JPS5864418A - Catalytic combustor - Google Patents
Catalytic combustorInfo
- Publication number
- JPS5864418A JPS5864418A JP16325781A JP16325781A JPS5864418A JP S5864418 A JPS5864418 A JP S5864418A JP 16325781 A JP16325781 A JP 16325781A JP 16325781 A JP16325781 A JP 16325781A JP S5864418 A JPS5864418 A JP S5864418A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- borne
- heat
- catalyst
- onto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C13/00—Apparatus in which combustion takes place in the presence of catalytic material
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は各種のガスまたは蒸発させた液体燃料を燃焼空
気と共に触媒体上に供給し、その面上において酸化反応
を起こさせ、発生する熱量を利用する触媒燃焼器に関し
、その目的は発生するエネルギーを効率良く赤外線に変
換し、細管外部に放射して暖房等に供するとともに、排
気ガスを屋外に放出することにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalytic combustor that supplies various gases or evaporated liquid fuels together with combustion air onto a catalyst body, causes an oxidation reaction on that surface, and utilizes the amount of heat generated. The purpose of this is to efficiently convert the generated energy into infrared rays and radiate it to the outside of the tube for heating, etc., as well as to release exhaust gas outdoors.
従来の触媒燃焼器は燃料を触媒体上に供給し、触媒体を
発熱させ、そこからの輻射熱と同時に熱排気ガスも室内
に放出させていた。従って、排出される各種の排気成分
( CO+ 、 12あるいは若干の未燃aH,co等
)によって室内環境も汚染されることになる。触媒燃焼
システムを採り入れ、さらに熱排気ガスを熱交換器に通
し、熱交換させる方式も不可能ではないが、この方式だ
と折角の触媒燃焼器の最大の利点である豊富な輻射熱を
無くしてしまい、かつ装置的にも複雑な形態にならざる
を得ない。Conventional catalytic combustors supply fuel onto a catalytic body, causing the catalytic body to generate heat, and simultaneously emit radiant heat from the catalytic body and hot exhaust gas into the room. Therefore, the indoor environment is also polluted by various exhaust components (CO+, 12, or some unburned aH, co, etc.). It is not impossible to adopt a catalytic combustion system and then pass the hot exhaust gas through a heat exchanger to exchange heat, but this method eliminates the abundant radiant heat that is the greatest advantage of the catalytic combustor. , and the device has to be complicated.
本発明は以上述べてきた諸欠点を改良するもの器
で、かつ触媒燃焼力特徴を十分生かしたものである。す
なわち、触媒体を内面に担持させた管体の外表面に酸化
トリウム及び酸化セリウムを担持させることにより、外
表面の温度を上げ、赤外輻射線として熱線を大量に外部
に放出せしめるものである。本発明の触媒燃焼器の管体
外表面に存在する酸化トリウムは僅かな酸化セリウムと
共存することにより、容易に高温赤熱され、熱線を含む
輻射線を放射する性質を有する。それゆえ管体外表面か
らエネルギーを効率良く放射できる。なお上記酸化トリ
ウム及び酸化セリウムは単独では全くこれらの性質がな
く、酸化トリウムは高温になっても熱放射線はほとんど
出さず、酸化セリウムは十分な高温に達することは難か
しい。従って上記各酸化物は混合物として用いなくては
ならず、その割合は酸化Yリウム100に対し酸化セリ
ウムは0.1から10の範囲が適当であり、なかでも1
〜3チ程度含有するものが最も効果的である。The present invention is intended to improve the various drawbacks mentioned above, and to take full advantage of the characteristics of catalytic combustion power. That is, by supporting thorium oxide and cerium oxide on the outer surface of a tube with a catalyst supported on its inner surface, the temperature of the outer surface is raised and a large amount of heat rays are emitted to the outside as infrared radiation. . The thorium oxide present on the outer surface of the tube of the catalytic combustor of the present invention coexists with a small amount of cerium oxide, so that it is easily heated to a high temperature and emits radiation including heat rays. Therefore, energy can be efficiently radiated from the outer surface of the tube. Note that the above-mentioned thorium oxide and cerium oxide do not have these properties at all by themselves; thorium oxide emits almost no thermal radiation even at high temperatures, and cerium oxide has difficulty reaching a sufficiently high temperature. Therefore, each of the above-mentioned oxides must be used as a mixture, and the ratio of cerium oxide to 100 parts of Yium oxide is appropriate in the range of 0.1 to 10 parts.
