JPS585749B2 - Casting method for titanium castings made of pure titanium or alloys whose main component is titanium - Google Patents
Casting method for titanium castings made of pure titanium or alloys whose main component is titaniumInfo
- Publication number
- JPS585749B2 JPS585749B2 JP3013581A JP3013581A JPS585749B2 JP S585749 B2 JPS585749 B2 JP S585749B2 JP 3013581 A JP3013581 A JP 3013581A JP 3013581 A JP3013581 A JP 3013581A JP S585749 B2 JPS585749 B2 JP S585749B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- casting
- mold
- crucible
- titanium casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/005—Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dental Prosthetics (AREA)
Description
【発明の詳細な説明】
本発明は、純チタンまたはチタンを主成分とする合金か
らなるチタン鋳物材料を、殆んど乃至は全く酸化させず
に鋳造できるようにするチタン鋳造品の鋳造方法を提供
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for casting titanium castings that enables casting of titanium casting materials made of pure titanium or alloys mainly composed of titanium with little or no oxidation. This is what we provide.
純チタンまたはチタンを主成分とする合金からなるチタ
ツ材料は、耐熱性が高く、強靭性・耐摩耗性・耐蝕性に
優れ、軽く、その他諸々の点で物理的性質・機械的性質
に遥かに優れ、また、生体とのぬれ性(生体に対してな
じみがよく、手術で生体に埋入しても生体の害にならな
い性質)もよいことから、工業界は勿論、義歯や整形手
術等の外科医療界などでも、活用されることを待ち望ま
れている。Titanium materials made of pure titanium or titanium-based alloys have high heat resistance, excellent toughness, wear resistance, and corrosion resistance, are light, and have far superior physical and mechanical properties in many other respects. It also has good wettability with living organisms (a property that is compatible with living organisms and does not cause harm to living organisms even when implanted into living organisms during surgery), so it is used not only in industry but also in dentures, plastic surgery, etc. It is eagerly awaited that it will be put to use in the surgical medical field.
しかし、チタン材料は活性度が非常に高く、冷間鍛造時
でさえ急速に酸化してしまうことから、加工が極めて難
かくし、特殊な設備と技術を駆使}して真空雰囲気下で
冷間鍛造により細々と加工されている程度にとどまって
いる。However, titanium material has extremely high activity and oxidizes rapidly even during cold forging, making it extremely difficult to process and requiring special equipment and techniques to be cold forged in a vacuum atmosphere. It has only been processed in detail.
このため、チタン製品は、義歯などの複雑で精巧な形の
ものを産業ベースとして製造できないうえ、単純で粗い
形のものでも生産性が極めて悪く、加工コストが著しく
高くつき、実用性に極度に劣る。For this reason, titanium products cannot be manufactured on an industrial basis for complex and elaborate shapes such as dentures, and even for simple and rough shapes, the productivity is extremely low and the processing cost is extremely high, making it extremely impractical. Inferior.
本発明者は、歯科鋳造機を用い、チタン鋳物材料を不活
性ガス雰囲気下でシリカ材料製鋳型に鋳込む実験を繰返
したところ、殆んど完全な不活性ガス雰囲気に保ったに
も拘わらず、鋳造されたチタン鋳造品は酸化度合が高く
、黒くなり、実用的には使用できなかった。The inventor repeatedly conducted experiments in which titanium casting materials were cast into silica molds under an inert gas atmosphere using a dental casting machine, and found that despite maintaining an almost perfect inert gas atmosphere, , the titanium castings that were cast had a high degree of oxidation and turned black, making them unusable for practical use.
鋳造機についても、色々と検討を加えたが、実用的なチ
タン鋳造品を得られなかった。We also considered various casting machines, but were unable to produce a practical titanium cast product.
さらに、種々の物質で鋳型を作っては実験を繰返したと
ころ、チタン鋳造品の酸化度合が比較的少なくて、しか
も鋳型としての造型性に優れるものとして、マグネシア
で造った鋳型の場合に少し良い結果が得られたが、まだ
まだ実用性にはほど遠い。Furthermore, after repeated experiments with molds made from various materials, it was found that titanium castings have a relatively low degree of oxidation and are superior in formability as molds, and molds made from magnesia were found to be slightly better. Although the results have been obtained, it is still far from practical.
さらに改良を重ねるうち、マグネシア製の鍛型をある程
度低温に保ちながら、チタン鋳物材料を鋳込んだ場合や
、マグネシア製の鍛型材料にチタン鋳物材料を少量鋳込
んだ場合に、殆んど酸化していない良好なチタン鋳造品
を得ることができるそこで、その原因を追究した結果、
次の事が判明した。As we continued to make further improvements, we discovered that when titanium casting material was cast into a magnesia forging die while keeping it at a certain low temperature, or when a small amount of titanium casting material was cast into a magnesia forging die, almost no oxidation occurred. As a result of investigating the cause of this,
The following was discovered.
即ち、鋳型を簡単に高精度に作り易い材料としては、シ
リカなどの酸化物が適する。That is, oxides such as silica are suitable as materials that allow the mold to be easily made with high precision.
しかし、酸化物製の鋳型で造ったチタン鋳造品は、酸化
がひどく、実用的でない。However, titanium castings made using oxide molds are severely oxidized and are not practical.
酸化の原因は、鋳込時にチタン鋳物材料の溶湯(融点1
668℃、標準鋳込温度1800〜1900°C)が非
常に高い活性で酸化物製鋳型から酸素を奪い取り、チタ
ン鋳物材料が酸化してしまうことが確認できた。The cause of oxidation is that the molten titanium casting material (melting point 1
It was confirmed that the titanium casting material was oxidized by removing oxygen from the oxide mold with very high activity (668°C, standard casting temperature 1800-1900°C).
このことは、第6図の温度対酸化物生成エネルギー線図
のチタンの場合の線図イ又はロとシリカ2SiO又はS
iO2の場合の線図ハ、ニとの関係からも裏付けること
ができた。This shows that in the temperature vs. oxide formation energy diagram in Figure 6, the diagram A or B for titanium and the diagram for silica 2SiO or S
This was also supported by the relationship between C and D in the diagram for iO2.
また、チタンの場合の線図イ又はロとマグネシアの場合
の線図ホとの関係からは、チタン鋳物材料の適正な鋳込
温度約1900〜2000℃の雰囲気下でも、チタン鋳
物材料が激しく酸化してしまうことが裏付けられる。Furthermore, from the relationship between diagram A or B in the case of titanium and diagram E in the case of magnesia, titanium casting materials are severely oxidized even in an atmosphere with an appropriate casting temperature of about 1900 to 2000°C. It is confirmed that this will happen.
本願第1発明は、酸化の殆んど乃至は全く生じないチタ
ン鋳造品の鋳造方法を開発したものであり、チタン鋳造
用鋳型を純マグネシアまたはマグネシアを主成分とする
マグネシア鋳型材料で造型し、チタン鋳物材料を溶解し
て鋳込んだときに、マグネシア鋳型材料製チタン鋳造型
内のチタン鋳物材料を一定温度以下に、初めから保つか
速やかに冷却するかすることにより、マグネシア鋳型材
料のマグネシウム成分と酸素成分との結合を安定良く維
持し、チタン鋳物材料の溶湯が鋳込み後に凝固冷却する
間に、マグネシア鋳型材料中の酸素を奪い取って酸化す
ることを、殆んど乃至は全く生じさせないようにして、
チタン鋳造品を殆んど酸化させることなく、良好に鋳込
める鋳造方法を提供するものである。The first invention of the present application has developed a method for casting titanium castings in which little or no oxidation occurs, in which a titanium casting mold is molded with pure magnesia or a magnesia molding material containing magnesia as a main component, When the titanium casting material is melted and cast, the magnesium content of the magnesia molding material is reduced by keeping the titanium casting material in the titanium casting mold made of magnesia molding material below a certain temperature from the beginning or cooling it quickly. The bond between the magnesia mold material and the oxygen component is maintained in a stable manner, and while the molten titanium casting material solidifies and cools after being cast, the oxygen in the magnesia mold material is taken away and oxidation occurs little to no. hand,
The purpose of the present invention is to provide a casting method that allows titanium castings to be cast well without oxidizing them.
本願第2発明は、第1発明を更に改善して、殆んど酸化
のないチタン鋳造品の鋳造性能を高めて、精密で鋳造欠
陥の無い高品質のものとして鋳造できるようにするもの
であり、そのためにチタン鋳物材料の溶湯を鋳型に不活
性ガス流で勢いよく鋳込ませるとともに、鋳込後も不活
性ガスで圧迫して押湯の作用を強く維持する鋳造方法を
提供するものである。The second invention of the present application further improves the first invention to improve the casting performance of titanium castings with almost no oxidation, so that it is possible to cast high-quality products with precision and no casting defects. To this end, we provide a casting method in which molten titanium casting material is vigorously poured into a mold using an inert gas flow, and even after casting, the molten metal is compressed with inert gas to maintain the strong action of the riser. .
