JPS5851037B2 - Tarbunnadoofukumukoongasunoreikiyakuhou - Google Patents

Tarbunnadoofukumukoongasunoreikiyakuhou

Info

Publication number
JPS5851037B2
JPS5851037B2 JP50080944A JP8094475A JPS5851037B2 JP S5851037 B2 JPS5851037 B2 JP S5851037B2 JP 50080944 A JP50080944 A JP 50080944A JP 8094475 A JP8094475 A JP 8094475A JP S5851037 B2 JPS5851037 B2 JP S5851037B2
Authority
JP
Japan
Prior art keywords
gas
temperature
particles
fluidized bed
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50080944A
Other languages
Japanese (ja)
Other versions
JPS525805A (en
Inventor
誠吾 荒巻
惇 佐々木
功祐 山下
清通 太尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP50080944A priority Critical patent/JPS5851037B2/en
Publication of JPS525805A publication Critical patent/JPS525805A/en
Publication of JPS5851037B2 publication Critical patent/JPS5851037B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明はタール分などの多い高温ガスを冷却して、質の
高い熱、スチームを回収するための改良された方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for cooling high-temperature gases with a high tar content to recover high-quality heat and steam.

重質油、石炭等の残留炭素の多い液体あるいは固体炭化
水素は、公害防止の観点から部分燃焼ガス化する方法が
種々研究されている。
Various methods of partially combustion gasifying liquid or solid hydrocarbons with a large residual carbon content, such as heavy oil and coal, have been studied from the viewpoint of pollution prevention.

これは1000℃以上の温度で燃料を部分燃焼ガス化し
、冷却後、脱硫するもので生成ガスはCO,CO2、N
2、N2よりなり、発熱量も低い。
This is a method that partially burns fuel at a temperature of 1000℃ or higher, and then desulfurizes it after cooling.The resulting gas is CO, CO2, and N.
2. It is made of N2 and has a low calorific value.

しかし、この方法ではガス化炉で生成した高温のガスを
冷却し、顕熱を回収するためのボイラーに、ガス入口部
の伝熱管のバーンアウト、出口部の伝熱管コーキング、
更にエロージョン等などの問題があり、大型化するには
構造上問題が多い。
However, in this method, the boiler for cooling the high-temperature gas generated in the gasifier and recovering sensible heat requires burnout of the heat exchanger tube at the gas inlet, coking of the heat exchanger tube at the outlet,
Furthermore, there are problems such as erosion, and there are many structural problems in increasing the size.

更に重質油、アスファルトの熱分解によるオレフィン、
芳香族炭化水素の製造、石炭ガス化によるSNGの製造
において、分解炉あるいはガス化炉からのガスの温度は
、1000℃以下であるが、タール、コークの量が犬で
あり、いわゆるボイラのような伝熱管による間接冷却で
はコーキングによる伝熱間のつまり、冷却能力の急速な
低下等が生じ、油や水による直接冷却の方法では回収熱
の温度、圧力等の質の低下が避けられず、その改善が望
まれている。
In addition, heavy oil, olefins produced by thermal decomposition of asphalt,
In the production of aromatic hydrocarbons and the production of SNG by coal gasification, the temperature of the gas from the cracking furnace or gasifier is below 1000°C, but the amount of tar and coke is large, and it is similar to that of a boiler. Indirect cooling using heat transfer tubes causes clogging during heat transfer due to coking, resulting in a rapid decrease in cooling capacity, while direct cooling using oil or water inevitably reduces the quality of recovered heat, such as temperature and pressure. Improvement is desired.

そして特公昭46−34006号、特公昭469322
号公報には溶融熱媒体あるいは高沸点液媒体を用いて炭
化水素の熱分解ガスからその保有する熱エネルギーを回
収する方法が提案されており、この方法で上記回収熱の
質の向上は期待されるが、熱媒体内のコーク、タールの
分離、除去に難点がある。
And Special Publication No. 46-34006, Special Publication No. 469322
The publication proposes a method of recovering thermal energy from hydrocarbon pyrolysis gas using a molten heat medium or a high boiling point liquid medium, and it is expected that this method will improve the quality of the recovered heat. However, there are difficulties in separating and removing coke and tar in the heating medium.

