JPS5841182B2 - Method for manufacturing hot-fillable plastic containers - Google Patents

Method for manufacturing hot-fillable plastic containers

Info

Publication number
JPS5841182B2
JPS5841182B2 JP55181316A JP18131680A JPS5841182B2 JP S5841182 B2 JPS5841182 B2 JP S5841182B2 JP 55181316 A JP55181316 A JP 55181316A JP 18131680 A JP18131680 A JP 18131680A JP S5841182 B2 JPS5841182 B2 JP S5841182B2
Authority
JP
Japan
Prior art keywords
temperature
preform
layer
resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55181316A
Other languages
Japanese (ja)
Other versions
JPS57105320A (en
Inventor
仁一 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP55181316A priority Critical patent/JPS5841182B2/en
Publication of JPS57105320A publication Critical patent/JPS57105320A/en
Publication of JPS5841182B2 publication Critical patent/JPS5841182B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6463Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms
    • B29C49/6464Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0017Heat stable

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は熱間充填可能な二軸延伸プラスチック容器の製
法に関し、より詳細には熱固定された二輪延伸容器を高
生産性及び低コストで製造することが可能な改良製法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a biaxially stretched plastic container that can be hot filled, and more particularly to an improvement that enables the production of heat-set two-wheel stretched containers with high productivity and at low cost. Regarding the manufacturing method.

飽和ポリエステル樹脂から成るパリソン乃至はプリフォ
ームを軸方向に延伸し且つ金型内で流体により膨張させ
ることにより得られたプラスチック容器は、二軸方向に
分子配向されており、透明性、耐衝撃性、ガスバリヤ−
性に優れているが、内容物を滅菌した状態で保存するた
めに、内容物を熱間充填する場合には、収縮が著しいと
いう問題がある。
The plastic container obtained by stretching a parison or preform made of saturated polyester resin in the axial direction and expanding it with a fluid in a mold has biaxial molecular orientation, and has transparency and impact resistance. , gas barrier
However, when the contents are hot-filled in order to preserve them in a sterile state, there is a problem of significant shrinkage.

飽和ポリエステル樹脂の二軸延伸製品を緊張状態で熱処
理することにより、高温での収縮を防止し、寸法安定性
を向上させることは古くから知られている。
It has been known for a long time that biaxially stretched products of saturated polyester resins are heat treated under tension to prevent shrinkage at high temperatures and improve dimensional stability.

この熱固定技術な二軸延伸プラスチック容器に適用する
ことも周知であり、このような従来の技術は何れも、金
型温度を内容物の熱間充填温度以上の温度に維持すると
共に、延伸吹込み成形後のプラスチック容器を、吹込み
用の内圧をかげたまま所定時間保持して熱固定を行ない
、次いでこれをそのまま取出すときには容器が自己保持
性に欠け、変形を生ずるため、再び金型を低温に冷却し
、熱固定された延伸プラスチック容器を取出すことから
戊っている。
It is also well known that this heat setting technique can be applied to biaxially stretched plastic containers, and all such conventional techniques maintain the mold temperature at a temperature above the hot filling temperature of the contents and stretch and blow. After molding, the plastic container is heat-set by holding it for a predetermined period of time while keeping the internal pressure high for blowing, and then when it is taken out as it is, the container lacks self-retention and deforms, so the mold must be replaced again. Cool to a low temperature and remove the heat-set stretched plastic container.

しかしながら、このような公知方法は、延伸成形後のプ
ラスチック容器を、加熱された金型内に所定時間保持し
、更に金型を冷却する迄製品を外部に取出し得ないため
、単一のプラスチック容器当りの金型占有時間が著しく
長くなり、生産性が低く、また設備コストが高くなると
いう欠点がある。
However, in this known method, the plastic container after stretch molding is held in a heated mold for a predetermined period of time, and the product cannot be taken out until the mold is further cooled. The drawbacks are that the time required for each mold to be occupied is significantly longer, productivity is lower, and equipment costs are higher.

また、底形の1サイクル毎に、金型について加熱と冷却
とを行わなければならないことから、熱エネルギーコス
トも高くなるという欠点も免れない。
Furthermore, since the mold must be heated and cooled for each cycle of the bottom shape, there is also the drawback that the cost of thermal energy increases.

かくして、熱固定中或いは熱固定後の容器を金型を冷却
することなく、金型の外部に取出すことができれば、単
一のプラスチック容器当りの金型占有時間を著しく短縮
して、生産性の向上及び設備コストの低減が可能となり
、更に熱エネルギーコストの節約が可能となる。
Thus, if a container can be taken out of the mold during or after heat setting without cooling the mold, the time occupied by the mold per single plastic container can be significantly reduced, increasing productivity. It is possible to improve the efficiency and reduce equipment costs, and it is also possible to save heat energy costs.