次に、本願発明の実施に供する自動精密鋳造機の実施例
及び本願発明の実施手順例について詳しく説明する。Next, an example of an automatic precision casting machine for carrying out the present invention and an example of the procedure for carrying out the present invention will be described in detail.
図面は自動精密鋳造機を示し、その鋳造の基本原理は次
の通りである。The drawing shows an automatic precision casting machine, and the basic principle of its casting is as follows.
即ち、溶解室1内において、アーク放電電極棒2と所定
の円柱のチタン鋳物材料3との間に高電圧を印加して、
そこにアーク放電4を起し、チタン鋳物材料3を溶解す
る。That is, in the melting chamber 1, a high voltage is applied between the arc discharge electrode rod 2 and a predetermined cylindrical titanium casting material 3,
An arc discharge 4 is generated there, and the titanium casting material 3 is melted.
第4図イ乃至二に示すように、チタン鋳物材料3が上か
ら順に溶け落ちてるつぼ5に受溜められ、冫下まで完全
に溶けたときに、るつぼ5の底壁の出湯孔6が固形材料
底部で閉塞されなくなり、溶解材料3aが自重で出湯孔
6及び通湯孔7を通り、鋳込室8内でチタン鋳造用鋳型
13の湯口10から造形空洞11に流れ込む。As shown in FIGS. 4A to 2, the titanium casting material 3 is collected in the crucible 5, which melts down from the top, and when it is completely melted to the bottom, the tap hole 6 in the bottom wall of the crucible 5 becomes solid. The material is no longer blocked at the bottom, and the molten material 3a passes through the tapping hole 6 and the pouring hole 7 under its own weight, and flows into the forming cavity 11 from the sprue 10 of the titanium casting mold 13 in the casting chamber 8.
チタン鋳物材料3の溶解前から鋳込み後まで、溶解室1
及び鋳込室8を不活性ガス雰囲気に保つ事により、材料
の酸化等の変質を防ぐ。From before melting titanium casting material 3 to after casting, melting chamber 1
By maintaining the casting chamber 8 in an inert gas atmosphere, deterioration such as oxidation of the material is prevented.
また、不活性ガスを差圧約4kg/fflで溶解室1か
ら連通溝12、通湯孔7、鋳型13内の湯口10、造形
空[洞11、通気性埋没材から成るチタン鋳造用鋳型1
3を経て鋳込室8に流し続ける事により、チタン鋳物材
料3が完全に溶解して鋳型13に流れ込む際に、溶解材
料3aを不活性ガス流に乗せて鋳型13の造形空洞11
の奥深くまでスムースに流れ込ませた後、差圧約4kg
/fflで押圧し続けて、湯回りをよくする。In addition, an inert gas is supplied from the melting chamber 1 at a differential pressure of about 4 kg/ffl to the communication groove 12, the pouring hole 7, the sprue 10 in the mold 13, the modeling cavity 11, and the titanium casting mold 1 consisting of an air-permeable investment material.
3 and continues to flow into the casting chamber 8, when the titanium casting material 3 is completely melted and flows into the mold 13, the melted material 3a is carried by the inert gas flow and is poured into the molding cavity 11 of the mold 13.
After flowing smoothly deep into the body, the differential pressure is approximately 4 kg.
Continue pressing with /ffl to make the hot water flow better.
このための不活性ガス流の制御は次のように行なう。The inert gas flow for this purpose is controlled as follows.
即ち、電気制御装置14の起動ボタン15を押すと、真
空ポンプ16が始動し、溶解室1がガス管17,20、
電磁三方弁18、接続器19を経て真空引きされるとと
もに、鋳込室8がガス管20,21、ストレーナ22を
経て真空引きされる。That is, when the start button 15 of the electric control device 14 is pressed, the vacuum pump 16 is started, and the melting chamber 1 is connected to the gas pipes 17, 20,
The casting chamber 8 is evacuated via the electromagnetic three-way valve 18 and the connector 19, and the casting chamber 8 is evacuated via the gas pipes 20, 21 and the strainer 22.
溶解室1及び鋳込室8の真空度が70〇一Hgになると
、真空スイッチ23が作動して、電aE方弁18の弁体
18aが左行され、溶解室1は真空引きが停止されると
同時に、ボンベ24からアルゴン等の不活性ガスが圧力
設定弁25で3kg/cr?tに設定されて、ガス管1
7.25’、電磁三方弁18を経て注入され、3気圧に
保たれる。When the degree of vacuum in the melting chamber 1 and the casting chamber 8 reaches 7001 Hg, the vacuum switch 23 is activated, the valve body 18a of the electric aE-way valve 18 is moved to the left, and the evacuation of the melting chamber 1 is stopped. At the same time, inert gas such as argon is supplied from the cylinder 24 to the pressure setting valve 25 at a rate of 3 kg/cr? t, gas pipe 1
7.25', is injected through the electromagnetic three-way valve 18 and maintained at 3 atmospheres.
鋳込室8は鋳込み完了まで真空引きされ続ける。The casting chamber 8 continues to be evacuated until the casting is completed.
溶解室1がO− 5 kg/fflを経過したときに、
圧力スイッチ26が作動して、溶解装置Mアーク放電電
源盤27をオンさせ、アーク放電電極棒2とチタン鋳物
材料3との間にアーク4を起させる。When the melting chamber 1 exceeds O-5 kg/ffl,
The pressure switch 26 is activated to turn on the melting device M arc discharge power panel 27, causing an arc 4 between the arc discharge electrode rod 2 and the titanium casting material 3.
鋳込み完了後に、電気制御装置14が、真空ポンプ16
及び電磁三方弁18を作動停止させ、弁体18aを右行
させて、真空引き及び不活性ガス注入を停止し、溶解室
1内の不活性ガスをガス管17、電磁三方弁18、接続
器19を介して逆止弁28から大気中に逃すとともに、
その一部を鋳込室8に引込ませる。After the casting is completed, the electric control device 14 turns on the vacuum pump 16.
Then, the electromagnetic three-way valve 18 is deactivated, the valve body 18a is moved to the right, and evacuation and inert gas injection are stopped. 19 to the atmosphere from the check valve 28,
A part of it is drawn into the casting chamber 8.
これにより、溶解室1及び鋳込室8が大気圧になり、鋳
造が完了する。As a result, the melting chamber 1 and the casting chamber 8 are brought to atmospheric pressure, and casting is completed.
上記チタン鋳物材料3としては、純チタン又はチタンを
主成分とする合金を用いるが、この極めて活性度が高く
酸化物を生成し易いチタン鋳物材料3の酸化を防ぐ為に
、チタン鋳造用鋳型材料として純マグネシア又はマグネ
シアを主成分とするマグネシア鋳型材料を用いる。As the titanium casting material 3, pure titanium or an alloy mainly composed of titanium is used.In order to prevent oxidation of the titanium casting material 3, which has extremely high activity and easily generates oxides, titanium casting mold material 3 is used. Pure magnesia or a magnesia mold material containing magnesia as a main component is used as the material.
つまり、第6図の温度対酸化物生成エネルギーの線図か
ら判るように、温度約1700℃以下では、2MgOの
線図ホは2TiOの線図口の下側に位置し、純マグネシ
ア(MgO)が生成されるときの酸化物生成エネルギー
がチタンの酸化物生成エネルギーよりも小さい。In other words, as can be seen from the temperature vs. oxide formation energy diagram in Figure 6, at temperatures below about 1700°C, the 2MgO diagram H is located below the 2TiO diagram, and pure magnesia (MgO) The oxide formation energy when is generated is smaller than the oxide formation energy of titanium.
即ち、温度約1700℃以下では、マグネシア鋳型材料
中の酸素とチタン鋳物材料とは殆んど乃至は全く結合反
応を起さないことを示している。That is, it is shown that at temperatures below about 1700° C., there is little or no bonding reaction between the oxygen in the magnesia molding material and the titanium casting material.
しかし、チタン鋳物材料の鋳込時の溶湯の温度は約19
00〜2000℃なので、上記の温度1700℃より高
く、鋳込れるチタン鋳物材料と鋳型13中の酸素との酸
化反応を防止できない。However, the temperature of the molten metal during casting of titanium casting materials is approximately 19
Since the temperature is 00 to 2000°C, it is higher than the above temperature of 1700°C, and an oxidation reaction between the titanium casting material to be cast and oxygen in the mold 13 cannot be prevented.
そこで、本発明では、マグネシア鋳型材料でチタン鋳造
用鋳型を形成すると同時に、この鋳型13の少なくとも
チタン鋳物材料3の溶湯3aに接触する部分を、初めか
ら約1700℃以下の温度に保持するか速やかに冷却す
るかするものである。Therefore, in the present invention, while forming a titanium casting mold using magnesia mold material, at least the part of this mold 13 that contacts the molten metal 3a of the titanium casting material 3 is maintained at a temperature of about 1700° C. or less from the beginning or immediately It should be cooled or cooled down.
そして、この実施例では、チタン鋳物材料3の鋳込質量
を少なくし、鋳込時に大質量の鋳型13でチタン鋳物材
料3の溶湯3aを速やかに冷却する方法を用いている。In this embodiment, a method is used in which the mass of the titanium casting material 3 to be cast is reduced and the molten metal 3a of the titanium casting material 3 is quickly cooled using a large-mass mold 13 during casting.