この他にも特公昭46−15780号公報に、固体粒子
を流動媒体とする流動層内にガスを吹き込むと共に、水
あるいは低沸点油を層内に噴霧して冷却する方法が提案
されている。
In addition, Japanese Patent Publication No. 46-15780 proposes a cooling method in which gas is blown into a fluidized bed using solid particles as a fluidizing medium and water or low boiling point oil is sprayed into the bed.

これはタールトラブルの防止とガスからのコーク、ター
ルの分離には効果があるが、ガスの顕熱の回収について
配慮されておらず、またその記載からは熱回収は極めて
不充分であるばかりでなく、水あるいは油の凝縮のため
の負担が増大する等の欠点がある。
Although this is effective in preventing tar troubles and separating coke and tar from gas, it does not take into account the recovery of sensible heat from the gas, and from the description it is clear that heat recovery is extremely insufficient. However, there are drawbacks such as increased burden due to condensation of water or oil.

本発明者等は重質油、石炭等の残留炭素の多い液体もし
くは固体炭化水素より得られたコーク、タール分の多い
高温ガスをコーク、タールドラフルなく冷却し、質の高
い熱、スチームを回収するための簡便な方法および装置
を提供すべく研究を重ねた結果本発明に到達したもので
ある。
The inventors of the present invention will cool high-temperature gas rich in coke and tar obtained from liquid or solid hydrocarbons with high residual carbon such as heavy oil and coal without coke or tar druffle, and recover high-quality heat and steam. The present invention was achieved as a result of repeated research in order to provide a simple method and device for this purpose.

すなわち本発明は残留炭素の犬なる重質油、石炭等の液
体あるいは固体の炭化水素の高温処理によって生じたタ
ール、コーク等を含むガスの冷却を流動層で行なうに当
り、 (1)冷却管を、高温ガスが噴流する部分の直上には設
けず、流動層周壁の粒子の下降流生成域に配設する。
That is, the present invention uses a fluidized bed to cool gas containing tar, coke, etc. produced by high-temperature treatment of liquid or solid hydrocarbons such as heavy oil and coal that contain residual carbon. is not provided directly above the part where the high-temperature gas is jetted, but is provided in the region of the peripheral wall of the fluidized bed where particles descend into a downward flow.

(2)流動層温度は350℃以下にならないように維持
する。
(2) Maintain the fluidized bed temperature so that it does not fall below 350°C.

(3)高温ガスの流動層への噴出速度を15m/秒以上
、流動化速度は1m/秒以上とする。
(3) The jetting speed of high temperature gas into the fluidized bed is 15 m/sec or more, and the fluidization speed is 1 m/sec or more.

ことによりタールドラフルを防止し、質の高い熱の回収
をはかる方法に関するものである。
This invention relates to a method for preventing tar druffles and recovering high-quality heat.

流動層には流動媒体として耐火物粒子および/または熱
分解によって生じたコーク粒子、必要に応じて生石灰あ
るいは石灰石粒子を充填する。
The fluidized bed is filled with refractory particles and/or coke particles produced by thermal decomposition and, if necessary, quicklime or limestone particles as a fluidizing medium.

この流動媒体粒子は本発明のタール、コークを含む高温
ガスの冷却に当って次のような機能を果たしている。
The fluidized medium particles perform the following functions in cooling the high-temperature gas containing tar and coke according to the present invention.

(a) 熱の輸送媒体としてすぐれており、層全体温
度の均一化、ガス−冷却管の間の熱伝達等に寄与してい
る。
(a) It is excellent as a heat transport medium, contributing to uniformity of temperature throughout the layer, heat transfer between gas and cooling pipes, etc.