The one containing about 30% is most effective.
以下本発明の一実施例を図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.
ライトなど無機耐熱材料からなる複数本の管体(内径1
〜5+nm)1を平行に設置する。管体1の内面には表
面積を多くシ、かつ触媒体′を担持させ高温に保ち、シ
ンタリングを出来るだけ押えるだめのアンダーコート2
を塗布する。アンダーコートゐの材料は一般にγアルミ
ナ(γ−紅2o3)全1200’C程度で数時間処理し
たものが最も一般的であるが、この他酸化ジルコニア(
ZrO2)や酸化トリウム(TrO2)なども耐熱性と
云う観点からは良い材料である。さらにこの上から触媒
体3を担持させる。触媒体3の材料は各種のものが可能
である。すなわち貴金属系統、遷移金属酸化物系統、希
土類元素酸化物及びこれらの組合せたもの等多くのもの
が考えられるが、実験の結果pt−pd系のものが最も
良い低温活性及び酸化能力を示した。Multiple tubes made of inorganic heat-resistant materials such as lights (inner diameter 1
~5+nm) 1 are installed in parallel. The inner surface of the tube body 1 is coated with an undercoat 2 which has a large surface area, carries a catalyst, maintains the temperature at a high temperature, and suppresses sintering as much as possible.
Apply. The most common material for the undercoat is γ-alumina (γ-Koku2o3), which has been treated at about 1200'C for several hours, but in addition, zirconia oxide (
ZrO2) and thorium oxide (TrO2) are also good materials from the viewpoint of heat resistance. Furthermore, the catalyst body 3 is supported from above. Various materials can be used for the catalyst body 3. That is, there are many possible materials such as noble metals, transition metal oxides, rare earth element oxides, and combinations thereof, but as a result of experiments, pt-pd materials showed the best low-temperature activity and oxidation ability.
平行に設置し内面処理した管体1群後方には風を送るた
めのファン4が対向設置され、風は管体1外表面からの
放熱を助け、温風として前面に流れるように々っている
。管体1はそれぞれ両端において一つに集められている
。すなわち一方は燃料及び燃焼空気混合気体を送入する
だめの燃料送入管5、他の一方は排気ガスを屋外に排出
させるだめの排出管6となっている。A fan 4 for blowing air is installed opposite to the rear of a group of tubes that are installed in parallel and have inner surfaces treated, and the wind helps dissipate heat from the outer surface of the tubes 1 and flows toward the front as warm air. There is. The tube bodies 1 are each brought together at both ends. That is, one side is a fuel inlet pipe 5 for feeding a mixture of fuel and combustion air, and the other side is an exhaust pipe 6 for discharging exhaust gas outdoors.
なお、管体1の外表面には酸化トリウム及び酸化セリウ
ムの混合層7を担持させである。Note that a mixed layer 7 of thorium oxide and cerium oxide is supported on the outer surface of the tube 1.
次に上記構成におけるその作用を説明する。Next, the operation of the above configuration will be explained.
先ず伺等かの方法によって管体1自身を加熱し、触媒活
性温度にまで持ってゆく。加熱する方法は電気ヒータを
用いるとか、管体1外部から加熱用バーナで加熱するな
ど種々の方式が考えらnる。First, the tube body 1 itself is heated by a method such as the one described above to bring it to the catalyst activation temperature. Various heating methods can be considered, such as using an electric heater or heating from outside the tube body 1 with a heating burner.