本発明者等は、内層が飽和ポリエステル樹脂から戊り且
つ中間層乃至は外層が飽和ポリエステル樹脂よりも温度
伝導率の小さい熱可塑性樹脂から成る多層パリソン乃至
はプリフォームを使用し、且ツこのパリソン乃至はプリ
フォームに吹込む流体として90℃以上の温度の流体を
使用すると共に最外層の樹脂が自己保形性を有する温度
以下に金型表面温度を維持すると、金型内で容器を格別
冷却する操作を必要とせずに、二軸延伸容器の金型外部
への取出しが可能となり、更にブロー成形と同時に更に
取出し後の容器の放置により、二軸延伸容器の熱固定が
可能となることを見出した。
The present inventors used a multilayer parison or preform in which the inner layer was made of a saturated polyester resin and the intermediate layer or outer layer was made of a thermoplastic resin having a lower thermal conductivity than the saturated polyester resin, and Alternatively, if a fluid with a temperature of 90°C or higher is used as the fluid to be blown into the preform and the mold surface temperature is maintained below the temperature at which the outermost layer resin has self-retaining properties, the container will be exceptionally cooled within the mold. The biaxially stretched container can be taken out of the mold without the need for additional operations, and the biaxially stretched container can be heat-fixed at the same time as blow molding by leaving the container after being taken out. I found it.

即ち、本発明の目的は、内容物の熱間充填が可能でしか
も内容物の香味保持性に優れた二軸延伸多層プラスチッ
ク容器を、高生産性及び低コストで製造する方法を提供
するにある。
That is, an object of the present invention is to provide a method for manufacturing, with high productivity and low cost, a biaxially stretched multilayer plastic container that can be hot-filled with contents and has excellent flavor retention of the contents. .

本発明の他の目的は、熱固定中或いは熱固定後の二軸延
伸成形容器を、金型等を冷却することなく金型の外部に
取出し得る熱間充填可能な二軸延伸多層プラスチック容
器の製法を提供するにある。
Another object of the present invention is to provide a biaxially stretched multilayer plastic container that can be hot filled and that allows the biaxially stretched molded container to be taken out of the mold during or after heat setting without cooling the mold. To provide the manufacturing method.

本発明の更に他の目的は、二軸延伸多層プラスチック容
器における内面から外面への温度勾配を、熱固定及び容
器の自己保形性に巧みに利用した二軸延伸多層プラスチ
ック容器の製法を提供するにある。
Still another object of the present invention is to provide a method for manufacturing a biaxially stretched multilayer plastic container that skillfully utilizes the temperature gradient from the inner surface to the outer surface of the biaxially stretched multilayer plastic container for heat setting and self-shape retention of the container. It is in.

本発明によれば、内層が飽和ポリエステル樹脂から威り
且つ中間層乃至は外層が飽和ポリエステル樹脂よりも温
度伝導率の小さい熱可塑性樹脂から戒る多層パリソン乃
至はプリフォームを製造し、この多層パリソン乃至プリ
フォームを前記飽和ポリエステル樹脂の融点よりも低く
且つそのガラス転移点よりも高い温度で軸方向に延伸す
る操作と、該多層パリソン乃至プリフォームを金型内に
保持してその内部に流体を吹込んで膨張させる操作とを
同時に或いはこの順序に行い、多層パリソン乃至はプリ
フォーム中に吹込む流体として90℃以上の温度の流体
を使用し、且つ最外層の樹脂が自己保形性を有する温度
以下に金型表面温度を維持することを特徴とする熱固定
された二軸延伸プラスチック容器の製法が提供される。
According to the present invention, a multilayer parison or preform is manufactured in which the inner layer is made of a saturated polyester resin and the intermediate layer or outer layer is made of a thermoplastic resin having a lower thermal conductivity than the saturated polyester resin, and the multilayer parison is An operation of stretching the preform in the axial direction at a temperature lower than the melting point of the saturated polyester resin and higher than its glass transition point, and holding the multilayer parison or preform in a mold and introducing a fluid into the inside thereof. Blowing and expanding operations are performed simultaneously or in this order, and a fluid with a temperature of 90°C or higher is used as the fluid to be blown into the multilayer parison or preform, and the temperature at which the outermost layer resin has self-shape retention. A method for manufacturing a heat-set biaxially stretched plastic container is provided below, which is characterized by maintaining the mold surface temperature.