(b) はぼ完全混合状態にあり大量の熱を均一に貯
蔵できるので、ガス量、温度の小刻みな変動に*対して
緩衝作用があり、特に温度に敏感なタール物質に対して
好ましい条件を安定保持する。
(b) Since it is in an almost completely mixed state and can store a large amount of heat uniformly, it has a buffering effect against small fluctuations in gas amount and temperature, and provides particularly favorable conditions for tar substances that are sensitive to temperature. Maintain stability.

(c) タール物質の安定な捕集媒体として、温度と
流動について適正値を与えれば流動媒体粒子は液状媒体
よりもはるかにすぐれている。
(c) As a stable collection medium for tar substances, fluidized media particles are far superior to liquid media, given appropriate values for temperature and flow.

すなわち凝縮、沈着したタール物質は本発明の温度と流
動の範囲においては安定なコークとガスに変化し、粒子
の凝集、冷却管の汚れ等の支障を起こすことはない。
That is, the condensed and deposited tar substances change into stable coke and gas within the temperature and flow range of the present invention, and do not cause problems such as agglomeration of particles and fouling of cooling pipes.

また高温ガスに伴なわれて流動層内に導入されるタール
、コークは温度低下に伴ない流動媒体粒子表面に凝縮、
沈着する。
In addition, tar and coke introduced into the fluidized bed along with high-temperature gas condense on the surface of the fluidized medium particles as the temperature decreases.
Deposit.

この場合、粒子の流動状態、流動層温度が流動層の安定
とタールの捕集に対して次の影響を与えている。
In this case, the fluidized state of the particles and the fluidized bed temperature have the following effects on the stability of the fluidized bed and the collection of tar.

(イ)粒子の流動状態 高温ガスを流動層内に噴出させる場合、高温ガスは低温
の流動媒体と接触し、温度の急激な低下と共に噴出口付
近に多量のタールの凝縮を生起せしめるので粒子の凝集
、流動化不良の防止のためには噴出速度はある値以上を
必要とする。
(B) Fluidization state of particles When high-temperature gas is ejected into a fluidized bed, the high-temperature gas comes into contact with a low-temperature fluidized medium, causing a rapid drop in temperature and condensation of a large amount of tar near the ejection port. In order to prevent agglomeration and poor fluidization, the ejection speed needs to be above a certain value.

タールを含むガス、タールを表面にもつ流動媒体粒子、
タールが沈着しやすい冷却管をもつ流動層において、安
定した流動化、冷却管へのタール沈着(いわゆるコキン
グ)の防止のためには、流動化速度もある値以上を必要
とする。
Gases containing tar, fluidized media particles with tar on their surfaces,
In a fluidized bed with cooling pipes where tar is easily deposited, the fluidization speed must also exceed a certain value in order to ensure stable fluidization and prevent tar deposition on the cooling pipes (so-called coking).

これらを要約すると噴出口におけるガスの噴出速度とい
わゆる流動化速度はガス粒子の流動、更にそれに伴なう
粒子の凝集、流動悪化の有無に対して次の顕著な影響を
有する。
To summarize these, the gas ejection speed at the ejection port and the so-called fluidization speed have the following significant effects on the flow of gas particles, and the accompanying agglomeration of particles and the presence or absence of flow deterioration.

(ロ)流動層の温度 重質油、石炭等の残留炭素の多い液体あるいは固体の炭
化水素の高温処理によって生じたガスは高沸点の残渣油
、タールと共に広い沸点範囲の揮発分を含む。
(b) Temperature of the fluidized bed The gas generated by high-temperature treatment of liquid or solid hydrocarbons with a high residual carbon content, such as heavy oil and coal, contains high-boiling point residual oils and tar as well as volatile components with a wide boiling point range.

しかも、これらの物質はも★ちろん低温では安定である
が、高温になれば低分子を遊離する一方、重合を起こし
高分子化される。
Moreover, these substances are of course stable at low temperatures, but at high temperatures they liberate low molecules while polymerizing and turning into polymers.