次に燃料と燃焼空気混合気体を燃料送入管6より管体1
内に流し込み、管体1内面に担持されている触媒体3上
において触媒燃焼させる。また燃焼が開始されると同時
にファン4が回転し、熱交換のための風が管体1外表面
に触れながら管体1前方に流される。管体1内面で発生
したエネルギーd管体1外表面から輻射線として、ある
いは熱交換されて温風として暖房に供される。Next, the fuel and combustion air mixture is passed through the fuel inlet pipe 6 to the pipe body 1.
catalytic combustion is carried out on the catalyst body 3 supported on the inner surface of the tube body 1. Further, at the same time as combustion starts, the fan 4 rotates, and air for heat exchange is flowed forward of the tube 1 while touching the outer surface of the tube 1. Energy d generated on the inner surface of the tube body 1 is used for heating as radiation from the outer surface of the tube body 1 or as hot air after heat exchange.
次に管体1の内、外面に触媒体3及び酸化トリウム、酸
化セリウムの混合層7を担持させたものを具体的に述べ
る。Next, a structure in which a catalyst body 3 and a mixed layer 7 of thorium oxide and cerium oxide are supported on the inner and outer surfaces of the tube 1 will be specifically described.
管体1材料として内径3φ、外径4φ、長さ250mm
のムライト管を使用した。この管体1内表面及び外表面
にアンダーコートとして使用する材料は次の様に調整し
た。あらかじめ1200’C4時間焼成したγアルミナ
粉末(これによって粉末の表面積は約3oom!/yか
ら約20m!/yになる)をミルにより10μ以下の微
粉末とした。Tube 1 material: inner diameter 3φ, outer diameter 4φ, length 250mm
A mullite tube was used. The material used as an undercoat on the inner and outer surfaces of the tube body 1 was adjusted as follows. Gamma alumina powder which had been previously calcined at 1200'C for 4 hours (thereby changing the surface area of the powder from about 3oom!/y to about 20m!/y) was milled into a fine powder of 10μ or less.
この粉末1oOyに10%アルミナシ/L’30y。10% aluminium/L'30y to 100y of this powder.
硝酸ジルコニウム305F及び水2ooyを加え、よく
混錬させたものを用いた。上記アンダーコート材を管体
1内外表面に付着させた後1oo℃で6時間乾燥し、さ
らに600℃で2時間焼成し丸さらにこの管体1内面に
塩化白金酸溶液を流し、余分な水を流し去t)、100
’C温風中で6時間乾燥し、さらに600℃で2時間焼
成した。担持量は白金の重量比で0.1〜0.2%にな
るよう塩化白金酸水溶液濃度を調整した。305F zirconium nitrate and 2 oz of water were added and thoroughly kneaded. After the undercoat material was applied to the inner and outer surfaces of the tube 1, it was dried at 100°C for 6 hours, and then baked at 600℃ for 2 hours, and then a chloroplatinic acid solution was poured on the inner surface of the tube 1 to remove excess water. wash away t), 100
It was dried in 'C hot air for 6 hours, and further baked at 600°C for 2 hours. The concentration of the chloroplatinic acid aqueous solution was adjusted so that the supported amount was 0.1 to 0.2% by weight of platinum.
7−
最後に管体1の外表面に硝酸トリウム1ooy及び硝酸
セリウム2yを水200 ml に溶解させた溶液を塗
布し100’C温風中で6時間乾燥させ、さらに900
℃?”2時間焼成した。先述したアンダーコートは管体
1外表面には塗布しなくとも差し支えないが、酸化トリ
ウム及び酸化セリウムの密着強度を強く、また均一に付
着せしめるためには塗布したほうがより良い。7- Finally, a solution of 100 ml of thorium nitrate and 2 y of cerium nitrate dissolved in 200 ml of water was applied to the outer surface of the tube body 1, dried in hot air at 100'C for 6 hours, and heated to 900'C.
℃? ``The undercoat described above does not need to be applied to the outer surface of the tube body 1, but it is better to apply it in order to strengthen the adhesion strength of thorium oxide and cerium oxide and to ensure uniform adhesion. .