本発明の重要な特徴は、前述した如く、飽和ポリエステ
ル樹脂よりも温度伝導率の小さい熱可塑性樹脂、特に温
度伝導率が3.50X10 ’m″/hr以下の熱可
塑性樹脂を、中間層乃至は多層の形で飽和ポリエステル
樹脂内層と組合せ、多層パリソン乃至はプリフォームの
形で延伸ブロー底形に用いること、及びこの多層パリソ
ンを、90℃以上の温度の流体を使用すると共に金型の
表面温度を最外層の樹脂が自己保形性を有する温度以下
に維持して延伸ブロー底形することの組合せにある。
As mentioned above, an important feature of the present invention is that a thermoplastic resin having a lower temperature conductivity than a saturated polyester resin, particularly a thermoplastic resin having a temperature conductivity of 3.50 x 10 'm''/hr or less, is used in the intermediate layer or Combined with an inner layer of saturated polyester resin in the form of a multilayer, and used in the form of a multilayer parison or preform for a stretch-blown bottom shape, and this multilayer parison is used in combination with a saturated polyester resin inner layer in the form of a multilayer parison or preform; It is a combination of maintaining the temperature below the temperature at which the resin in the outermost layer has self-retaining properties and stretching and blowing it into a bottom shape.

本明細書において、温度伝導率(α)とは、熱伝導率を
λ、比熱をC1密度をdとしたとき、下記式 で定義される値であり、 ンジョン、即ち式 より詳細には下記ディン のディメンジョンを有する値である。
In this specification, temperature conductivity (α) is a value defined by the following formula, where thermal conductivity is λ, specific heat is C1 density is d; is a value with dimension .

この値は、伝熱に際しての温度勾配に関するものであり
、数値が小さい程、伝熱に際して温度勾配が大きくなる
ことを示す。
This value relates to the temperature gradient during heat transfer, and the smaller the value, the larger the temperature gradient during heat transfer.

例えば、延伸及び未延伸の飽和ポリエステル樹脂の温度
伝導率は夫々6.40×10 ’ 〜7.80 X
10 ’m/hr及び4.90X10−4〜5.50
X 10 ’vl/ hrであり、一方ポリプロピ
レンの温度伝導率は2.50X10 ’〜3.00
X 10 ’ rrr’/ hrであって、飽和ポリ
エステル樹脂、特に延伸されたものは大きな温度伝導率
を示すことがわかる。
For example, the temperature conductivity of stretched and unstretched saturated polyester resin is 6.40×10′ to 7.80×, respectively.
10'm/hr and 4.90X10-4~5.50
X 10'vl/hr, while the thermal conductivity of polypropylene is 2.50X10'~3.00
X 10 'rrr'/hr, and it can be seen that the saturated polyester resin, especially the stretched one, exhibits a large temperature conductivity.

かくして、例えばこの温度伝導率が飽和ポリエステルよ
りも小さい熱可塑性樹脂、特に温度伝導率が3.50X
10 ’i/hr 以下の熱可塑性樹脂を中間層と
し、飽和ポリエステル樹脂を内外層とした、多層構造の
プラスチック壁を一定方向への伝熱条件下に置くと、第
1図の線図に示す通り、飽和ポリエステル内層1におい
て、最内面4から両相脂層の内側界面5の間では温度勾
配が小さく、一方低温度伝導性樹脂中間層2において、
前記内側界面5から外側界面60間では温度勾配が著し
く犬となり、飽和ポリエステル外層3においては、界面
6と最外面7との間では再び温度勾配が小さくなる。
Thus, for example, a thermoplastic resin whose thermal conductivity is lower than that of a saturated polyester, in particular a thermoplastic resin whose thermal conductivity is 3.50×
When a plastic wall with a multilayer structure, consisting of an intermediate layer of thermoplastic resin of 10' i/hr or less and inner and outer layers of saturated polyester resin, is placed under heat transfer conditions in a certain direction, the heat transfer rate shown in Figure 1 is shown. In the saturated polyester inner layer 1, the temperature gradient is small between the innermost surface 4 and the inner interface 5 of both phase resin layers, while in the low temperature conductive resin intermediate layer 2,
The temperature gradient becomes extremely steep between the inner interface 5 and the outer interface 60, and in the saturated polyester outer layer 3, the temperature gradient becomes smaller again between the interface 6 and the outermost surface 7.

即ち、第1図に示す内側が高温で外側が低温の伝熱条件
下では、飽和ポリエステル内層1は比較的一様な高温に
維持され、一方飽和ポリエステル外層3は比較的一様な
低温に維持され、結果として、内外層の間に比較的大き
な温度差を形成させ得ることがわかる。
That is, under the heat transfer conditions shown in FIG. 1 where the inside is hot and the outside is cold, the saturated polyester inner layer 1 is maintained at a relatively uniform high temperature, while the saturated polyester outer layer 3 is maintained at a relatively uniform low temperature. It can be seen that as a result, a relatively large temperature difference can be formed between the inner and outer layers.