この現象は350℃付近を超えると顕著になり、ガス冷
却に当っては次の影響を生ずる。
This phenomenon becomes noticeable when the temperature exceeds around 350°C, and causes the following effects on gas cooling.

本発明を第1図、第2図、第3図によって説明する。The present invention will be explained with reference to FIGS. 1, 2, and 3.

第1図は第2図、第3図に共通な横断面図であり、第2
図、第3図はそれぞれ噴出口4のガスの噴出方向が上向
、下向きの例を示した概略図である。
Figure 1 is a cross-sectional view common to Figures 2 and 3;
3 are schematic diagrams showing examples in which the direction of gas ejection from the ejection port 4 is upward and downward, respectively.

円形の流動層ケーシング1の内張り2に沿って冷却管3
、中心に高温ガス噴出口4がそれぞれ配設しである。
A cooling pipe 3 is installed along the inner lining 2 of the circular fluidized bed casing 1.
, and a high-temperature gas outlet 4 is arranged at the center.

このように冷却管3を内張り2に沿って設けることは、
流動状態を妨げないという点より特に好ましいものであ
る。
Providing the cooling pipe 3 along the lining 2 in this way means that
This is particularly preferable since it does not interfere with the fluid state.

冷却管3は流動層11に浸漬されている。The cooling pipe 3 is immersed in a fluidized bed 11.

流動層11に充填しである流動媒体粒子は、図示されて
いない装置において重質油あるいは石炭等の液体あるい
は固体の炭化水素の高温処理により生じ噴出口4より噴
出される高温のガスによって、流動化される。
The fluidized medium particles filling the fluidized bed 11 are fluidized by high-temperature gas ejected from the ejection port 4 produced by high-temperature treatment of liquid or solid hydrocarbons such as heavy oil or coal in a device (not shown). be converted into

流動層11には上述のように冷却管3が浸漬されており
、烈しく運動する粒子と接触し粒子を高い熱伝達率をも
って冷却する。
As mentioned above, the cooling pipe 3 is immersed in the fluidized bed 11, and comes into contact with the particles that move violently to cool the particles with a high heat transfer coefficient.

このとき3′より冷却管内に入った水は3“ よりスチ
ームとして出てくる。
At this time, the water that entered the cooling pipe from 3' comes out as steam from 3".

また粒子は烈しい混合のため層全体にわたりほぼ温度均
一である。
Also, the particles are substantially uniform in temperature throughout the layer due to intense mixing.

ガスと粒子の熱交換速度は極めて犬であり、流動層11
を離れるガスの温度は粒子のそれにほぼ等しい。
The heat exchange rate between gas and particles is extremely low, and fluidized bed 11
The temperature of the gas leaving is approximately equal to that of the particles.

このようにガスの顕熱は粒子、冷却管3の壁を経て内部
流体に与えられ、質の高い熱回収が実現される。
In this way, the sensible heat of the gas is given to the internal fluid through the particles and the wall of the cooling pipe 3, achieving high-quality heat recovery.

なお流動層11より粒子、ダストがガスに同伴されて飛
出すので、ガス導管5に続くサイクロン6により捕集分
離する。
Incidentally, since particles and dust fly out from the fluidized bed 11 along with the gas, they are collected and separated by the cyclone 6 following the gas conduit 5.

サイクロン6よりのガスはガス導管7を経て、図示され
ていない次の冷却段階、精製段階に導かれる。
The gas from the cyclone 6 is led through a gas conduit 7 to the next cooling and purification stage, not shown.

粒子はコークの沈着により蓄積、粗大化を起こすので粒
子排出管10を経て図示されていない次の燃焼再生工程
に送られる。
Since the particles accumulate and become coarse due to the deposition of coke, they are sent to the next combustion regeneration step (not shown) through the particle discharge pipe 10.

また必要に応じて粒子は粒子導管9によりメーキャップ
、粒子供給管8によりリターンする。
Further, if necessary, the particles are made up through the particle conduit 9 and returned through the particle supply tube 8.