管体1材料はセラミック材料等の耐熱性無機質からでき
ており、これだけでも表面から効率良く赤外放射線が得
られる。セラミック材料のほうが金属材料に比べ輻射熱
効率は良く、加熱対象物によっても異なるが、例えば水
を加熱するのに金属面放射線よりセラミック放射線のほ
うが15チ前後効率が良く、省エネルギーになることは
公知の事実である。本実施例はこのセラミック材料より
なる管体1外表面に放射線の出やすい材料として處上記
混合層7をコーテングさせることにより、さらに6%前
後改善されることがわかった。The material of the tube 1 is made of a heat-resistant inorganic material such as a ceramic material, and infrared radiation can be efficiently obtained from the surface even with this material. Ceramic materials have better radiant heat efficiency than metal materials, and although it varies depending on the object to be heated, it is well known that, for example, when heating water, ceramic radiation is about 15 cm more efficient than metal surface radiation, resulting in energy savings. It is a fact. In this example, it was found that by coating the outer surface of the tubular body 1 made of this ceramic material with the above mixed layer 7, which is a material that easily emits radiation, the improvement was further improved by about 6%.
また上記の構成により触媒体3は過度の過熱からの破壊
が防止される。すなわちこの種の触媒体3と同類の、セ
ラミックハニカムを用いた触媒体では相当空気過剰にし
て燃焼させないと触媒体自身の温度が上がり実用に耐え
ない。ところが理論空気に近い領域で燃焼させると16
00℃〜1700℃にも達してしまうことがある。そこ
で本実施例による触媒燃焼器では放射線エネルギーによ
る放熱と、空気による熱交換放熱が十分であるため、理
論空気に近い領域でも最高11oo℃程度、平均して9
00〜1000℃で燃焼することができ、触媒体3劣化
についても十分対応できる。Moreover, the above structure prevents the catalyst body 3 from being destroyed due to excessive overheating. In other words, a catalyst body similar to this type of catalyst body 3 that uses a ceramic honeycomb cannot be put into practical use because the temperature of the catalyst body itself rises unless combustion is carried out with a considerable excess of air. However, when burned in a region close to theoretical air, 16
The temperature may even reach 00°C to 1700°C. Therefore, in the catalytic combustor according to this embodiment, heat dissipation by radiation energy and heat exchange heat dissipation by air are sufficient, so even in the region close to theoretical air, the maximum is about 110°C, and the average is about 90°C.
It can burn at temperatures of 00 to 1000°C, and can sufficiently deal with deterioration of the catalyst body 3.
次に本発明の触媒燃焼器による効果を列記する。Next, the effects of the catalytic combustor of the present invention will be listed.
(1) 比較的簡単な構成で排ガスの室内への放出を
防止でき、また輻射線を主体とした暖房が可能な触媒燃
焼器となる。(1) A catalytic combustor with a relatively simple configuration that can prevent exhaust gas from being released into the room and that can perform heating mainly using radiation.
(2)放熱を十分採ることができるので、理論空気量近
くで燃焼させても触媒体が著るしく高温とはならず、触
媒体の劣化寿命を延ばすことが出来、併せて効率の良い
燃焼が可能となる。(2) Sufficient heat dissipation is possible, so even if the catalyst is burned near the theoretical air amount, the catalyst body will not reach a significantly high temperature, and the deterioration life of the catalyst body can be extended, resulting in efficient combustion. becomes possible.
(3)燃焼部分が熱交換器と兼ねているため、装置全体
がコンパクトな形となる。(3) Since the combustion part also serves as a heat exchanger, the entire device becomes compact.
(4)排ガスは室外に排出するが、その排ガス組成も一
般の炎燃焼の場合に比較して、クリーンな成分になる。(4) Although the exhaust gas is discharged outside, the composition of the exhaust gas is cleaner than in the case of general flame combustion.
特にNOxなど一般の炎燃焼の場合1ooppm(酸素
0換算時)であるのに比較して本発明の触媒燃焼器は例
えばs ppm (酸素0換算時)以下となり、またG
Oもほとんど検出されないクリーンなものとなる。In particular, compared to 1 ooppm (when converted to 0 oxygen) in the case of general flame combustion such as NOx, the catalytic combustor of the present invention has, for example, less than s ppm (when converted to 0 oxygen), and
O is also almost undetectable, making it a clean product.
の拡大断面図である。
1・・・・・・管体、3・・・・・・触媒体、4・・・
・・・ファン、7・・・・・・混合層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図FIG. 1... Tube body, 3... Catalyst body, 4...
