JPS5877754A - Continuous casting method and immersion nozzle - Google Patents
Continuous casting method and immersion nozzleInfo
- Publication number
- JPS5877754A JPS5877754A JP17665281A JP17665281A JPS5877754A JP S5877754 A JPS5877754 A JP S5877754A JP 17665281 A JP17665281 A JP 17665281A JP 17665281 A JP17665281 A JP 17665281A JP S5877754 A JPS5877754 A JP S5877754A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- mold
- continuous casting
- molten metal
- casting method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、金属溶湯の連続鋳造方法の改良に関する。
本発明はまた、その方法の実施に使用する浸漬ノズルに
も関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a continuous casting method for molten metal.
The invention also relates to a submerged nozzle for use in carrying out the method.
鋼をはじめとする合金の連続鋳造においては、表皮下の
気泡と介在物を低減し、鋳片中の偏析と冷却方向の結晶
成長とを最少限におさえるため、凝固しつつある溶湯を
攪拌することが必要であって、このためにさまざまな努
力がなされている。In continuous casting of alloys such as steel, the solidifying molten metal is stirred to reduce bubbles and inclusions under the skin, and to minimize segregation in the slab and crystal growth in the direction of cooling. This is necessary, and various efforts are being made to achieve this goal.
通常実施されているのは電磁攪拌であって、最も強力に
これを行なう場合は、電磁攪拌装置EMS(Elect
ro Magnetic 5tirrer )を、モー
ルド内(M−EMS)、モールド下の第二次(S−EM
S )および全凝固直前の最終(F−EMS)の各段階
に設ける。Usually, electromagnetic stirring is used, and for the most powerful stirring, an electromagnetic stirring device EMS (electromagnetic stirring device) is used.
ro Magnetic 5tirrer) inside the mold (M-EMS) and under the mold (S-EM
S) and the final stage (F-EMS) just before total solidification.
ところが、M−EMS は、多額の設備費を要し、そ
れに対応するだけの攪拌効果が得られるかどうか、疑問
である。However, M-EMS requires a large amount of equipment cost, and it is questionable whether it can provide a sufficient stirring effect.
本発明の目的は、M −EMS を用いずに、効果的
なモールド内溶湯攪拌の手段を提供することにある。An object of the present invention is to provide a means for effectively stirring molten metal within a mold without using M-EMS.
本発明の別の目的は、M−EMS と併用して、その
攪拌効果を一層高め、すぐれた品質の鋳片を得る攪拌手
段を提供することである。Another object of the present invention is to provide a stirring means that can be used in combination with M-EMS to further enhance the stirring effect and obtain slabs of excellent quality.
この意図埴実現する方策として、本発明者らは、連続鋳
造において浸漬ノズル5を通じてモールド内へ溶湯を供
給する岸に、溶湯が吐出される勢表・を利用して、自然
な旋回流を発生させて攪拌に役立てることを着想した。As a measure to realize this intention, the present inventors created a natural swirling flow by utilizing the force of the molten metal discharged into the bank where the molten metal is supplied into the mold through the immersion nozzle 5 in continuous casting. I came up with the idea of using it for stirring.
そこで、まず実装置と同様なモールドおよび浸漬ノズル
を用い、水モデルによる実験を行なった。Therefore, we first conducted an experiment using a water model using a mold and immersion nozzle similar to the actual device.
条件は、モールド内のり 48X37tYn、ノズル浸
漬深さ20crn、引抜速度0.5 m/min 、(
90,’8 t /min )であって、熱的条件を別
にすれば、力学的条件(レイノルズ数およびフルード数
)は実際と同じである。 この実験により確立された、
効果的な吐出のあり方と、それを実現する浸漬ノズルの
形状とを、実装置に適用して確認し、本発明を完成した
。The conditions were: glue in the mold 48x37tYn, nozzle immersion depth 20crn, withdrawal speed 0.5 m/min, (
90,'8 t/min), and apart from the thermal conditions, the mechanical conditions (Reynolds number and Froude number) are the same as in reality. Established through this experiment,
The present invention was completed by confirming the effective discharge method and the shape of the immersion nozzle that achieves it by applying it to an actual device.