また、上記マグネシアを主成分とするマグネシア鋳型材
料として、例えば耐熱材用に市販されている日本化学陶
業社製のマグネシアクリンカーM2,M4(第1表にそ
の成分を示す)とを各々40%、60%の比率で混合し
、この混合物90%に対して粒度調整剤としてジルコニ
ア又はジルコンサンドを10%を添加したものを用いる
。In addition, as the magnesia mold material containing magnesia as the main component, for example, 40% each of magnesia clinkers M2 and M4 (components are shown in Table 1) manufactured by Nihon Kagaku Togyo Co., Ltd., which are commercially available for heat-resistant materials, The mixture is mixed at a ratio of 60%, and 10% of zirconia or zircon sand is added as a particle size control agent to 90% of this mixture.
マグネシアはシリカよりもその触点が1100℃も高温
の耐熱材料であり、高温安定性に優れることから、従来
は高耐火セメントとして真空溶解炉のスタンプ材やるつ
ぼのバックアップ材等に用いられている。Magnesia is a heat-resistant material whose contact point is 1100℃ higher than that of silica, and because of its excellent high-temperature stability, it has traditionally been used as a highly refractory cement for stamping materials in vacuum melting furnaces and backup materials for crucibles. .
マグネシア鋳型材料は耐熱性に優れるだけでなく、次の
ような利点も併有している。Magnesia mold material not only has excellent heat resistance, but also has the following advantages:
即ち、上記マグネシアクリンカーM2,M4は、水を加
えて練和するだけで、ボルトランドセメントのように凝
結するので、鋳型の製作が容易であるQ
しかも、マグネシアはシリカのように変態をせず、その
熱膨張曲線は金属のように略直線を示し、1000℃で
約1.1%膨張する。In other words, the magnesia clinkers M2 and M4 solidify like Boltland cement just by adding water and kneading them, so it is easy to make molds.Q Moreover, magnesia does not undergo transformation like silica. , its thermal expansion curve shows a substantially straight line like that of metal, and expands by about 1.1% at 1000°C.
この特性は義歯等の精密鋳造品を製作する場合に有利と
なる。This characteristic is advantageous when manufacturing precision cast products such as dentures.
即ち、マグネシア鋳物材料製のチタン鋳造用鋳型13を
加熱装置で所定温度まで予熱して膨張させてから、チタ
ン鋳物材料3の溶湯3aを鋳込むことにより、鋳込後の
チタン鋳物材料の凝固・冷却時の収縮に起因してチタン
鋳造品が鋳造用原型よりも小さくなる度合を少なくする
方法が可能となる。That is, by preheating the titanium casting mold 13 made of magnesia casting material to a predetermined temperature with a heating device and expanding it, and then pouring the molten metal 3a of the titanium casting material 3, the titanium casting material after casting is solidified and expanded. A method is possible that reduces the degree to which a titanium casting becomes smaller than a casting master due to shrinkage during cooling.
次に、自動精密鋳造機の構造を具体的に説明する。Next, the structure of the automatic precision casting machine will be specifically explained.
即ち、符号29はアルミ合金又は亜鉛合金製の鋳造機本
体であり、その内部に溶解−1と鋳込室8とが区鳥壁4
2で上下に区査して形成される。That is, the reference numeral 29 is a casting machine body made of aluminum alloy or zinc alloy, in which a melting chamber 1 and a casting chamber 8 are separated by a bird wall 4.
2, it is formed by dividing it vertically.
鋳造機本体29の前壁部分がフランジ状に形成され、こ
のフランジ部30に溶解室1の操作口31の鋳込室8の
操作口32とが上下に並んで開口する。The front wall portion of the casting machine main body 29 is formed into a flange shape, and an operation port 31 of the melting chamber 1 and an operation port 32 of the casting chamber 8 are opened in the flange portion 30 side by side vertically.
チタン鋳惣材料3棹びるつぼ5は溶解室1に操作口31
から出し入れでき、鋳型13とその円筒型枠47とから
なる鋳型体9は鋳込室8に操作口32から出し入れでき
る。The crucible 5 containing the titanium casting material 3 has an operation port 31 in the melting chamber 1.
The mold body 9 consisting of the mold 13 and its cylindrical frame 47 can be taken in and out of the casting chamber 8 through the operation port 32.
両操作口3L32は一枚の扉式蓋33で同時に開閉され
、閉蓋ロツク機構34で閉蓋ロツクされ0 1Jング3
5 ,36で保密される。Both operation ports 3L32 are opened and closed simultaneously by a single door type lid 33, and closed and locked by a closing lid locking mechanism 34.
5, 36.
即ち、蓋33はフランジ部30に対して、その右端の上
部及び下部の両ヒンジ37を支点として、開閉自在であ
り、その左端の中間高さ部で閉蓋ロツクされる。That is, the lid 33 can be opened and closed with respect to the flange portion 30 using both the upper and lower hinges 37 at the right end as fulcrums, and is locked at the intermediate height portion at the left end.
閉蓋ロツク機構34は、蓋33に揺動自在に枢支させた
レバー38と、レバー38の軸39の後端に形成した係
止爪40を係止するためにフランジ部30の背面に形成
した係止受部41とからなる。The lid closing lock mechanism 34 is formed on the back surface of the flange portion 30 to lock a lever 38 pivotably supported on the lid 33 and a locking pawl 40 formed at the rear end of the shaft 39 of the lever 38. It consists of a locking receiving part 41.
区書壁42の中央に取付孔67が明けられ、取付孔67
に鉋金等の銅合金又は銅製のるつぼ受台43が着脱自在
に貫通状に固定され、るつぼ受台43の中央に通湯孔7
が明けられる。A mounting hole 67 is drilled in the center of the ward wall 42, and the mounting hole 67
A crucible holder 43 made of copper alloy or copper such as a planer is removably fixed in a penetrating manner, and a hot water through hole 7 is provided in the center of the crucible holder 43.
is dawned.
通湯孔7を挾んで、溶解室1にるつぼ5が、鋳込室8に
鋳型体9がそれぞれ配置されて、るつぼ受台43の上下
各面に接当する。A crucible 5 is disposed in the melting chamber 1 and a mold body 9 is disposed in the casting chamber 8, sandwiching the pouring hole 7, and abuts on the upper and lower surfaces of the crucible holder 43.
溶解室1の上部空間の中央に溶解装置Mアーク放電電極
棒2が、るつぼ5上に置いたチタン鋳物材料3に上から
対向する状態に配置される。In the center of the upper space of the melting chamber 1, the arc discharge electrode rod 2 of the melting device M is arranged to face the titanium casting material 3 placed on the crucible 5 from above.
るつぼ5は第3図に示すように構成される。The crucible 5 is constructed as shown in FIG.
即ち、るつぼ本体44は銅・銅を主成分とする銅合金又
は純炭素や炭素を主成分とする物質からなる炭素材料で
短円柱形に形成され、その内部に材料容室45が逆円錐
形で形成される。That is, the crucible body 44 is made of copper, a copper alloy containing copper as a main component, or a carbon material made of pure carbon or a substance containing carbon as a main component, and is formed into a short cylindrical shape. is formed.
材料容室45の中央底面に円柱形のチタン鋳物材料3の
受面46が逆円錐形に形成され、この材料受而46内の
中央で、るつぼ本体44の底壁に溶解材料の出湯孔6明
けられる。A receiving surface 46 for the cylindrical titanium casting material 3 is formed in the shape of an inverted cone on the central bottom surface of the material chamber 45, and a tap hole 6 for dissolving the melted material is formed in the bottom wall of the crucible body 44 at the center of the material receiving surface 46. It's dawning.
出湯孔6は、上部が円錐面で紋られ、その下部が円筒面
に形成される。The tap hole 6 has a conical surface at its upper part, and a cylindrical surface at its lower part.
るつぼ本体44の底面に前記連通溝12が十字に切抜か
れる。The communication groove 12 is cut out in a cross shape on the bottom surface of the crucible body 44.
そして、るつぼ5は、その材料容室45の容積の割に、
質量の大きな厚肉状に形成し、この大質.量の銅材料製
るつぼ5内でチタン鋳物材料3を溶解するときに、チタ
ン鋳物材料3の溶湯3aからるつぼ5に伝えられた熱エ
ネルギーをるつぼ5の肉壁の各部に速やかにしかも広範
囲に拡散させることI’cより、るつぼ5のチタン鋳物
材料3の溶湯3aと接触する部分の温度上昇速度を大幅
に低下させ、るつぼ5のその部分が溶解温度にまで上昇
するよりも前に、チタン鋳物材料3の溶湯3aをるつぼ
5からチタン鋳造用鋳型13に注湯し終えるものとする
。And, the crucible 5 has a capacity of
It is formed into a thick wall with a large mass, and has a high quality. When melting the titanium casting material 3 in the crucible 5 made of copper material, the thermal energy transmitted from the molten metal 3a of the titanium casting material 3 to the crucible 5 is quickly and widely diffused to each part of the wall of the crucible 5. By making I'c, the rate of temperature rise of the part of the crucible 5 that contacts the molten metal 3a of the titanium casting material 3 is significantly reduced, and the titanium casting material is heated before that part of the crucible 5 reaches the melting temperature. It is assumed that the molten metal 3a of the material 3 has been poured from the crucible 5 into the titanium casting mold 13.