また脱硫のため石灰等を添加することも可能である。It is also possible to add lime or the like for desulfurization.

実施例 I C重油を次の条件下で部分燃焼分解した。Example I C heavy oil was subjected to partial combustion cracking under the following conditions.

ガス化条件 C重油組成(wt%) C;84.6、H;12.3、O;0.48、N;0.
14、S;2.24 空気/C重油(Nm:/l ) : 0.16スチ一ム
/C重油(kg/l) ; 0.40温度; 820
’C 圧カニ 1.5 kg/cmG 得られた生成ガスの組成は次のとおりである。
Gasification conditions C Heavy oil composition (wt%) C: 84.6, H: 12.3, O: 0.48, N: 0.
14, S; 2.24 Air/C heavy oil (Nm:/l): 0.16 Stimium/C heavy oil (kg/l); 0.40 Temperature; 820
'C pressure crab 1.5 kg/cmG The composition of the obtained generated gas is as follows.

生成ガス組成(wt%) H2;0.7.02 ; 1.0.N2 ; 40.
2、CO;12.7、CH4; 6.3、C2H4;
9.7、C2H6;0.6、C3以上;19.0 ついで、生成ガスを以下の条件で冷却した。
Produced gas composition (wt%) H2; 0.7.02; 1.0. N2; 40.
2, CO; 12.7, CH4; 6.3, C2H4;
9.7, C2H6; 0.6, C3 or higher; 19.0 The produced gas was then cooled under the following conditions.

冷却条件 温度;380℃±20℃、圧力;lky/cvtG粒子
;コークス1朋φ、流動化速度;1.5m/秒ガス噴出
速度;1sm/秒、層高さ;1.677Lその結果、4
0日間以上何らの支障もなく運転することができ、10
0 kg/cntGの飽和スチームを回収した。
Cooling conditions Temperature: 380°C ± 20°C, Pressure: lky/cvtG particles: Coke 1 φ, Fluidization speed: 1.5m/sec Gas ejection speed: 1sm/sec, Bed height: 1.677L As a result, 4
Able to drive for more than 0 days without any problems, 10
Saturated steam of 0 kg/cntG was collected.

そして、コークの生成量はC重油1kg当り0.27k
gであった。
The amount of coke produced is 0.27k per 1kg of C heavy oil.
It was g.

なお、本発明の条件以外ではタールによる粒子の凝集が
頻発し、10日間以上運転を継続することが困難であっ
た。
It should be noted that under conditions other than those of the present invention, agglomeration of particles due to tar frequently occurred, making it difficult to continue operation for more than 10 days.

実施例 2 石炭を以下の条件でガス化した。Example 2 Coal was gasified under the following conditions.

ガス化条件 石炭組成(wt%) C;86、H;3.7、S;0.3、灰分;10スチ一
ム/石炭;1.66、温度;820℃、圧力; 20
kg/crAG なお、装置本体は溶融塩に石灰を分散させたスラリを循
環する2基1対(1つはガス化炉、他はCaO再生炉)
の炉よりなるものである。
Gasification conditions Coal composition (wt%) C: 86, H: 3.7, S: 0.3, ash content: 10 Stim/coal: 1.66, temperature: 820°C, pressure: 20
kg/crAG The main body of the equipment is a pair of two units (one is a gasification furnace, the other is a CaO regeneration furnace) that circulates a slurry made by dispersing lime in molten salt.
It consists of a furnace.

得られた生成ガスは次の組成を有するものであった。The resulting gas had the following composition.

生成ガス組成(Vo1%) H2;34.4、Co;18.4、Co2 ;10.4
、CH4;20.7、H20; 16.1 ついで、生成ガスを次の条件下で冷却した。
Generated gas composition (Vo1%) H2; 34.4, Co; 18.4, Co2; 10.4
, CH4; 20.7, H20; 16.1 The product gas was then cooled under the following conditions.