このような経緯をもつ本発明の連続鋳造方法は、金属溶
湯を水冷モールド内へ浸漬ノズルを通じて供給吐出して
行なう連続鋳造において、吐出流を、吐出の中心に関し
て対称な複数の位置にお〜・て接線方向に、かつモール
、ド面に対して、平行でも直角でもない斜めの方向に向
け、モールド内溶湯に水平方向の旋回流を発生させるこ
とを特徴とする。With this background, the continuous casting method of the present invention is a continuous casting method in which molten metal is supplied and discharged into a water-cooled mold through a submerged nozzle, and the discharge flow is directed to a plurality of symmetrical positions with respect to the center of discharge. It is characterized by generating a horizontal swirling flow in the molten metal in the mold in a tangential direction and in an oblique direction that is neither parallel nor perpendicular to the surface of the mold.
第1図はこの原理を示すものであって、ノズル10本体
11 内を流下し吐出管12から接線方向に、小さい矢
印のように吐出された溶湯3の流れは、モールド2の壁
21および22に当って回流し、全体として大きな矢印
で示すような旋回流を生じる。FIG. 1 shows this principle, in which the flow of the molten metal 3 that flows down inside the nozzle 10 body 11 and is discharged from the discharge pipe 12 in the tangential direction as shown by the small arrows flows through the walls 21 and 22 of the mold 2. The liquid hits and circulates, creating an overall swirling flow as shown by the large arrow.
図示した例は吐出流が4本であり、この数は、モールド
が方形でも円形でも有効であるが、と(に方形のものに
関しては最適である。 吐出流が2本または3本では、
円形モールドには有効であるが、方形モールドにおいて
は旋回流が弱いことがある。 一方、5本以上の吐出流
は、吐出の勢いを分散させ、かえって旋回能が低くなる
ことが経験された。In the illustrated example, there are four discharge streams, and this number is effective whether the mold is square or circular, but is optimal for a rectangular mold. If there are two or three discharge streams,
Although it is effective for circular molds, the swirling flow may be weak in square molds. On the other hand, it has been experienced that five or more discharge streams disperse the force of the discharge, and the swirling ability is rather reduced.
なお、吐出の中心に関して「対称」とは、上記した例で
いえば、4点とも中心から回転対称な位置にある必要は
なく、向い合う2点が互〜・に対称であればよいことは
理解されるであろう。In addition, "symmetrical" with respect to the center of discharge does not necessarily mean that all four points are in rotationally symmetrical positions with respect to the center, in the above example, it is sufficient that two points facing each other are symmetrical with respect to each other. It will be understood.
モールドの壁に対して溶湯の吐出流が衝突する方向は、
直角およびその近辺では流れが左右に分かれてしまい、
旋回しない。 平行でも効果がないことはもちろんであ
って、結局、一般的に℃・つて直角と平行の中間、つま
り45° が最適であり、それより離れるにつれて効果
が低くなる。 しかし、通常は(45±10)0の範囲
なら、はぼ同様な効果が得られることがわかった。The direction in which the molten metal discharge flow collides with the mold wall is
At or near right angles, the flow splits into left and right,
Do not turn. It goes without saying that even if the angle is parallel, there is no effect, and in general, the optimum angle is 45°, which is between the angles of right angle and parallel, and the further away from that angle, the less effective it becomes. However, it has been found that a similar effect can usually be obtained within the range of (45±10)0.
垂直面での吐出流の方向はといえば、水平方向か、また
はわずか(15°または20°以内)下向きにすると、
吐出流に流下の勢いが加わって好ましい。 いうまでも
ないが、モールド壁に当った溶湯は、鋳片の引抜きにつ
れて下方に運ばれるが、一部は浸漬ノズル吐出管の位置
から上方に向って移動する。The direction of the discharge flow in the vertical plane is horizontal or slightly (within 15° or 20°) downward.
This is preferable because downward momentum is added to the discharge flow. Needless to say, the molten metal that has hit the mold wall is carried downward as the slab is pulled out, but some of it moves upward from the position of the immersion nozzle discharge pipe.
旋回流を発生させる方向は、溶湯面の上方からみて、左
回り(反時計回り)にすることが好ましい。 これは、
北半球で発生する渦は、地球の自転の影響を受けて左回
りになるので、それと同じ方向をえらべば、旋回が容易
属なるからである。The direction in which the swirling flow is generated is preferably to the left (counterclockwise) when viewed from above the molten metal surface. this is,
This is because vortices that occur in the Northern Hemisphere rotate counterclockwise due to the influence of the Earth's rotation, so if you choose the same direction, it will be easier to turn.