これは、3層構造のみならず、2層或いは4層以上の多
層構造の場合にも同様に当てはまる。
This applies not only to a three-layer structure but also to a multilayer structure of two layers or four or more layers.

本発明は、この現象を飽和ポリエステル内層の熱固定及
び容器の金型外への取出に必要な自己保形化に巧みに利
用するものである。
The present invention cleverly exploits this phenomenon for the heat setting of the saturated polyester inner layer and the self-retention necessary for ejecting the container from the mold.

即ち、本発明は、多層プラスチック・パリソン乃至はプ
リフォームの延伸ブロー成形に、90℃以上の温度の流
体を用いることにより、2軸方向に配向された飽和ポリ
エステルの熱固定が比較的高温で進行する一方で、外層
を構成する樹脂が前述した温度の金型と接触してその自
己保形性温度以下となるため、金型から直ちに取出す場
合にも、容器の変形等のトラブルが有効に解消される。
That is, the present invention uses a fluid at a temperature of 90° C. or higher for stretch blow molding of a multilayer plastic parison or preform, so that heat fixation of biaxially oriented saturated polyester proceeds at a relatively high temperature. On the other hand, since the resin constituting the outer layer comes into contact with the mold at the above-mentioned temperature and becomes below its self-shape retention temperature, problems such as deformation of the container can be effectively eliminated even when the resin is taken out from the mold immediately. be done.

しかも、容器内面と容器外面との間での伝熱遮断が有効
に行われているため、上述した内層の熱固定及び外層の
自己保形化はかなり迅速に進行し、特に内層の熱固定は
容器を金型外に放置した場合にも有効に続行するものと
認められる。
Moreover, since heat transfer is effectively blocked between the inner surface of the container and the outer surface of the container, the above-mentioned heat fixation of the inner layer and self-retention of the outer layer proceed fairly quickly. It is recognized that the process continues effectively even if the container is left outside the mold.

本発明において、パリソン乃至はプリフォームの内層を
飽和ポリエステルで構成することは、このものが内容物
のフレーバー(香味)保持性に優れており、特に延伸さ
れた不飽和ポリエステルが透明性、耐衝撃性、耐クリー
プ性、ガスバリヤ−性に優れているために重要である。
In the present invention, the inner layer of the parison or preform is made of saturated polyester because this material has excellent flavor retention properties, and especially the stretched unsaturated polyester has transparency and impact resistance. It is important because it has excellent properties such as hardness, creep resistance, and gas barrier properties.

飽和ポリエステルとしては、芳香族ジカルボン酸とアル
キレングリコールとから誘導された高分子ポリエステル
、特にエチレンテレフタレート単位を主体とするポリエ
ステルが有利に使用される。
As the saturated polyester, a polymeric polyester derived from an aromatic dicarboxylic acid and an alkylene glycol, particularly a polyester mainly containing ethylene terephthalate units, is advantageously used.

低温度伝導率熱可塑性樹脂としては、例えば等を用いる
ことができる。
As the low temperature conductivity thermoplastic resin, for example, etc. can be used.

勿論、本発明において、低温度伝導率樹脂は、上に例示
されたものに限定されず、この値(α)が3.50 X
10 ’m/ hr以下のものであれば何れの樹脂
でも用いることができ、またこれらの樹脂は単独でも、
2種以上のブレンド物の形でも使用でき、更に他の熱可
塑性樹脂、例えば接着性促進樹脂とのブレンド物の形で
も使用できる。
Of course, in the present invention, the low temperature conductivity resin is not limited to those exemplified above, and this value (α) is 3.50
Any resin can be used as long as it is 10'm/hr or less, and these resins can be used alone,
It can also be used in the form of a blend of two or more types, and also in the form of a blend with other thermoplastic resins, such as adhesion promoter resins.

多層パリソン乃至はプリフォームの層構成は、飽和ポリ
エステル(A)が内層、低温度伝導率樹脂(B)が中間
層乃至は外層となるものであれば何れでもよく、所望に
よっては、それ以外の熱可塑性樹脂(qを外層として用
いてもよく、更にこれら各樹脂層の間に接着性樹脂層0
を介在させてもよい。
The multilayer parison or preform may have any layer structure as long as the saturated polyester (A) is the inner layer and the low temperature conductivity resin (B) is the middle layer or outer layer. Thermoplastic resin (q may be used as an outer layer, and an adhesive resin layer 0 may be used between each of these resin layers.
may be interposed.