冷却条件 温度; 400℃±20℃、圧力; 20 kg/cr
lG流動化速度;1.5m/秒、ガス噴出速度:20m
/秒、層高さ:2.5m その結果、40日間以上何らの支障もなく運転すること
ができ、120 kg/cAaの飽和スチームを回収で
きた。
Cooling condition temperature: 400℃±20℃, pressure: 20 kg/cr
lG fluidization speed: 1.5 m/sec, gas ejection speed: 20 m
/sec, bed height: 2.5 m As a result, it was possible to operate for more than 40 days without any problems, and 120 kg/cAa of saturated steam could be recovered.

そしてコークの生成量は石炭1kg当り約0.19 k
gであった。
The amount of coke produced is approximately 0.19 k per 1 kg of coal.
It was g.

なお、実施例1と同様に、本発明の条件以外の場合では
、流動層による冷却は極めて困難であった。
Note that, as in Example 1, cooling using a fluidized bed was extremely difficult under conditions other than the conditions of the present invention.

実施例 3 石油を以下の条件で熱分解した。Example 3 Petroleum was pyrolyzed under the following conditions.

熱分解条件 原油種類;カフジ産、コンラドノン炭素;6.8%スチ
ーム/原油(kg/kg) ; 1.0温度;850’
C1圧カニ 1.5 kg/crirGなお、装置本体
は、熱分解炉・コークス燃焼炉間をコーク粒子を循環さ
せる2基1対の炉よりなるものである。
Pyrolysis conditions Crude oil type: Khafji, Conradnon carbon; 6.8% steam/crude oil (kg/kg); 1.0 temperature; 850'
C1 pressure crab 1.5 kg/crirG The main body of the apparatus consists of a pair of two furnaces that circulate coke particles between a pyrolysis furnace and a coke combustion furnace.

得られた生成ガスの組成は次のとおりである。The composition of the resulting gas is as follows.

生成ガス組成(wt%) H2;1.5、CO;3.2、Co2; 4.3、CH
4;16.0. C2H2; 1.1、C2H4; 2
8.0、C2H6; i、s、C3H8; 0.6、C
,H6; 4.7、C4;38.7 ついで、生成ガスを以下の条件で冷却した。
Produced gas composition (wt%) H2; 1.5, CO; 3.2, Co2; 4.3, CH
4;16.0. C2H2; 1.1, C2H4; 2
8.0, C2H6; i, s, C3H8; 0.6, C
, H6; 4.7, C4; 38.7 Then, the generated gas was cooled under the following conditions.

冷却条件 温度;400℃±20℃、圧力; 1 kg/crit
G粒子;コーク粒子1間φ、流動化速度:1.5m/秒 ガス噴出速度;20m/秒、層高さ:2.5mその結果
、40日間以上何らの支障もなく運転することができ、
100 kg/critGの飽和スチームを回収できた
Cooling conditions Temperature: 400℃±20℃, pressure: 1 kg/crit
G particles: φ between coke particles, fluidization speed: 1.5 m/s, gas ejection speed: 20 m/s, bed height: 2.5 m.As a result, it can be operated for more than 40 days without any problems,
Saturated steam of 100 kg/critG could be recovered.