次に、第2図に示すように、アーク放電電源盤2γの出
力端子の一極27aがアーク放電電極棒2に接続され、
その十極27bが鋳造機本体29に接続されてるつぼ受
台43及びるつぼ5を介してるつぼ5内の鋳物材料3に
導通される。Next, as shown in FIG. 2, one pole 27a of the output terminal of the arc discharge power supply board 2γ is connected to the arc discharge electrode rod 2,
The ten poles 27b are electrically connected to the casting material 3 in the crucible 5 through the crucible holder 43 and the crucible 5, which are connected to the casting machine main body 29.
鋳型体9は鉄製の円筒型枠47内に原型を配設し、そこ
に水を加えて練ったマグネシア鋳型材料の埋没材を流込
んで凝結させてから、これを電気炉で約800℃で焼結
して形成されたものである。The mold body 9 is made by placing a prototype in an iron cylindrical mold 47, pouring an investment material of magnesia mold material kneaded with water into it and solidifying it, and then heating it at about 800°C in an electric furnace. It is formed by sintering.
この鋳型13は多孔質にして通気性に富み、その上部に
湯口10及びその下部に造形空洞11が形成される。This mold 13 is porous and highly breathable, and has a sprue 10 in its upper part and a modeling cavity 11 in its lower part.
鋳型体9は鋳型受台48上に置かれ、回転操作具49を
締回す事により、1回転カムの1種である渦巻形板カム
50で支軸51及び鋳型受台48を介して押上げられて
、封止具52を挾んで受台43の通湯孔7の周壁の下面
の鋳型受面53に気密接当される。The mold body 9 is placed on the mold pedestal 48, and by tightening the rotary operating tool 49, it is pushed up via the support shaft 51 and the mold pedestal 48 by a spiral plate cam 50, which is a type of one-rotation cam. Then, it is brought into airtight contact with the mold receiving surface 53 on the lower surface of the peripheral wall of the pouring hole 7 of the pedestal 43 with the sealing member 52 in between.
即ち、鋳込室8の底壁に側面逆L形のブラケット54が
固定され、ブラケット54の土壁部に昇降案内孔55が
縦向きに、その前壁部に枢支孔56が前後向きに明けら
れる。That is, a bracket 54 with an inverted L-shaped side surface is fixed to the bottom wall of the casting chamber 8, and a lifting guide hole 55 is vertically oriented in the clay wall of the bracket 54, and a pivot hole 56 is oriented longitudinally in the front wall of the bracket 54. It's dawning.
枢支孔56にカム軸57の中間部が回転自在に枢支され
、その前端部に回転操作具49が、その後端部に渦巻形
板カム50が外嵌固定される。An intermediate portion of a camshaft 57 is rotatably supported in the pivot hole 56, and a rotation operating tool 49 is externally fitted and fixed to the front end of the camshaft 57, and a spiral plate cam 50 is externally fixed to the rear end thereof.
昇降案内孔55に支軸51が昇降自在に貫通し、その嵌
合隙間は0 1Jング52で封止される。A support shaft 51 passes through the elevating guide hole 55 so as to be movable up and down, and the fitting gap therebetween is sealed with an 01J ring 52.
支軸51の上端部は鋳込室8内で鋳型受台48を固定支
持し、その下端部は円弧面のカムフオロア58に形成さ
れて、カム50上に線接敏する。The upper end of the support shaft 51 fixedly supports the mold pedestal 48 in the casting chamber 8, and the lower end thereof is formed into a cam follower 58 having an arcuate surface and is in line contact with the cam 50.
カムフオロア58は、ブラケット54の前壁部の背面の
回り止め而59に昇降摺動自在に平面接触して、回り止
めされる。The cam follower 58 is prevented from rotating by coming into planar contact with a rotation stopper 59 on the back surface of the front wall of the bracket 54 so as to be slidable up and down.
鋳型受台48は引降しバネ60で引降し付勢され、引降
しバネ60はカム50の背方でカムフオロア58及びブ
ラケット54から突設した両バネ係止具61 .62に
架着される。The mold pedestal 48 is urged downward by a pull-down spring 60, and the pull-down spring 60 is connected to both spring locking devices 61 . 62.
鋳型受台48は上下二分割体63 .64から成り、下
側分割体63に対して上側分割体64をダボ65穴と6
6穴との嵌合で同心状に載せることも取除く事も自由に
できる。The mold pedestal 48 is an upper and lower halves 63. 64, the upper divided body 64 is connected to the lower divided body 63 with dowels 65 holes and 6
By fitting with 6 holes, it can be placed concentrically or removed freely.
各分割体63.64の上面には同心円及び十字の通気溝
68が形成される。Concentric and cross ventilation grooves 68 are formed on the upper surface of each divided body 63,64.
尚、符号69は水冷孔であり、受台43を取り囲む形で
区喬壁42の肉壁内に透設されている。Incidentally, reference numeral 69 is a water cooling hole, which is provided through the wall of the partition wall 42 to surround the pedestal 43.
本願発明は、上記の実施例になる自動精密鋳造機を用い
て、上記のようにチタン鋳物材料を鋳造する方法である
が、結局第1発明は、次の手順になる方法である。The present invention is a method of casting a titanium casting material as described above using the automatic precision casting machine according to the embodiment described above, but the first invention is a method that involves the following steps.
純チタン又はチタンを主成分とする合金から成るチタン
鋳物材料3を鋳造するのに用いるチタン鋳造用鋳型13
を、純マグネシア又はマグネシアを主成分とするマグネ
シア鋳型材料で造型し、チタン鋳物材料3を鍛造機のる
つぼ5内で無酸素雰囲気下に溶解装置で溶解し、無酸素
雰囲気を維持しながら、チタン鋳物材料3の溶湯3aを
るつぼ5からマグネシア鋳型材料製のチタン鋳造用鋳型
13に鋳込み、チタン鋳物材料3の酸化物生成エネルギ
ーをマグネシアが生成されるときのマグネシウムの酸化
物生成エネルギーよりも大きい値になる温度に、マグネ
シア鋳型材料製のチタン鋳造用鋳型13のうちの少なく
ともチタン鋳物材料3と接触する部分を、初めから保持
するか速やかに冷却するかし、これによりチタン鋳造用
鋳型13に鋳込まれたチタン鋳物材料3がチタン鋳造用
鋳型13を形成しているマグネシア鋳型材料13中の酸
素と殆んど乃至は全く結合反応させないようにして、酸
化が殆えど乃至は全く無いチタン鋳造品を得る鋳造方法
である。A titanium casting mold 13 used for casting a titanium casting material 3 made of pure titanium or an alloy mainly composed of titanium.
is molded using pure magnesia or a magnesia molding material containing magnesia as a main component, and the titanium casting material 3 is melted in a melting device in an oxygen-free atmosphere in a crucible 5 of a forging machine, and titanium is melted while maintaining an oxygen-free atmosphere. The molten metal 3a of the casting material 3 is poured from the crucible 5 into the titanium casting mold 13 made of magnesia mold material, and the oxide production energy of the titanium casting material 3 is set to a value larger than the oxide production energy of magnesium when magnesia is produced. At least the part of the titanium casting mold 13 made of magnesia molding material that comes into contact with the titanium casting material 3 is either held from the beginning or quickly cooled at a temperature of The titanium casting material 3 contained in the titanium casting material 3 is made to have little or no bonding reaction with the oxygen in the magnesia molding material 13 forming the titanium casting mold 13, thereby producing a titanium casting product with little to no oxidation. This is a casting method to obtain
また、第2発明は、次の手順になる方法である。Moreover, the second invention is a method having the following steps.