本発明の方法によるときは、たとえば鋼の鋳造において
代表的な形状寸法のモールドにおいて、流速が10 c
m/ sec程度(回転数にして数rpm )の溶湯旋
回流が発生する。 この攪拌力は、本格的なM−EMS
のそれには及ばないが、鋼の品質上の要求がとくに
きびしくはない場合には、M−EMS がなくても一
応の品質の鋳片を与えるものである。 M−EMS を
併用するにしても、簡単なもので足りる。 あるいはま
た、強力なM−EMS が設置されている場合には、攪
拌の効果を最大限に高めて、品質上のきびしい要求にこ
たえる鋳片を製造することができる。When using the method of the present invention, for example, in a mold having a typical shape and size in steel casting, a flow rate of 10 c
A swirling flow of the molten metal at a speed of about m/sec (several rpm in terms of rotation speed) is generated. This stirring power is a full-fledged M-EMS
Although it is not as good as that of M-EMS, if the requirements for steel quality are not particularly strict, it can provide slabs of reasonable quality even without M-EMS. Even if M-EMS is used together, a simple one will suffice. Alternatively, if a powerful M-EMS is installed, it is possible to maximize the effect of stirring and produce slabs that meet strict quality requirements.
前述のとおり本発明は、上記の連続鋳造方法の実施に使
用する、改良された浸゛漬ノズルをも、その対象に含む
。As mentioned above, the present invention also includes an improved submerged nozzle for use in carrying out the continuous casting method described above.
本発明の連続鋳造方法竺ノズルは、代表的には、第2図
に側面を示し第3図Aに縦断面を、そ、して同BKAの
I−I方向横断面を示すように、有底筒状の本体11
とその下部に位置する複数の短い吐出管12.12.1
2.12とからなり、吐出管12の方向が本体断面に関
して接線方向に、かつ水平またはそれより少し下向き(
第2図および第3図の例は下向き)であることを特徴と
する。The continuous casting method nozzle of the present invention typically has a side view shown in FIG. 2, a longitudinal section shown in FIG. Bottom cylindrical body 11
and a plurality of short discharge pipes 12.12.1 located at the bottom thereof.
2.12, the direction of the discharge pipe 12 is tangential to the cross section of the main body, and horizontal or slightly downward (
The examples in FIGS. 2 and 3 are characterized in that they are oriented downward.
本発明の浸漬ノズルの別の態様として、第4図Aおよび
Bに示す例を挙げる。 これは、吐出の方向は水平であ
るが、旋回流が生じやすいように吐出管をわん曲させた
ものである。Another embodiment of the submerged nozzle of the present invention is illustrated in FIGS. 4A and 4B. Although the direction of discharge is horizontal, the discharge pipe is curved to facilitate swirling flow.
このほか本発明の浸漬ノズルには、さまざまな態様があ
り得るが、いずれも既知の技術により製造できよう。
その際の注意としては、耐溶損性にす・ぐれた材質をえ
らぶべきである。 それは、鋳造初期から終了に至るま
で、ノズル形状の変化に支り旋回流の発生が損なわれず
、攪拌力を確保するためである。The submerged nozzle of the present invention may have various other embodiments, all of which may be manufactured using known techniques.
In this case, care should be taken to select a material with excellent erosion resistance. This is to ensure that the generation of swirling flow is not impaired due to changes in the nozzle shape and that stirring power is maintained from the initial stage to the end of casting.
第1図は、本発明の連続鋳造方法において溶湯の旋回流
が発生する原理を説明するための、モールド上方からみ
た概念図である。
第2図および第3図は、本発明の浸漬ノズルの代表的態
様について形状・構造を示す図であって、第2図は側面
図であり、第3図Aは縦断面図、そして第3図Bは第2
図I−I位置の横断面図である。
第4図は、本発明の浸漬ノズルの別の態様の構造を示す
図であって、AおよびBは、それぞれ第3図AおよびB
に対応する縦断面図および横断面図である。
1・・・・・・ 浸漬ノズル
11・・・・・・本体 12・・・・・・吐出管2・・
・・・・モールド
3・・−・・溶 湯
特許出願人 大同特殊鋼株式会社
代理人 弁理士 須 賀 総 夫才2図
牙8図
A
牙4図
A−1FIG. 1 is a conceptual diagram seen from above a mold for explaining the principle of generating a swirling flow of molten metal in the continuous casting method of the present invention. 2 and 3 are diagrams showing the shape and structure of a typical embodiment of the immersion nozzle of the present invention, in which FIG. 2 is a side view, FIG. 3A is a longitudinal sectional view, and FIG. Figure B is the second
It is a cross-sectional view taken along the line I-I in FIG. FIG. 4 is a diagram showing the structure of another embodiment of the submerged nozzle of the present invention, and A and B are respectively shown in FIG.