なお、コークの生成量は原油1kg当り0.15kgで
あった。
Note that the amount of coke produced was 0.15 kg per 1 kg of crude oil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明で用いる装置の例を示
す。
1, 2, and 3 show examples of apparatus used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 タール分などを含む高温ガスを、内部に冷却管を備
えた流動層で冷却して熱、スチームを回収するにあたり
、前記高温ガスが噴流する部分の直上には前記冷却管を
設けず、流動層周壁の粒子の下降流生成域に冷却管を配
設し、流動層温度を350℃以下にならないように維持
し、高温ガスの流動層への噴出速度を15m/秒以上、
流動化速度を1m/秒以上とすることを特徴とするター
ル分などを含む高温ガスの冷却法。
1 When high temperature gas containing tar etc. is cooled in a fluidized bed equipped with a cooling pipe inside to recover heat and steam, the cooling pipe is not installed directly above the part where the high temperature gas jets, and the fluidized bed is equipped with a cooling pipe. A cooling pipe is provided in the downflow generation area of particles on the bed peripheral wall, the temperature of the fluidized bed is maintained not to fall below 350°C, and the jetting speed of high temperature gas into the fluidized bed is set at 15 m/sec or more.
A method for cooling high-temperature gas containing tar, etc., characterized by setting the fluidization speed to 1 m/sec or more.
JP50080944A 1975-07-02 1975-07-02 Tarbunnadoofukumukoongasunoreikiyakuhou Expired JPS5851037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50080944A JPS5851037B2 (en) 1975-07-02 1975-07-02 Tarbunnadoofukumukoongasunoreikiyakuhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50080944A JPS5851037B2 (en) 1975-07-02 1975-07-02 Tarbunnadoofukumukoongasunoreikiyakuhou

Publications (2)

Publication Number Publication Date
JPS525805A JPS525805A (en) 1977-01-17
JPS5851037B2 true JPS5851037B2 (en) 1983-11-14

Family

ID=13732589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50080944A Expired JPS5851037B2 (en) 1975-07-02 1975-07-02 Tarbunnadoofukumukoongasunoreikiyakuhou

Country Status (1)

Country Link
JP (1) JPS5851037B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102906A (en) * 1977-02-21 1978-09-07 Mitsubishi Heavy Ind Ltd Cooling of gracked gas
DE3137576C2 (en) * 1981-09-22 1985-02-28 L. & C. Steinmüller GmbH, 5270 Gummersbach Device for cooling process gas originating from a gasification process
DE3724947A1 (en) * 1987-07-28 1989-02-16 Uhde Gmbh METHOD AND DEVICE FOR COOLING RAW GAS FROM A PARTIAL OXIDATION OF CARBONATED MATERIAL
DE202007018559U1 (en) 2007-08-25 2008-10-23 Anmed Gmbh Weekly doser for medicines

Also Published As

Publication number Publication date
JPS525805A (en) 1977-01-17

Similar Documents

Publication Publication Date Title
US3998609A (en) Synthesis gas generation
CA2537784C (en) Gasification method and device for producing synthesis gases by partial oxidation of fuels containing ash at elevated pressure with partial quenching of the crude gas and waste heat recovery
US4189307A (en) Production of clean HCN-free synthesis gas
JP5559532B2 (en) Gasification system and use thereof
US4328008A (en) Method for the production of cleaned and cooled synthesis gas
US2884303A (en) High temperature burning of particulate carbonaceous solids
CA1062643A (en) Method of heat recovering from high temperature thermally cracked hydrocarbons
US4251228A (en) Production of cleaned and cooled synthesis gas
AU2007245732B2 (en) Gasification reactor and its use
US4702818A (en) Process for recovering heat of a tar-containing high-temperature gas
US4436530A (en) Process for gasifying solid carbon containing materials
US2793938A (en) Production of a hydrogen rich gas and removal of carbon contained therein
US1950558A (en) Process for the production of gas, oil, and other products
US3617468A (en) Process for removing the hydrocarbon content of carbonaceous materials
JPS6158115B2 (en)
US20080000155A1 (en) Gasification system and its use
CA1193864A (en) Process and apparatus for cooling and purifying a hot gas
US20070294943A1 (en) Gasification reactor and its use
CN110591745A (en) Pyrolysis-gasification integrated device and process
CA1241842A (en) Process and apparatus for cooling and purifying a hot gas
GB2159169A (en) Thermal cracking of hydrocarbon oil
JPS5956491A (en) Solid carbonaceous fuel gasification
US4454022A (en) Decoking method
JPS5851037B2 (en) Tarbunnadoofukumukoongasunoreikiyakuhou
JPH075891B2 (en) Fluid coking by cooled flotation using industrial sludge