鋳造機本体内の溶解室1と鋳込室8とを区鳥壁42を挾
んで上下に対置して、独立気密状に形成し、区謁壁42
に通湯孔7を明け、溶解室1にるつぼ5と溶解装置Mを
設け、鋳込室8にチタン鋳造用鋳型13を通湯孔7に気
密連通状に設け、チタン鋳造用鋳型13は純マグネシア
またはマグネシアを主成分とするマグネシア鋳型材料で
造型し、純チタンまたはチタンを主成分とする合金から
なるチタン鋳物材料3をるつぼ5に容れ、溶解室1、鋳
込室8及びチタン鋳造用鋳型13内に不活性ガスを充満
させて不活性ガス雰囲気に保ち、チタン鋳物材料3をる
つぼ5内で溶解装置Mにより溶解し、溶解室1を鋳込室
8よりも高圧に保つとともに、不活性ガスを溶解室1か
ら通湯孔7及びチタン鋳造用鋳型13を経て鋳込室8に
流し続け、チタン鋳物材料3をるつぼ5内で溶解装置M
により溶解し、これによって得た溶湯3aをるつぼ5か
ら不活性ガス流に乗せて通湯孔7を経てチタン鋳造用鋳
型13に押込むように鋳込んでから、溶解室1と鋳込室
8との差圧により圧迫し、チタン鋳物材料3の酸化物生
成エネルギーがマグネシアが生成されるときのマグネシ
ウムの酸化物生成エネ;ルギーよりも大きい値になる温
度に、マグネシア鋳型材料製のチタン鋳造用鋳型13の
うちの少なくともチタン鋳物材料3と接触する部分を、
初めから保持するか速やかに冷却するかし、これにより
チタン鋳造用鋳型13に鋳込まれたチタン鋳物フ材料3
がチタン鋳造用鋳型13を形成しているマグネシア鋳型
材料中の酸素と殆んど乃至は全く結合反応させないよう
にして、酸化が殆んど乃至は全く無いチタン鋳造品を得
る鋳造方法である。The melting chamber 1 and the casting chamber 8 in the casting machine main body are vertically opposed to each other with a partition wall 42 in between, and are formed in an independent airtight manner.
A melting hole 7 is opened in the melting chamber 1, a crucible 5 and a melting device M are installed in the melting chamber 1, a titanium casting mold 13 is installed in the casting chamber 8 in airtight communication with the pouring hole 7, and the titanium casting mold 13 is made of pure metal. A titanium casting material 3 made of magnesia or a magnesia mold material containing magnesia as a main component is placed in a crucible 5, and a titanium casting material 3 made of pure titanium or an alloy containing titanium as a main component is placed in a melting chamber 1, a casting chamber 8, and a titanium casting mold. 13 is filled with an inert gas to maintain an inert gas atmosphere, the titanium casting material 3 is melted in the crucible 5 by the melting device M, the melting chamber 1 is kept at a higher pressure than the casting chamber 8, and the inert gas atmosphere is maintained. The gas continues to flow from the melting chamber 1 to the casting chamber 8 via the through hole 7 and the titanium casting mold 13, and the titanium casting material 3 is transferred to the melting device M in the crucible 5.
The molten metal 3a thus obtained is placed in an inert gas flow from the crucible 5 and poured into the titanium casting mold 13 through the through hole 7, and then the melting chamber 1 and the casting chamber 8 are The titanium casting mold 13 made of magnesia molding material is compressed by a differential pressure to a temperature where the oxide formation energy of the titanium casting material 3 becomes larger than the oxide formation energy of magnesium when magnesia is generated. At least the part that contacts the titanium casting material 3,
The titanium casting material 3 cast into the titanium casting mold 13 is either held from the beginning or cooled quickly.
This is a casting method that produces a titanium cast product with little or no oxidation by causing little or no bonding reaction with oxygen in the magnesia mold material forming the titanium casting mold 13.
ここで、上記の方法の変形として、その一部を次のよう
に変形することができる。Here, as a modification of the above method, a part thereof can be modified as follows.
A 上記実施例の場合、無酸素雰囲気としてアルゴンの
不活性ガス雰囲気を用いたが、これに代えて、溶解室1
及び鋳込室8内を真空にし、真空状態でチタン鋳物材料
3をるつぼ5内に溶解ν し、鋳込むこともできる。A In the case of the above example, an inert gas atmosphere of argon was used as the oxygen-free atmosphere, but instead of this, the melting chamber 1
It is also possible to evacuate the inside of the casting chamber 8, melt the titanium casting material 3 in the crucible 5 in a vacuum state, and then cast it.
B マグネシア鋳型材料製のチタン鋳造用鋳型13の温
度上昇を防止する為に、冷却手段を設ける。B. A cooling means is provided to prevent the temperature of the titanium casting mold 13 made of magnesia mold material from rising.
例えば、鋳型13内の造形空洞11を取り囲む状態に冷
媒通路を鋳型13内に形成し、この冷媒通路に冷却水な
どの冷媒を供給して鋳型13を冷却することも可能であ
る。For example, it is also possible to form a refrigerant passage in the mold 13 so as to surround the modeling cavity 11 in the mold 13, and to cool the mold 13 by supplying a refrigerant such as cooling water to this refrigerant passage.
特に、比較的大形の鋳造品を鋳造する場合には、上記冷
却方法が有効になる。The above cooling method is particularly effective when casting a relatively large cast product.
C チタン鋳物材料3を溶解する為の溶解装置Mとして
は、アーク溶解装置27,2に限らず、高周波で加熱す
る高周波溶解装置で溶解することもできる。C The melting device M for melting the titanium casting material 3 is not limited to the arc melting devices 27 and 2, but can also be melted by a high frequency melting device that heats with high frequency.
本願発明は、上記の手順構成になるので、次の効果を奏
する。Since the present invention has the above-described procedural configuration, it has the following effects.
先ず、第1発明の効果は次のようになる。First, the effects of the first invention are as follows.
1.純チタン又はチタンを主成分とする合金から成るチ
タン鋳造品を殆んど乃至は全く酸化させないで鋳造する
ことが出来る。1. Titanium castings made of pure titanium or titanium-based alloys can be cast with little or no oxidation.
これにより、チタンの優れた物理的性質及び機械的性質
を損なうことなく、チタン製品を簡単に能率良く正確に
製造できる。This allows titanium products to be manufactured easily, efficiently, and accurately without impairing titanium's excellent physical and mechanical properties.
2.マグネシア鋳型材料は、高耐火材として炉壁の充填
材等に広く市販され活用されている材料なので入手容易
であり、又水を加えて練和し、800℃程度で焼結する
だけで鋳型としての強度が充分に高まるから、鋳型の強
度を高めるための結合剤の添加を省略して、鋳型を簡単
に安価に能率良く製造することができる。2. Magnesia mold material is a highly refractory material that is widely commercially available and used as a filling material for furnace walls, so it is easy to obtain, and it can be used as a mold by simply adding water, kneading it, and sintering it at about 800℃. Since the strength of the mold is sufficiently increased, it is possible to omit the addition of a binder to increase the strength of the mold, and the mold can be manufactured simply, inexpensively, and efficiently.
3.マグネシア鋳型材料で造形した鋳型は、鋳造所に広
く普及している電気炉を用いて700〜800℃で焼結
するだけで、耐火性能も耐圧強度も十分に具備するから
、鋳造所では余り普及していない高温加熱炉を新規に講
入する必要かなく、既存の電気炉でチタン鋳造用鋳型を
簡単に焼結できる。3. Molds made with magnesia mold material have sufficient fire resistance and pressure resistance just by sintering them at 700 to 800°C using electric furnaces, which are widely used in foundries, so they are not widely used in foundries. Titanium casting molds can be easily sintered using an existing electric furnace without the need to purchase a new high-temperature heating furnace.
4.マグネシア鋳型材料の熱膨張曲線は金属材料と同様
に直線をなすだけでなく、熱膨張率も大きく予熱した時
に大きく膨張するので、これらの特性を活用することに
より、チタン鋳物材料が鋳込後に凝固し、冷却により収
縮しても、チタン鋳造品が鋳造原型よりも小形になる度
合を少なくし、原型に近似している寸法精度の高いチタ
ン鋳造品を得ることができる。4. The thermal expansion curve of magnesia mold material is not only linear like that of metal materials, but also has a large coefficient of thermal expansion and expands significantly when preheated.By utilizing these characteristics, titanium casting material can solidify after being cast. However, even if the titanium cast product shrinks due to cooling, the degree to which the titanium cast product becomes smaller than the cast master mold is reduced, and a titanium cast product that approximates the master mold and has high dimensional accuracy can be obtained.
そして、この効果は、鋳造原型を予め太き目には製造で
きない歯科鋳造品の場合に、特に貴重である。This effect is particularly valuable in the case of dental castings where the casting pattern cannot be made thick in advance.
第2発明の効果は、上記第1発明の効果に加えて次のよ
うになる。The effects of the second invention are as follows in addition to the effects of the first invention.
5.チタン鋳物材料の溶湯は、自重落下力に不活性ガス
の流動力が加わった強い力で鋳型に押込まれるので、湯
回りが極めて良く、薄く広い部分でも細長い部分でも、
一様に奥深く十分に流込み、鋳造精度・造形性に優れる
。5. The molten titanium casting material is pushed into the mold with a strong force that combines the falling force of its own weight with the flow force of the inert gas, so the molten metal flows extremely well, and can be used in both thin and wide areas as well as long and narrow areas.
It pours evenly and deeply, and has excellent casting accuracy and formability.
6.溶湯が鋳型に鋳込れた後は、溶解室と鋳込室間の差
圧で、加圧され続けて、押湯の作用を強く受けるから、
すやひけなどの無い緻密な高品質のチタン鋳造品をつく
ることができる。6. After the molten metal is poured into the mold, it continues to be pressurized due to the pressure difference between the melting chamber and the casting chamber, and is strongly influenced by the riser.
It is possible to produce fine, high-quality titanium castings that are free from stains and stains.