多層パリソン等の層構成の適、当な例は次の通りである
Suitable examples of layer configurations such as multilayer parisons are as follows.

接着性樹脂層としては、酸乃至は酸無水物変性オレフィ
ン樹脂、アイオノマー、エチレン−アクリル酸エステル
共重合体、エチレン−酢酸ビニツレ共重合体、ウレタン
樹脂等を挙げることができ、また他の熱可塑性樹脂とし
ては、ポリカーボネート、ポリアミド、ポリエチレン等
を挙げることができる。
Examples of the adhesive resin layer include acid- or acid anhydride-modified olefin resins, ionomers, ethylene-acrylic acid ester copolymers, ethylene-vinyl acetate copolymers, urethane resins, and other thermoplastic resins. Examples of the resin include polycarbonate, polyamide, polyethylene, and the like.

飽和ポリエステル樹脂Aと低温度伝導宰相J]mB)と
の厚みの比は、前述した本発明の目的からは、の範囲内
にあることが好ましい。
The thickness ratio between the saturated polyester resin A and the low temperature conductive material J]mB) is preferably within the following range from the above-mentioned object of the present invention.

また、飽和ポリエステルが内層(A)及び外層(Aりと
なる場合には、両者の厚み比は の範囲内にあることが、熱固定と自己保形性とのバラン
スの上で好ましい。
Further, when the inner layer (A) and the outer layer (A) are made of saturated polyester, it is preferable that the thickness ratio of the two is within the range of from the viewpoint of balance between heat fixation and self-shape retention.

パリソン乃至はプリフォームの成形は、多層射出成形、
多層押出、多層押出−プリブロー成形等の任意の手段で
行うことができる。
The parison or preform is molded using multilayer injection molding,
It can be carried out by any means such as multilayer extrusion, multilayer extrusion-pre-blow molding, etc.

また、低温度伝導率樹脂を溶液乃至ラテックスとし、予
じめ形成されたポリエステルプリフォームにこれを塗布
し、乾燥し、更に必要に応じて、ポリエステル或いは他
の樹脂を押出乃至は射出して、2層或いは3層のプリフ
ォームとすることができる。
Alternatively, the low temperature conductivity resin can be made into a solution or latex, applied to a preformed polyester preform, dried, and further extruded or injected with polyester or other resin as needed. The preform can have two or three layers.

本発明において、上述した多層パリソン乃至はプリフォ
ームの延伸ブロー成形は、上述した多層パリソン乃至は
プリフォームを使用すること、及び90℃以上の吹込み
流体を用い且つ金型表面温度を最外層樹脂の自己保形性
温度以下とする点を除けばそれ自体公知の手段で行い得
る。
In the present invention, stretch blow molding of the multilayer parison or preform described above involves using the multilayer parison or preform described above, using a blowing fluid of 90°C or higher, and controlling the mold surface temperature to the outermost layer resin. This can be carried out by means known per se, except that the temperature is below the self-shape retention temperature.

例えば、延伸ブロー成形に先立って、多層パリソン乃至
はプリフォームを、飽和ポリエステル樹脂の融点よりも
低く且つそのガラス転移温度よりも高い温度に予備加熱
し、この加熱されたパリソン乃至はプリフォームを軸方
向に延伸する操作と、該多層パリソン乃至プリフォーム
を金型内に保持してその内部に流体を吹込んで膨張させ
る操作とを同時に或いはこの順序に遂次的行う。
For example, prior to stretch blow molding, a multilayer parison or preform is preheated to a temperature lower than the melting point of the saturated polyester resin and higher than its glass transition temperature, and the heated parison or preform is The operation of stretching the multilayer parison or preform in the same direction and the operation of holding the multilayer parison or preform in a mold and inflating it by blowing a fluid into the mold are performed simultaneously or sequentially in this order.

パリソン乃至プリフォームに吹込む流体の温度が90℃
以上でなげれば、熱間充填に耐える熱固定を有効に行う
ことが困難であり、一般にこの流体の温度は160℃以
下とすることが望ましい。
The temperature of the fluid blown into the parison or preform is 90℃
If the temperature exceeds the above, it is difficult to effectively heat set the fluid to withstand hot filling, and it is generally desirable that the temperature of this fluid be 160° C. or lower.

流体としては、ホットエヤー、水蒸気、加熱窒素ガス、
或いはこれらの混合物が好適に使用される。
Fluids include hot air, steam, heated nitrogen gas,
Alternatively, a mixture thereof is preferably used.

