving element, 8a+
8b is the corneal reflection chief ray, 5ae 5be11a, l
lb is a four-part light receiving element. Applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、被検@に指標を投影し、該指標の角膜反射像からの
光を受光素子で受け、受光素子上の光束位置状態より被
検眼の眼科機器に対する位置合わせを行なう装置におい
て、眼科機器光軸に対し斜方向に角膜反射光をとりだす
2つの受光光学系を有し、該受光光学系の2つの受光素
子上の光束位置状態より、アライメント調整及び作動距
離調整を行なうことを特徴とする眼科機器の位置合わせ
装置。 2、前記2つの受光光学系が各々投影レンズを有し、被
検眼が正規の位置にあるときの角膜反射像位置からの主
光線上に前記受光素子の中心位置が設定される特許請求
の範囲第1項記載の眼科機器の位置合わせ装置。 3、前記受光素子が2分割若しくは4分割受光素子であ
る特許請求の範囲第2項記載の眼科機器の位置合わせ装
置。 4、前記受光素子が光路上角膜反射像の前記投影レンズ
による共役位置よりずれて設けられる特許請求の範囲第
3項記載の眼科機器の位置合わせ装置。 5、 前記指標が眼科機器光軸と平行な無限遠光束とな
って被検眼に照射される特許請求の範囲第2項記載の眼
科機器の位置合わせ装置。 6、 前記指標が眼科機器光軸に斜めに無限遠光束とな
って被検眼に照射され、角膜反射像からの主光線が前記
投影レンズ光軸と一致することを特徴とする特許請求の
範囲第2項記載の眼科機器の位置合わせ装置。 7、前記受光素子がポジシ璽ンセンサである特許請求の
範囲第2項記載の眼科機器の位置合レンズによる共役位
置に設けられる特許請求の範囲第7項記載の眼科機器の
位置合わせ装置0
[Claims] 1. Projecting an index onto the subject @, receiving light from the corneal reflection image of the index with a light receiving element, and aligning the eye to be inspected with respect to the ophthalmological equipment based on the position of the light beam on the light receiving element. The device has two light-receiving optical systems that take out corneal reflected light obliquely to the optical axis of the ophthalmological equipment, and alignment adjustment and working distance adjustment are performed based on the light flux position state on the two light-receiving elements of the light-receiving optical system. A positioning device for ophthalmological equipment characterized by the following. 2. A claim in which the two light-receiving optical systems each have a projection lens, and the center position of the light-receiving element is set on the chief ray from the corneal reflected image position when the eye to be examined is in a normal position. 2. The positioning device for ophthalmological equipment according to item 1. 3. The positioning device for ophthalmological equipment according to claim 2, wherein the light receiving element is a two-divided or four-divided light receiving element. 4. The positioning device for ophthalmological equipment according to claim 3, wherein the light receiving element is provided at a position shifted from the conjugate position of the corneal reflected image on the optical path by the projection lens. 5. The ophthalmological equipment positioning device according to claim 2, wherein the index is irradiated onto the subject's eye as an infinite light beam parallel to the optical axis of the ophthalmological equipment. 6. The index is irradiated onto the subject's eye as an infinite beam of light obliquely to the optical axis of the ophthalmological device, and the chief ray from the corneal reflection image coincides with the optical axis of the projection lens. The positioning device for ophthalmological equipment according to item 2. 7. The positioning device 0 for an ophthalmological device according to claim 7, which is provided at a conjugate position with an alignment lens for an ophthalmological device according to claim 2, wherein the light receiving element is a positive position sensor.
JP56197546A 1981-12-07 1981-12-07 Apparatus for aligning position of ophthalmic machine Granted JPS5897340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197546A JPS5897340A (en) 1981-12-07 1981-12-07 Apparatus for aligning position of ophthalmic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197546A JPS5897340A (en) 1981-12-07 1981-12-07 Apparatus for aligning position of ophthalmic machine

Publications (2)

Publication Number Publication Date
JPS5897340A true JPS5897340A (en) 1983-06-09
JPH0359689B2 JPH0359689B2 (en) 1991-09-11

Family

ID=16376274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197546A Granted JPS5897340A (en) 1981-12-07 1981-12-07 Apparatus for aligning position of ophthalmic machine

Country Status (1)