7. るつぼの底壁に出湯孔を明ける場合には、チタン
鋳物材料が全部溶解し終ったときに、出湯孔がそれぞれ
固体のチタン鋳物材料で塞がれていたところを自動的に
開かれることになる。7. When tapping holes are drilled in the bottom wall of the crucible, when all of the titanium casting material has been melted, each tap hole that was previously blocked by solid titanium casting material will be opened automatically. .
これにより、溶湯が出湯孔からタイミング良く自動的に
出湯するので、溶湯が適正な鋳込み温度範囲内に安定し
て加熱された状態で鋳込まれ、加熱不足や加熱過剰が全
く起らない。As a result, the molten metal is automatically tapped out from the tapping hole in a timely manner, so that the molten metal is poured while being stably heated within the appropriate casting temperature range, and underheating or overheating does not occur at all.
従って、加熱不足による湯回り不良による欠陥も、加熱
過剰による肌荒れ、す、パリなどの欠陥;が起らないよ
うにして、高品質のチタン鋳造品を得ることができる。Therefore, it is possible to obtain a high-quality titanium cast product by preventing defects such as defects due to poor water flow due to insufficient heating and defects such as rough skin, cracks, etc. due to excessive heating.
第1図乃至第5図は本発明の実施に供する鋳造機等を示
し、第1図は鋳造機本体の斜視図、第2図は縦断側面図
、第3図は要部分解斜視図、第4図イ乃至ニは溶解開始
から鋳込み開始までの作用図、第5図は第2図のV矢視
図、第6図は温度対酸化物生成エネルギーの線図である
。
1・・・溶解室、2・・・アーク放竃電極棒、3・・・
チタン鋳物材料(3a・・・溶湯)、4・・・アーク放
電、5・・・るつぼ、(45・・・材料室、6・・・出
湯孔)、T・・・通湯孔、8・・・鋳込室、13・・・
チタン鋳造用鋳型、29・・・鋳造機本体、42・・・
区査壁、M・・・溶解装置。1 to 5 show a casting machine etc. for carrying out the present invention, FIG. 1 is a perspective view of the casting machine main body, FIG. 2 is a vertical side view, FIG. 4A to 4D are action diagrams from the start of melting to the start of casting, FIG. 5 is a view taken along the V arrow in FIG. 2, and FIG. 6 is a diagram of temperature versus oxide formation energy. 1... Melting chamber, 2... Arc furnace electrode rod, 3...
Titanium casting material (3a... molten metal), 4... arc discharge, 5... crucible, (45... material chamber, 6... tapping hole), T... pouring hole, 8... ...Casting room, 13...
Titanium casting mold, 29... Casting machine body, 42...
Section wall, M...dissolving device.
Claims (1)
チタン鋳物材料を鋳造するのに用いるチタン鋳造用鋳型
を、純マグネシアまたはマグネシアを主成分とするマグ
ネシア鋳型材料で造型し、チタン鋳物材料を鋳造機のる
つぼ内で無酸素雰囲気下にて溶解装置で溶解し、無酸素
雰囲気を維持しながらチタン鋳物材料の溶湯をるつぼか
らマグネシア鋳型材料製のチタン鋳造用鋳型に鋳込み、
チタン鋳物材料の酸化物生成エネルギーをマグネシアが
生成されるときのマグネシウムの酸化物生成エネルギー
よりも大きい値になる温度に、マグネシア鋳型材料製の
チタン鋳造用鋳型のうちの少なくともチタン鋳物材料と
接触する部分を、初めから保持するか速やかに冷却する
かし、これによりチタン鋳造用鋳型に鋳込まれたチタン
鋳物材料がチタン鋳造用鋳型を形成しているマグネシア
鋳型.材料中の酸素と殆んど乃至は全く結合反応させな
いようにして、酸化が殆んど乃至は全く無いチタン鋳造
品を得ることを特徴とする、純チタンまたはチタンを主
成分とする合金からなるチタン鋳造品の鋳造方法。 2 特却請求の範囲第1項に記載したチタン鋳造品の鋳
造方法において、チタン鋳物材料の鋳込質量を少なくし
、この少質量のチタン鋳物材料を、チタン鋳造用鋳型に
鋳込んだときに、その鋳型で速やかに冷却することによ
り、マグネシア鋳型材料製のチタン鋳造用鋳型のうちの
少なくともチタン鋳物材料と接触する部分を、チタン鋳
物材料の酸化物生成エネルギーがマグネシアが生成され
るときのマグネシウムの酸化物生成エネルギーよりも大
きい値になる温度に、初めから保持するか速やかに冷却
するかする方法。 3 特却請求の範囲第1項または第2項に記載したチタ
ン鋳造品の鋳造方法において、少なくともチタン鋳物材
料の溶湯をチタン鋳造用鋳型に鋳込んだときに、チタン
鋳造用鋳型を冷却手段で冷却する方法。 4 特許請求の範囲第3項に記載したチタン鋳造品の鋳
造方法において、チタン鋳造用鋳型の肉壁内に冷媒通路
を形成し、この冷媒通路を通を冷媒でチタン鋳造用鋳型
を冷却する方法。 5 特許請求の範囲第1項乃至第4項のうちのどれかに
1項に記載したチタン鋳造品の鋳造方法において、チタ
ン鋳物材料を溶解し鋳造する場の無酸素雰囲気として、
不活性ガス雰囲気を用いる方法。 6 特許請求の範囲第1項乃至第4項のうちのどれか1
項に記載したチタン鋳造品の鋳造方法において、チタン
鋳物材料を溶解し鋳造する場の無酸素雰囲気として、真
空雰囲気を用いる方法。 7 特許請求の範囲第1項乃至第6項のうちのどれか1
項に記載したチタン鋳造品の鋳造方法において、マグネ
シア鋳型材料製のチタン鋳造用鋳型を加熱装置で予熱し
て膨脹させてから、チタン鋳物材料の溶湯を鋳込むこと
により、鋳込後のチタン鋳物材料の凝固・冷却時の収縮
に起因して、チタン鋳造品が鋳造用原型よりも小さくな
る度合を、マグネシア鋳型材料のチタン鋳造用鋳型の大
きな予熱膨脹によって少なくする方法。 8 特許請求の範囲第1項乃至第7項のうちのどれか1
項に記載したチタン鋳造品の鋳造方法において、マグネ
シア鋳型材料を水でねって造形し、これを加熱して強度
をあげてチタン鋳造用鋳型を製造する方法。 9 特許請求の範囲第1項乃至第8項のうちのどれか1
項に記載したチタン鋳造品の鋳造方法において、るつぼ
を純銅または銅を主成分とする合金からなる鋼材料でそ
の材料容室の容積の割に質量の大きな厚肉状に形成し、
この大質量の銅材料製るつぼ内でチタン鋳物材料を溶解
するときに、チタン鋳物材料の溶湯からるつぼに伝えら
れた熱エネルギーを、大質量の銅材料製のるつぼの肉壁
の各部に速やかにしかも広範囲に拡散させることにより
、るつぼのチタン鋳物材料と接触する部分の温度上昇速
度を大幅に低下させ、そのるつぼ部分が溶解温度にまで
上昇するよりも前に、チタン鋳物材料の溶湯をるつぼか
らチタン鋳造用鋳型に注湯し終える方法。 10特許請求の範囲第1項乃至第8項のうちのどれか1
項に記載したチタン鋳造品の鋳造方法において、るつぼ
を純炭素または炭素を主成分とする物質からなる炭素材
料で製造し、この炭素材料製るつぼ内でチタン鋳物材料
を溶解する方法。 11 鋳造機本体内に溶解室と鋳込室とを、区書壁を挾
んで上下に対置して、独立気密状に形成し、区粛壁に通
湯孔を明け、溶解室にるつぼと溶解装置を設け、鋳込室
にチタン鋳造用鋳型通湯孔に気密連通状に設け、チタン
鋳造用鋳型は純マグネシアまたはマグネシアを主成分と
するマグネシア鋳型材料で造型し、純チタンまたはチタ
ンを主成分とする合金からなるチタン鋳物材料をるつぼ
に容れ、溶解室・鋳込室及びチタン鋳造用鋳型内に不活
性ガスを充満させて不活性ガス雰囲気に保ち、チタン鋳
物材料をるつぼ内で溶解装置により溶解し、溶解室を鋳
込室よりも高圧に保つとともに、不活性ガスを溶解室か
ら通湯孔及びチタン鋳造用鋳型を経て鋳込室に流し続け
、チタン鋳物材料をるつぼ内で溶解装置により溶解し、
これによって得た溶湯をるつぼから不活性ガスに乗せて
通湯孔を経てチタン鋳造用鋳型に押込むように鋳込んで
から、溶解室と鋳込室との差圧により圧迫し、チタン鋳
物材料の酸化物生成エネルギーがマグネシアが生成され
るときのマグネシウムの酸化物生成エネルギーよりも大
きい値になる温度に、マグネシア鋳型材料製のチタン鋳
造用鋳型のうちの少なくともチタン鋳物材料と接触する
部分を、初めから保持するか速やかに冷却するかし、た
れによりチタン鋳造用鋳型に鋳込まれたチタン鋳物材料
がチタン鋳造用鋳型を形成しているマグネシア鋳型材料
中の酸素と殆んど乃至は全く結合反応させないようにし
て、酸化が殆んど乃至は全く無いチタン鋳造品を得るこ
とを特徴とする、純チタンまたはチタンを主成分とする
合金からなるチタン鋳造品の鋳造方法。 12特許請求の範囲第11項に記載したチタン鋳造品の
鋳造方法において、チタン鋳物材料の鋳込質量を少なく
し、この少質量のチタン鋳物材料を、チタン鋳造用鋳型
に鋳込んだときに、その鋳型で速やかに冷却することに
より、マグネシア鋳型材料製のチタン鋳造用鋳型のうち
の少なくともチタン鋳物材料と接触する部分を、チタン
鋳物材料の酸化物生成エネルギーがマグネシアが生成さ
れるときのマグネシウムの酸化物生成エネルギーよりも
大きい値になる温度に、初めから保持するか速やかに冷
却するかする方法。 13特許請求の範囲第11項または第12項に記載した
チタン鋳造品の鋳造方法において、少なくともチタン鋳
物材料の溶湯をチタン鋳造用鋳型に鋳込んだときに、チ
タン鋳造用鋳型を冷却手段で冷却する方法。 14特許請求の範囲第13項に記載したチタン鋳造品の
鋳造方法において、チタン鋳造用鋳型の肉壁内に冷媒通
路を形成し、この冷媒通路を通る冷媒でチタン鋳造用鋳
型を冷却する方法。 15特許請求の範囲第11項乃至第14項のうちのどれ
か1項に記載したチタン鋳造品の鋳造方法において、る
つぼの底壁に出湯孔を明け、チタン鋳物材料で出湯孔を
塞いだ状態から、チタン鋳物材料をるつぼ内で溶解装置
により上から順に溶解して行き、全部溶解したときに出
湯孔が塞がれなくなって、その溶湯が出湯孔から出湯し
、通湯孔を経てチタン鋳造用鋳型に鋳込まれる方法。 16特許請求の範囲第15項に記載したチタン鋳造品の
鋳造方法において、出湯孔を挾むるつぼ内と通湯孔とを
同圧に保ちながら、るつぼ内の溶湯を自重で出湯孔から
出湯させる方法。 17 特許請求の範囲第11項乃至第16項のうちのど
れか1項に記載したチタン鋳造品の鋳造方法において、
るにぼを純銅または銅を主成分とする合金からなる銅材
料でその材料容室の容積の割に質量の大きな厚肉状に形
成し、この大質量の銅材料製るつぼ内でチタン鋳物材料
を溶解するときに、チタン鋳物材料の溶湯からるつぼに
伝えられた熱エネルギーを、大質量の銅材料製のるつぼ
の肉壁の各部に速やかにしかも広範囲に拡散させること
により、るつぼのチタン鋳物材料と接触する部分の温度
上昇速度を大幅に低下させ、そのるつぼ部分が溶解温度
にまで上昇するよりも前に、チタン鋳物材料の溶湯をる
つぼからチタン鋳造用鋳型に注湯し終える方法。 18 特許請求の範囲第11項乃至第16項のうちのど
れか1項に記載したチタン鋳造品の鋳造方法において、
るつぼを純炭素または炭素を主成分と.′する物質から
なる炭素材料で製造し、この炭素材料製るつぼ内でチタ
ン鋳物材料を溶解する方法。 19 特許請求の範囲第15項乃至第18項のうちのど
れか1項に記載したチタン鋳造品の鋳造方法において、
溶解装置としてアーク溶解装置を用い、シアーク電極を
チタン鋳物材料に上から対向させ、アーク電極とチタン
鋳物材料との間にアークを発生させて、鋳物材料を上か
ら順に溶解する方法。 20 特許請求の範囲第11項乃至第18項のうちどれ
か1項に記載したチタン鋳造品の鋳造方法にごおいて、
溶解装置として高周波溶解装置を用い、高周波溶解装置
でチタン鋳物材料を溶解する方法。 21 特許請求の範囲第11項乃至第20項のうちのど
れか1項に記載したチタン鋳造品の鋳造方法において、
マグネシア鋳型材料製のチタン鋳造用J鋳型を加熱装置
で予熱して膨張させてから、チタン鋳物材料の溶湯を鋳
込むことにより、鋳込後のチタン鋳物材料の凝固・冷却
時の収縮に起因して、チタン鋳造品が鋳造用原型よりも
小さくなる度合を、マグネシア鋳型材料のチタン鋳造用
鋳型の太4きな予熱膨張によって少なくする方法。 22 特許請求の範囲第11項乃至第21項のうちのど
れか1項に記載したチタン鋳造品の鋳造方法において、
マグネシア鋳型材料を水でねって造形し、これを加熱し
て強度をあげてチタン鋳造用鋳型を製造する方法。[Scope of Claims] 1. A titanium casting mold used for casting a titanium casting material made of pure titanium or an alloy whose main component is titanium, is molded with pure magnesia or a magnesia mold material whose main component is magnesia, Titanium casting material is melted in a melting device in an oxygen-free atmosphere in a crucible of a casting machine, and while maintaining an oxygen-free atmosphere, the molten titanium casting material is poured from the crucible into a titanium casting mold made of magnesia molding material.