本明細書において、最外層樹脂の自己保形性温度とは、
最外層樹脂が非拘束条件下においても変形することなく
型の形態を維持し得る最高温度として定義される。
In this specification, the self-shape retention temperature of the outermost layer resin is
It is defined as the maximum temperature at which the outermost layer resin can maintain the shape of the mold without deforming even under unrestrained conditions.

この自己保形性温度は、−例として飽和ポリエステルの
場合約85℃、ポリプロピレンの場合約135℃である
This self-retention temperature is - for example, approximately 85 DEG C. for saturated polyesters and approximately 135 DEG C. for polypropylene.

金型表面温度以下に維持するために、金型を必要により
冷却し或いは加熱することができるが、本発明において
は、成形1サイクル毎に加熱と冷却とのサイクル操作を
必要としないことが理解されるべきである。
Although the mold can be cooled or heated as necessary to maintain the temperature below the mold surface temperature, it is understood that the present invention does not require a cyclic operation of heating and cooling for each molding cycle. It should be.

加熱流体をパリソン乃至はプリフォームにブローし、高
圧に維持する時間は、少なくとも2秒以上、好適には5
秒以上であれば、必要なブロー成形と、熱固定の開始及
び自己保形化が有効に行われる。
The heating fluid is blown onto the parison or preform and maintained at high pressure for at least 2 seconds, preferably 5 seconds.
If it is longer than seconds, necessary blow molding, initiation of heat setting, and self-shape retention are effectively performed.

流体のブロー及び保持時間は、生産性の点で60秒以下
、特に30秒以下とするのがよい。
The blowing and holding time of the fluid is preferably 60 seconds or less, particularly 30 seconds or less, from the viewpoint of productivity.

延伸及びブローによる内層ポリエステルの分子配向は、
面内配向係数(1+m)が0.3以上、特に0.4以上
となるようにすれば、満足すべき結果が得られる。
The molecular orientation of the inner layer polyester by stretching and blowing is
Satisfactory results can be obtained by setting the in-plane orientation coefficient (1+m) to 0.3 or more, particularly 0.4 or more.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例 1 外層が温度伝導率5.04X10 ’m/h、密度x
、3sy/=、固有粘度0.7のポリエチレンテレフタ
レート(厚0.2 mm )で、中間層が温度伝導率2
.16X 10 ’ =、”h、密度1.2f/−の
エチレン酢ビのケン化物(厚み0.2:3m)で、かつ
内層が温度伝導率5.04xlO’ m/h、密度1.
35P/cIiL、固有粘度0.7のポリエチレンテレ
フタレート(厚み2.1 mm )から戒る3層プリフ
ォームを延伸成形温度110℃に加熱して金型温度が7
0℃のブロー金型内にセットし、該プリフォームを縦方
向に延伸しながら、高温高圧のエアー(温度100℃)
を吹き込んで横方向に延伸し高温高圧下で5秒間保持し
た内容積1oooccの二軸延伸ボトルを得た。
Example 1 The outer layer has a thermal conductivity of 5.04 x 10' m/h and a density x
, 3sy/=, the intermediate layer is made of polyethylene terephthalate (thickness 0.2 mm) with an intrinsic viscosity of 0.7 and a temperature conductivity of 2.
.. 16X 10' = "h, a saponified product of ethylene vinyl acetate (thickness 0.2:3 m) with a density of 1.2 f/-, and the inner layer has a thermal conductivity of 5.04 x lO' m/h and a density of 1.
A three-layer preform made of polyethylene terephthalate (thickness 2.1 mm) with 35P/cIiL and an intrinsic viscosity of 0.7 was heated to a stretch molding temperature of 110°C, and the mold temperature was 7.
The preform was set in a blow mold at 0°C, and while being stretched in the longitudinal direction, high-temperature, high-pressure air (temperature 100°C) was applied.
A biaxially stretched bottle with an internal volume of 100cc was obtained by blowing in the bottle, stretching it in the transverse direction, and holding it for 5 seconds at high temperature and high pressure.

この容器に、87℃の湯を充填した時の収縮率は0.3
%で実用上問題なく、更にガスバリヤ−性の向上が見ら
れた。
When this container is filled with hot water at 87℃, the shrinkage rate is 0.3.
%, there was no practical problem, and further improvement in gas barrier properties was observed.