FIG. 1... Immersion nozzle 11... Main body 12... Discharge pipe 2...
... Mold 3 ... Molten metal patent applicant Daido Steel Co., Ltd. Agent Patent attorney Sou Suga Fusai 2 Fig. 8 A Fang 4 Fig. A-1
Claims (6)
供給吐出して行なう連続鋳造において、吐出流を、吐出
の中心に関して対称な複数の位置において接線方向に、
かつモールド面に対して斜め方向に向け、モールド内溶
湯に水平方向の旋回流を発生させることを特徴とする連
続鋳造方法。(1) In continuous casting, in which molten metal is supplied and discharged into a water-cooled mold through a submerged nozzle, the discharge flow is directed tangentially at multiple positions symmetrical about the center of discharge.
A continuous casting method characterized by generating a horizontal swirling flow in the molten metal in the mold in a direction oblique to the mold surface.
、(45±10)0 の方向に吐出する特許請求の範囲
第1項の連続鋳造方法。(2) The continuous casting method according to claim 1, wherein there are four discharge streams, and the discharge streams are discharged in a direction of (45±10)0 with respect to a rectangular mold surface.
請求の範囲第1項または第2項の連続端遣方法。(3) The continuous dispensing method according to claim 1 or 2, wherein the direction of discharge is horizontal or slightly downward.
許請求の範囲第1項ないし第3項のいずれかの連続鋳造
方法。 。(4) The continuous casting method according to any one of claims 1 to 3, wherein the direction of the swirling flow is counterclockwise when viewed from above. .
し第4項のいずれかの連続鋳造方法。(5) The continuous casting method according to any one of claims 1 to 4, wherein the molten metal is molten steel.
の短い吐出管12.12. 、 12.12 とから
なり、吐出管12の方向が、本体断面に関して接線方向
に、かつ水平またはそれより少し下向きであることを特
徴とする連続鋳造用の浸漬ノズル1ヶ(6) A cylindrical main body 11 with a bottom and a plurality of short discharge pipes 12 located at the bottom thereof.12. , 12.12 One immersion nozzle for continuous casting, characterized in that the direction of the discharge pipe 12 is tangential to the cross section of the main body, and horizontal or slightly downward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17665281A JPS5877754A (en) | 1981-11-04 | 1981-11-04 | Continuous casting method and immersion nozzle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17665281A JPS5877754A (en) | 1981-11-04 | 1981-11-04 | Continuous casting method and immersion nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5877754A true JPS5877754A (en) | 1983-05-11 |
Family
ID=16017319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17665281A Pending JPS5877754A (en) | 1981-11-04 | 1981-11-04 | Continuous casting method and immersion nozzle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5877754A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137554A (en) * | 1986-11-27 | 1988-06-09 | Kawasaki Steel Corp | Separated removing method for non-metallic inclusion in molten steel |
JP2002219554A (en) * | 2001-01-19 | 2002-08-06 | Honda Motor Co Ltd | Casting mold and casting method for casting |
WO2005095028A1 (en) * | 2004-04-01 | 2005-10-13 | Trinecke Zelezarny, A.S. | Submerged nozzle for continuous casting of metals |
JP2011110603A (en) * | 2009-11-30 | 2011-06-09 | Sumitomo Metal Ind Ltd | Immersion nozzle for continuous casting and continuous casting method |
KR101321046B1 (en) * | 2011-12-15 | 2013-10-23 | 주식회사 포스코 | Method and apparatus for preventing melting steel scattering |
WO2013161578A1 (en) | 2012-04-26 | 2013-10-31 | 品川リフラクトリーズ株式会社 | Submerged nozzle of continuous casting apparatus |
EP2769786A1 (en) * | 2013-02-25 | 2014-08-27 | Refractory Intellectual Property GmbH & Co. KG | Submerged entry nozzle |
JP2015100817A (en) * | 2013-11-26 | 2015-06-04 | 品川リフラクトリーズ株式会社 | Immersion nozzle for continuous casting device |
US10183326B2 (en) | 2015-01-16 | 2019-01-22 | Shinagawa Refractories Co., Ltd. | Slab continuous casting apparatus |
-
1981
- 1981-11-04 JP JP17665281A patent/JPS5877754A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137554A (en) * | 1986-11-27 | 1988-06-09 | Kawasaki Steel Corp | Separated removing method for non-metallic inclusion in molten steel |