At least one of the titanium casting molds made of magnesia molding material is brought into contact with the titanium casting material at a temperature at which the oxide formation energy of the titanium casting material is greater than the oxide formation energy of magnesium when magnesia is generated. A magnesia mold in which the titanium casting material is cast into a titanium casting mold by either holding it from the beginning or cooling it quickly. Made of pure titanium or an alloy whose main component is titanium, which is characterized by almost or no bonding reaction with oxygen in the material to obtain a titanium cast product with little or no oxidation. Casting method for titanium castings. 2. In the method for casting titanium castings described in claim 1, when the casting mass of the titanium casting material is reduced and this small mass of the titanium casting material is cast into the titanium casting mold. , by rapidly cooling the mold, at least the part of the titanium casting mold made of magnesia molding material that comes into contact with the titanium casting material, the oxide production energy of the titanium casting material is absorbed by the magnesium when magnesia is produced. A method of holding the temperature from the beginning or cooling it quickly to a temperature that is greater than the energy of oxide formation. 3. In the method for casting a titanium casting product as set forth in claim 1 or 2, at least when the molten titanium casting material is poured into the titanium casting mold, the titanium casting mold is heated by a cooling means. How to cool. 4. In the method for casting a titanium casting product as set forth in claim 3, a method in which a refrigerant passage is formed in the wall of a titanium casting mold, and the titanium casting mold is cooled with a refrigerant passing through the refrigerant passage. . 5. In the method for casting a titanium casting product as set forth in any one of claims 1 to 4, the oxygen-free atmosphere in the place where the titanium casting material is melted and cast is
A method using an inert gas atmosphere. 6 Any one of claims 1 to 4
In the method for casting titanium castings described in 2. above, a vacuum atmosphere is used as an oxygen-free atmosphere in the place where the titanium casting material is melted and cast. 7 Any one of claims 1 to 6
In the method for casting titanium castings described in 1., a titanium casting mold made of magnesia molding material is preheated and expanded with a heating device, and then molten titanium casting material is poured into the titanium casting mold after casting. A method of reducing the degree to which a titanium casting product becomes smaller than a casting master mold due to contraction during solidification and cooling of the material by large preheating expansion of a titanium casting mold made of magnesia molding material. 8 Any one of claims 1 to 7
In the method for casting titanium castings described in section 1, a method of manufacturing a titanium casting mold by kneading magnesia mold material in water, shaping it, and heating it to increase its strength. 9 Any one of claims 1 to 8
In the method for casting titanium castings described in Section 1, the crucible is made of a steel material made of pure copper or an alloy containing copper as a main component, and is formed into a thick-walled material having a large mass relative to the volume of the material chamber,
When a titanium casting material is melted in this large-mass copper material crucible, the thermal energy transferred from the molten titanium casting material to the crucible is immediately transferred to each part of the wall of the large-mass copper material crucible. Moreover, by dispersing it over a wide range, the rate of temperature rise in the part of the crucible that comes into contact with the titanium casting material is greatly reduced, and the molten titanium casting material is removed from the crucible before the part of the crucible reaches the melting temperature. How to finish pouring into a titanium casting mold. 10 Any one of claims 1 to 8
In the method for casting titanium castings described in item 1, the crucible is manufactured from a carbon material made of pure carbon or a substance whose main component is carbon, and the titanium casting material is melted in the crucible made from the carbon material. 11 Inside the main body of the casting machine, a melting chamber and a casting chamber are placed vertically with a wall between them to form an independent airtight structure. A device is installed in the casting chamber in airtight communication with the titanium casting mold through hole, and the titanium casting mold is made of pure magnesia or a magnesia mold material whose main component is pure titanium or titanium. A titanium casting material made of an alloy is placed in a crucible, the melting chamber, casting chamber, and titanium casting mold are filled with inert gas to maintain an inert gas atmosphere, and the titanium casting material is placed in the crucible using a melting device. The melting chamber is kept at a higher pressure than the casting chamber, and the inert gas continues to flow from the melting chamber through the pouring hole and the titanium casting mold, and the titanium casting material is melted in the crucible by the melting device. dissolve,
The molten metal thus obtained is placed in an inert gas atmosphere from the crucible and poured into the titanium casting mold through the pouring hole, and then compressed by the differential pressure between the melting chamber and the casting chamber to oxidize the titanium casting material. From the beginning, at least the part of the titanium casting mold made of magnesia mold material that comes into contact with the titanium casting material is heated to a temperature at which the energy for producing magnesium oxides is larger than the energy for producing oxides of magnesium when magnesia is produced. By holding or cooling rapidly, the titanium foundry material cast into the titanium foundry mold undergoes little or no bonding reaction with the oxygen in the magnesia mold material forming the titanium foundry mold. A method for casting a titanium cast product made of pure titanium or an alloy mainly composed of titanium, which is characterized in that a titanium cast product with little or no oxidation is obtained in this way. 12 In the method for casting a titanium casting product described in claim 11, when the casting mass of the titanium casting material is reduced and this small mass of the titanium casting material is cast into the titanium casting mold, By rapidly cooling the mold, at least the part of the titanium casting mold made of magnesia molding material that comes into contact with the titanium casting material can be cooled to absorb the oxide formation energy of the titanium casting material from the magnesium when magnesia is produced. A method in which the temperature is maintained from the beginning or quickly cooled to a value greater than the oxide formation energy. 13. In the method for casting a titanium casting product according to claim 11 or 12, at least when the molten titanium casting material is poured into the titanium casting mold, the titanium casting mold is cooled by a cooling means. how to. 14. The method for casting a titanium casting product as set forth in claim 13, in which a refrigerant passage is formed in the wall of a titanium casting mold, and the titanium casting mold is cooled with a refrigerant passing through the refrigerant passage. 15 In the method for casting a titanium cast product according to any one of claims 11 to 14, a tap hole is formed in the bottom wall of the crucible, and the tap hole is closed with a titanium casting material. Then, the titanium casting material is melted in order from the top using the melting device in the crucible, and when all of the material is melted, the tapping hole is no longer blocked, and the molten metal is tapped out from the tapping hole, passing through the pouring hole to start titanium casting. A method of being cast into a mold. 16 In the method for casting a titanium casting product as set forth in claim 15, the molten metal in the crucible is tapped out from the tap hole by its own weight while maintaining the same pressure in the crucible sandwiching the tap hole and in the tap hole. Method. 17. In the method for casting a titanium cast product according to any one of claims 11 to 16,