Country Link
JP (1) JPS5897340A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164228A (en) * 1984-09-06 1986-04-02 キヤノン株式会社 Positional alignment apparatus for ophthalmic machine
JPH0252631A (en) * 1988-08-15 1990-02-22 Topcon Corp Self-consciousness type vision-tester
JPH0282939A (en) * 1988-08-05 1990-03-23 Cambridge Instr Inc Position adjusting device for inspecting machine for eyes
JPH02168929A (en) * 1988-12-23 1990-06-29 Topcon Corp Fundus camera
JPH0315438A (en) * 1989-06-13 1991-01-23 Canon Inc Alignment device for fundus camera
JPH07171112A (en) * 1994-12-05 1995-07-11 Canon Inc Ophthalmotonometer
JPH07284475A (en) * 1994-04-15 1995-10-31 Nidek Co Ltd Ophthalmic apparatus
US5596377A (en) * 1993-08-31 1997-01-21 Nidek Co., Ltd. Ophthalmic apparatus having three dimensional calculating means
JPH09108186A (en) * 1996-09-30 1997-04-28 Topcon Corp Alignment device for ophthalmological equipment
JPH11225971A (en) * 1998-11-09 1999-08-24 Canon Inc Ophthalmology device
WO2014091992A1 (en) * 2012-12-11 2014-06-19 株式会社トプコン Ophthalmologic device
JP2017124214A (en) * 2017-03-13 2017-07-20 株式会社トプコン Ophthalmologic apparatus
JP2017148541A (en) * 2012-05-01 2017-08-31 株式会社トプコン Ophthalmologic apparatus and program for controlling the same
US9980643B2 (en) 2012-05-01 2018-05-29 Kabushiki Kaisha Topcon Ophthalmologic apparatus
JP2019134975A (en) * 2019-05-17 2019-08-15 株式会社トプコン Ophthalmologic apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164228A (en) * 1984-09-06 1986-04-02 キヤノン株式会社 Positional alignment apparatus for ophthalmic machine
JPS6357058B2 (en) * 1984-09-06 1988-11-10 Canon Kk
JPH0282939A (en) * 1988-08-05 1990-03-23 Cambridge Instr Inc Position adjusting device for inspecting machine for eyes
JPH0252631A (en) * 1988-08-15 1990-02-22 Topcon Corp Self-consciousness type vision-tester
JPH02168929A (en) * 1988-12-23 1990-06-29 Topcon Corp Fundus camera
JPH0315438A (en) * 1989-06-13 1991-01-23 Canon Inc Alignment device for fundus camera
JPH0567281B2 (en) * 1989-06-13 1993-09-24 Canon Kk
US5596377A (en) * 1993-08-31 1997-01-21 Nidek Co., Ltd. Ophthalmic apparatus having three dimensional calculating means
JPH07284475A (en) * 1994-04-15 1995-10-31 Nidek Co Ltd Ophthalmic apparatus
JPH07171112A (en) * 1994-12-05 1995-07-11 Canon Inc Ophthalmotonometer
JPH09108186A (en) * 1996-09-30 1997-04-28 Topcon Corp Alignment device for ophthalmological equipment
JPH11225971A (en) * 1998-11-09 1999-08-24 Canon Inc Ophthalmology device
JP2017148541A (en) * 2012-05-01 2017-08-31 株式会社トプコン Ophthalmologic apparatus and program for controlling the same
US9980643B2 (en) 2012-05-01 2018-05-29 Kabushiki Kaisha Topcon Ophthalmologic apparatus
WO2014091992A1 (en) * 2012-12-11 2014-06-19 株式会社トプコン Ophthalmologic device
JP2014113385A (en) * 2012-12-11 2014-06-26 Topcon Corp Ophthalmologic apparatus
US9706920B2 (en) 2012-12-11 2017-07-18 Kabushiki Kaisha Topcon Ophthalmologic apparatus
JP2017124214A (en) * 2017-03-13 2017-07-20 株式会社トプコン Ophthalmologic apparatus
JP2019134975A (en) * 2019-05-17 2019-08-15 株式会社トプコン Ophthalmologic apparatus

Also Published As

Publication number Publication date
JPH0359689B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
US4293198A (en) Eye refractometer
JPS5897340A (en) Apparatus for aligning position of ophthalmic machine
CA1177897A (en) Rotating beam ocular identification apparatus and method
US7255442B2 (en) Device for measuring aberrations in an eye-type system
JPH0366355A (en) Topography-measuring method and apparatus thereof
JPS63252131A (en) Ophthalmic measuring apparatus
GB1602366A (en) Apparatus for objective examination of an eye
US6536900B2 (en) Eye characteristic measuring apparatus
JPH0566804B2 (en)
US4712894A (en) Ophthalmoscopic instrument having working position detecting means
JPS63212318A (en) Eye measuring apparatus
US4902122A (en) Optical system for determining the variation of curvature of an object on a zone of small dimensions
US4348108A (en) Automatic lens meter
JPS6141212B2 (en)
JPH10276985A (en) Inspection instrument for optical data of eyeball
JP3206936B2 (en) Eye refractometer
JPH0277228A (en) Ophthalmological measuring instrument
JPS627852B2 (en)
Roth Automatic optometer for use with the undrugged human eye
JPH06245909A (en) Ophthalmorefractometer
JP2868804B2 (en) Light irradiation device
JP2925165B2 (en) Autofocus fundus camera
JPS6331633A (en) Eye refractometer
JPH069544B2 (en) Eye measuring device
JPS6111090B2 (en)