JP2002219554A (en) * | 2001-01-19 | 2002-08-06 | Honda Motor Co Ltd | Casting mold and casting method for casting |
JP4646412B2 (en) * | 2001-01-19 | 2011-03-09 | 本田技研工業株式会社 | Casting mold and casting method of casting product |
WO2005095028A1 (en) * | 2004-04-01 | 2005-10-13 | Trinecke Zelezarny, A.S. | Submerged nozzle for continuous casting of metals |
JP2011110603A (en) * | 2009-11-30 | 2011-06-09 | Sumitomo Metal Ind Ltd | Immersion nozzle for continuous casting and continuous casting method |
KR101321046B1 (en) * | 2011-12-15 | 2013-10-23 | 주식회사 포스코 | Method and apparatus for preventing melting steel scattering |
WO2013161578A1 (en) | 2012-04-26 | 2013-10-31 | 品川リフラクトリーズ株式会社 | Submerged nozzle of continuous casting apparatus |
US9573189B2 (en) | 2012-04-26 | 2017-02-21 | Shinagawa Refractories Co., Ltd. | Submerged nozzle for continuous casting apparatus |
EP2769786A1 (en) * | 2013-02-25 | 2014-08-27 | Refractory Intellectual Property GmbH & Co. KG | Submerged entry nozzle |
WO2014127921A2 (en) * | 2013-02-25 | 2014-08-28 | Refractory Intellectual Property Gmbh & Co. Kg | Submerged entry nozzle |
WO2014127921A3 (en) * | 2013-02-25 | 2014-12-04 | Refractory Intellectual Property Gmbh & Co. Kg | Submerged entry nozzle |
US9757799B2 (en) | 2013-02-25 | 2017-09-12 | Refractory Intellectual Property Gmbh & Co. Kg | Submerged entry nozzle |
JP2015100817A (en) * | 2013-11-26 | 2015-06-04 | 品川リフラクトリーズ株式会社 | Immersion nozzle for continuous casting device |
US10183326B2 (en) | 2015-01-16 | 2019-01-22 | Shinagawa Refractories Co., Ltd. | Slab continuous casting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4776570A (en) | Ladle stream breaker | |
USRE35685E (en) | Impact pad for a continuous caster tundish | |
Kocatepe et al. | Effect of low frequency vibration on macro and micro structures of LM6 alloys | |
AU717406B2 (en) | Submerged nozzle for the continuous casting of thin slabs | |
Li et al. | Modeling of biased flow phenomena associated with the effects of static magnetic-field application and argon gas injection in slab continuous casting of steel | |
JPS5877754A (en) | Continuous casting method and immersion nozzle | |
CN108500227A (en) | Crystallizer flow field Electromagnetic Control method for sheet billet continuous casting production | |
US4770395A (en) | Tundish | |
CN105728679B (en) | Magnetic shielding type multi-mode meniscus electromagnetic stirring system and method for continuous casting of square and round billets | |
JPH08168856A (en) | Exhaust nozzle for continuous casting | |
Ho et al. | The analysis of molten steel flow in billet continuous casting mold | |
WO1983002079A1 (en) | Method of agitating molten steel in continuously casting mold and apparatus therefor | |
JPH0852547A (en) | Immersion casting pipe | |
AU2004286877A1 (en) | Electromagnetic agitation method for continuous casting of metal products having an elongate section | |
JPS6037251A (en) | Electromagnetic stirring method of molten steel for continuous casting mold | |
JPH0120052Y2 (en) | ||
JPH0130583B2 (en) | ||
JPH0130584B2 (en) | ||
Xu et al. | Effect of Submerged Entry Nozzle Structure on Fluid Flow, Slag Entrainment, and Solidification Process in a Slab Continuous Casting Mold | |
JPS61129261A (en) | Production of continuously cast steel ingot having less surface defect | |
Garnier | The Clifford Paterson Lecture, 1992 Magentohydrodynamics in material processing | |
KR20120043332A (en) | Apparatus and method for continous casting using electromagnetic stirring device | |
JP2005199325A (en) | Method of continuous casting for metal | |
JPS55128356A (en) | Decreasing method for inclusion in molten steel at continuous cast pouring time | |
Harloff et al. | Improvement of melt mixing and cleanness in ladle, tundish and mould by application of advanced simulation techniques |