A crucible made of pure copper or an alloy containing copper as a main component is formed into a thick wall with a large mass relative to the volume of the material chamber, and a titanium casting material is When melting the titanium casting material, the heat energy transferred from the molten titanium casting material to the crucible is quickly and widely diffused to each part of the wall of the crucible made of a large mass of copper material. A method that significantly reduces the temperature rise rate of the part that comes into contact with the crucible, and finishes pouring the molten titanium casting material from the crucible into the titanium casting mold before the crucible part reaches the melting temperature. 18. In the method for casting a titanium cast product according to any one of claims 11 to 16,
The crucible is pure carbon or has carbon as its main component. A method of melting titanium casting material in a crucible made of carbon material. 19 In the method for casting a titanium cast product according to any one of claims 15 to 18,
A method that uses an arc melting device as the melting device, places a shear arc electrode facing the titanium casting material from above, generates an arc between the arc electrode and the titanium casting material, and melts the casting material from above. 20 In the method for casting a titanium cast product described in any one of claims 11 to 18,
A method of melting titanium casting materials using a high-frequency melting device as the melting device. 21. In the method for casting a titanium cast product according to any one of claims 11 to 20,
By preheating the J mold for titanium casting made of magnesia mold material with a heating device and expanding it, and then pouring the molten titanium casting material, the titanium casting material shrinks during solidification and cooling after casting. A method of reducing the degree to which a titanium casting product becomes smaller than a casting master mold by preheating expansion of a titanium casting mold made of magnesia molding material. 22. In the method for casting a titanium cast product according to any one of claims 11 to 21,
A method of manufacturing titanium casting molds by kneading magnesia molding material with water, then heating it to increase its strength.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3013581A JPS585749B2 (en) | 1981-03-02 | 1981-03-02 | Casting method for titanium castings made of pure titanium or alloys whose main component is titanium |
DE19823207170 DE3207170A1 (en) | 1981-03-02 | 1982-02-27 | Process for casting pure titanium or titanium alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3013581A JPS585749B2 (en) | 1981-03-02 | 1981-03-02 | Casting method for titanium castings made of pure titanium or alloys whose main component is titanium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57146466A JPS57146466A (en) | 1982-09-09 |
JPS585749B2 true JPS585749B2 (en) | 1983-02-01 |
Family
ID=12295323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3013581A Expired JPS585749B2 (en) | 1981-03-02 | 1981-03-02 | Casting method for titanium castings made of pure titanium or alloys whose main component is titanium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS585749B2 (en) |
DE (1) | DE3207170A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001271161A (en) * | 2000-01-20 | 2001-10-02 | Mitsui Mining & Smelting Co Ltd | Method for manufacturing sputtering target |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045974B2 (en) * | 1983-03-11 | 1985-10-14 | 株式会社 オハラ | Casting method for titanium products |
GB2168060B (en) * | 1984-12-04 | 1988-08-10 | Ohara Kk | Mold material and process for casting of pure titanium or titanium alloy |
US4700769A (en) * | 1985-06-18 | 1987-10-20 | Ohara Co., Ltd. | Casting apparatus for titanium or titanium alloy |
JPH0349788Y2 (en) * | 1986-05-27 | 1991-10-24 | ||
JPS6418561A (en) * | 1987-07-14 | 1989-01-23 | Mitsubishi Metal Corp | Production of active metal having unidirectional solidified structure and its alloy casting |
US5215139A (en) * | 1991-11-08 | 1993-06-01 | Orgo-Thermit Inc. | Method and mold for aluminothermic welding of rails |
DE19806863A1 (en) * | 1998-02-19 | 1999-08-26 | Herbst Bremer Goldschlaegerei | Metal melting process especially for melting titanium and its alloys in the production of dental castings |
JP2014039936A (en) * | 2012-08-21 | 2014-03-06 | Dia Shinku Kk | Hearth member, and cooled and solidified metal manufacturing device using the hearth member |
CN103934431B (en) * | 2014-05-14 | 2016-01-20 | 哈尔滨工业大学 | A kind of titanium or titanium alloy complex thin wall castings antigravity building mortion and manufacturing process |
CN114850784B (en) * | 2022-03-28 | 2023-06-02 | 洛阳双瑞精铸钛业有限公司 | Preparation method of titanium and titanium alloy H-shaped material |
-
1981
- 1981-03-02 JP JP3013581A patent/JPS585749B2/en not_active Expired
-
1982
- 1982-02-27 DE DE19823207170 patent/DE3207170A1/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001271161A (en) * | 2000-01-20 | 2001-10-02 | Mitsui Mining & Smelting Co Ltd | Method for manufacturing sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JPS57146466A (en) | 1982-09-09 |
DE3207170A1 (en) | 1982-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS585749B2 (en) | Casting method for titanium castings made of pure titanium or alloys whose main component is titanium | |
CN107159887B (en) | Forming method of heating material based on microwave absorption | |
JPH09509101A (en) | Permanent mold casting of reactive melt | |
JP3249914B2 (en) | Sintering mold for molding and method of forming the same | |
CN102179497B (en) | Process for performing casting under negative pressure condition | |
JPS608897B2 (en) | Casting method for titanium castings made of pure titanium or alloys whose main component is titanium | |
Abisuga et al. | Study of Investment Casting Process For 3D Printed Jewellery Design | |
CN1208491C (en) | Block metal composite and its prepartion method | |
JPS62151253A (en) | Continuous casting furnace | |
JPS60261656A (en) | Molding die for die casting | |
JPS62176664A (en) | Casting method for pure titanium or alloy essentially consisting of titanium | |
JP2541312B2 (en) | Precision casting method and precision casting apparatus | |
CN106001426B (en) | A kind of yoke plate casting technique | |
JPH04182056A (en) | Precise casting device | |
JPS62267402A (en) | Production of porous metallic body by activated sintering | |
SU996063A1 (en) | Bimetallic casting production method | |
JP3149556B2 (en) | Method and apparatus for producing melting stock for precision casting | |
EP0233478B1 (en) | Mold, method of producing mold and casting method | |
JPH067916A (en) | Precision casting method | |
RU2513672C2 (en) | Device for production of piston patterns | |
JP3229289B2 (en) | Sintering mold for molding and method of forming the same | |
JP2003103346A (en) | Manufacturing method for member made of cast iron | |
JPS6045974B2 (en) | Casting method for titanium products | |
JP2630181B2 (en) | Casting equipment | |
JP2002248545A (en) | Forming die for extremely thin-walled cast of light metal alloy |