...Fan, 7...Mixed layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure
Claims (1)
るいは気化させた液体燃料と燃焼空気との混合物が送り
込まれる管体内面に触媒体を担持させるとともに、この
管体外面に、酸化トリウム及び酸化セリウムを担持させ
た触媒燃焼器。 (2)耐熱性無機質はアルミナ、ムライト、コーディエ
ライト、アルミニウムチタネールの少なくとも一つより
なる特許請求の範囲第1項記載の触媒燃焼器。 (3)管体内径を1.0〜5.0 mmとした特許請求
の範囲第1項記載の触媒燃焼器。 (4酸化トリウム及び酸化セリウムの割合は100:0
.1から1oO:10の範囲とした特許請求の範囲第1
項記載の触媒燃焼器。 (5)管体に対向してファンを設けた特許請求の範囲 燃焼器。[Scope of Claims] (1) A catalyst body is supported on the inner surface of a tube made of a heat-resistant inorganic material, into which a mixture of gas fuel or vaporized liquid fuel and combustion air is fed from one port, and this tube A catalytic combustor with thorium oxide and cerium oxide supported on its outer surface. (2) The catalytic combustor according to claim 1, wherein the heat-resistant inorganic material is at least one of alumina, mullite, cordierite, and aluminum titanate. (3) The catalytic combustor according to claim 1, wherein the inner diameter of the tube is 1.0 to 5.0 mm. (The ratio of thorium tetroxide and cerium oxide is 100:0
.. Claim 1 in the range of 1 to 1oO:10
Catalytic combustor as described in section. (5) A combustor as claimed in the claim, in which a fan is provided opposite to the pipe body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16325781A JPS5864418A (en) | 1981-10-13 | 1981-10-13 | Catalytic combustor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16325781A JPS5864418A (en) | 1981-10-13 | 1981-10-13 | Catalytic combustor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5864418A true JPS5864418A (en) | 1983-04-16 |
Family
ID=15770352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16325781A Pending JPS5864418A (en) | 1981-10-13 | 1981-10-13 | Catalytic combustor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864418A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4837528A (en) * | 1971-09-16 | 1973-06-02 | ||
JPS556433A (en) * | 1978-06-28 | 1980-01-17 | Nisshin Steel Co Ltd | Stainless steel radiator and production thereof |
JPS5534148B2 (en) * | 1977-05-16 | 1980-09-04 |
-
1981
- 1981-10-13 JP JP16325781A patent/JPS5864418A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4837528A (en) * | 1971-09-16 | 1973-06-02 | ||
JPS5534148B2 (en) * | 1977-05-16 | 1980-09-04 | ||
JPS556433A (en) * | 1978-06-28 | 1980-01-17 | Nisshin Steel Co Ltd | Stainless steel radiator and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6133233A (en) | Combustion catalyst for methane fuel and combustion system using said catalyst | |
JPS6312225B2 (en) | ||
JPS5864418A (en) | Catalytic combustor | |
JPH0156326B2 (en) | ||
JPS5862415A (en) | Catalytic combustor | |
JPH02268830A (en) | Catalyst for combustion of kerosene type fuel | |
JPS60205115A (en) | Combustion catalyst system and combustion therewith | |
JPH0220902B2 (en) | ||
JPS60207818A (en) | Liquid fuel burner | |
JPS58139742A (en) | Catalytic body for combustion | |
JPS60202259A (en) | Catalytic combustion type hot water supplier | |
JPS61291820A (en) | Catalytic burner | |
JP3568314B2 (en) | Heating equipment | |
JP2567992B2 (en) | Catalytic combustion device | |
JPS6377542A (en) | Catalytic body for combustion of kerosine-based fuel | |
JPH033774Y2 (en) | ||
JP3036611B2 (en) | Catalytic combustion device | |
JP3261710B2 (en) | Combustion catalyst and its manufacturing method | |
JPH11248160A (en) | Catalyst combustion device | |
JP2720614B2 (en) | Catalytic combustion device | |
JPH05103983A (en) | Catalytic structure using ag as substrate | |
JP3950528B2 (en) | Combustion catalyst | |
JP3595720B2 (en) | Catalytic combustion heating device | |
JPH08587Y2 (en) | Catalytic combustion device | |
JPH0216103Y2 (en) |