実施例 2 外層が温度伝導率5.04X10 ’ m/h、密度
1.351/crrj、固有粘度0.7のポリエチレン
テレフタレート(厚0.2 mvt )で、中間層が温
度伝導率2.59X10 ’ m/h、密度1.3?
/−の塩化ビニリデン樹脂(厚み0.22mm)で、か
つ内層が温度伝導率5.04X10 ’ m/h、密
度1.35P/ffl、固有粘度0.7のポリエチレン
テレフタレート(厚み2.2 mm )から戒る3層ブ
リフオ−ムを延伸成形温度105°Cに加熱して金型温
度が65℃のブロー金型内にセットし、該プリフォーム
を縦方向に延伸しながら、高温高圧のエアー(温度10
0℃)を吹き込んで横方向に延伸し高温高圧下で5秒間
保持した内容積1oooccの二軸延伸ボトルを得た。
Example 2 The outer layer is made of polyethylene terephthalate (thickness 0.2 mvt) with a temperature conductivity of 5.04X10' m/h, a density of 1.351/crrj, and an intrinsic viscosity of 0.7, and the middle layer has a temperature conductivity of 2.59X10'. m/h, density 1.3?
/- vinylidene chloride resin (thickness 0.22 mm), and the inner layer is polyethylene terephthalate (thickness 2.2 mm) with temperature conductivity 5.04 x 10' m/h, density 1.35 P/ffl, and intrinsic viscosity 0.7. A three-layer preform is heated to a stretch forming temperature of 105°C and placed in a blow mold with a mold temperature of 65°C.While stretching the preform in the longitudinal direction, high temperature and high pressure air ( temperature 10
A biaxially stretched bottle with an internal volume of 100cc was obtained by blowing 0° C. into the bottle, stretching it in the transverse direction and holding it for 5 seconds at high temperature and high pressure.

このボトルに、85°Cの湯を充填した時の収縮率は0
.32%で実用上問題なく、外観、強度、ガス7< I
Jゴヤ−に富んだ容器であった。
When this bottle is filled with hot water at 85°C, the shrinkage rate is 0.
.. No practical problem at 32%, appearance, strength, gas 7<I
It was a container rich in J. Goya.

実施例 3 外層が温度伝導率2.70X10−’ m/h、密度1
.06 f/critI)スチo−#樹脂(厚ミ0.1
5mm)で、内層が温度伝導率5.04X10 ’
m”/h、密度1.35 ?/art、固有粘度0.7
のポリエチレンテレフタレート(厚み2.5 mm )
から成る2層プリフォームを延伸成形温度110℃に加
熱して金型温度が60℃のブロー金型内にセットし、該
プリフォームを縦方向に延伸しながら、高温高圧のエア
ー(温度100℃)を吹き込んで横方向に延伸し高温高
圧下で5秒間保持した内容積1000CCの二軸延伸ボ
トルを得た。
Example 3 The outer layer has a thermal conductivity of 2.70×10-' m/h and a density of 1
.. 06 f/critI) Steel o-# resin (thickness 0.1
5mm), and the inner layer has a thermal conductivity of 5.04X10'
m”/h, density 1.35?/art, intrinsic viscosity 0.7
of polyethylene terephthalate (thickness 2.5 mm)
A two-layer preform made of ) was blown in, stretched in the transverse direction, and held at high temperature and high pressure for 5 seconds to obtain a biaxially stretched bottle with an internal volume of 1000 cc.

このボトルに、85℃の湯を充填した時の収縮率は0.
15%で、実用上問題なく、外観的にも、強度的にも、
ポリエステル単体容器と遜色はなかった。
When this bottle was filled with hot water at 85°C, the shrinkage rate was 0.
At 15%, there is no problem in practical use, both in terms of appearance and strength.
It was comparable to a single polyester container.

実施例 4 外層が温度伝導率2.86 X 10 ’ m”/h
、密度0.9?/−のホモポリプロピレン樹脂(厚み0
.1間)で、内層が温度伝導率5.04X10 ’m
/h、密度1.35P/CIfl、固有粘度0.7のポ
リエチレンテレフタレート(厚み2.5 urn )か
ら威る2層プリフォームを延伸成形温度140℃に加熱
して金型温度が70℃のブロー金型内にセットし、該プ
リフォームを縦方向に延伸しながら、高温高圧のエアー
(温度110℃)を吹き込んで横方向に延伸し高温・高
圧下で5秒間保持した内容積1000CCの二軸延伸ボ
トルを得た。
Example 4 The outer layer has a thermal conductivity of 2.86 x 10'm"/h
, density 0.9? /- homopolypropylene resin (thickness 0
.. 1), and the inner layer has a thermal conductivity of 5.04X10'm
/h, a two-layer preform made of polyethylene terephthalate (thickness 2.5 urn) with a density of 1.35P/CIfl and an intrinsic viscosity of 0.7 was heated to a stretch molding temperature of 140°C and then blown at a mold temperature of 70°C. A biaxial mold with an inner volume of 1000 cc was set in a mold, and while stretching the preform in the longitudinal direction, high-temperature, high-pressure air (temperature 110°C) was blown into it to stretch it in the transverse direction, and the preform was held at high temperature and high pressure for 5 seconds. A stretched bottle was obtained.

このボトルに、90℃の湯を充填した時の収縮率は0,
3%で、実用上問題なくこの容器の透明度は、ヘイズ値
で3.5%で、外観的にもポリエステル単体容器と遜色
なかった。
When this bottle is filled with hot water at 90℃, the shrinkage rate is 0.
3%, there were no practical problems, and the transparency of this container was 3.5% in terms of haze value, and its appearance was comparable to that of a single polyester container.

比較例 1 実施例1の内層に使用したポリエチレンテレフタレート
から戊るプリフォーム(厚み2.6 mm )を延伸成
形温度95℃に加熱して、室温(約20℃)のブロー金
型内にセットし、該プリフォームを縦方向に延伸しなが
ら、室温の高圧エアーを吹き込んで横方向に延伸し、内
容積1000ccの二軸延伸ボトルを得た。
Comparative Example 1 A preform (thickness: 2.6 mm) made of polyethylene terephthalate used for the inner layer of Example 1 was heated to a stretch molding temperature of 95°C and set in a blow mold at room temperature (approximately 20°C). While stretching the preform in the longitudinal direction, high-pressure air at room temperature was blown into the preform to stretch it in the transverse direction to obtain a biaxially stretched bottle with an internal volume of 1000 cc.

該ボトルに85℃の湯を充填したときの収縮率は5%で
高温の内容物を充填する容器として実用上問題であった
When the bottle was filled with hot water at 85°C, the shrinkage rate was 5%, which was a practical problem as a container for filling hot contents.

比較例 2 実施例1の内層に使用したポリエチレンテレフタレート
から成るプリフォーム(厚さ2.7 mrn )を延伸
成形温度95℃に加熱して、100℃のブロー金型内に
セットし、該プリフォームを縦方向に延伸しながら、1
00℃の高温・高圧エアーを吹き込んで横方向に延伸し
、内容積1000ccの二軸延伸ボトルを成形したが、
該ボトルに自己保形性がなくブロー金型から製品として
取り出すことができなかった。
Comparative Example 2 A preform (thickness: 2.7 mrn) made of polyethylene terephthalate used for the inner layer of Example 1 was heated to a stretch molding temperature of 95°C, set in a blow mold at 100°C, and the preform While stretching in the longitudinal direction, 1
A biaxially stretched bottle with an internal volume of 1000 cc was formed by blowing high-temperature and high-pressure air at 00°C and stretching it in the lateral direction.
The bottle did not have self-retention properties and could not be taken out as a product from the blow mold.

比較例 3 外層が温度伝導率4.7X10−4=/h、密度1.1
5グ/−のナイロン6・6(厚さ0.1間)で、内容が
実施例1に使用したポリエチレンテレフタレート(厚さ
2.5 mm )から成る2層プリフォームを延伸成形
温度160℃に加熱して、金型温度が60 ’Cのブロ
ー金型内にセットし、該プリフォームを縦方向に延伸し
ながら高温・高圧エアー(温度100℃)を吹き込んで
横方向に延伸し、高温・高圧下で5秒間保持した内容積
1000ccの二軸延伸ボトルを得た。
Comparative Example 3 The outer layer has a thermal conductivity of 4.7X10-4=/h and a density of 1.1.
A two-layer preform consisting of 5 g/- nylon 6.6 (0.1 mm thick) and polyethylene terephthalate (2.5 mm thick) used in Example 1 was stretched at a temperature of 160°C. The preform is heated and set in a blow mold with a mold temperature of 60'C, and while stretching the preform in the longitudinal direction, high temperature and high pressure air (temperature 100 °C) is blown in to stretch it in the transverse direction. A biaxially stretched bottle with an internal volume of 1000 cc was obtained by holding it under high pressure for 5 seconds.

このボトルに85℃の湯を充填した時の収縮率は2%で
高温の内容物を充填する容器としては実用上問題であっ
た。
When this bottle was filled with hot water at 85°C, the shrinkage rate was 2%, which was a practical problem for a container filled with high-temperature contents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多層プラスチック壁の温度勾配を示す線図であ
り、1は内層、2は中間層、3は外層、4は最内面、5
は内側界面、6は外側界面及び7は最外面をそれぞれ示
す。
Figure 1 is a diagram showing the temperature gradient of a multilayer plastic wall, where 1 is the inner layer, 2 is the middle layer, 3 is the outer layer, 4 is the innermost layer, and 5 is the inner layer.
6 indicates the inner interface, 6 indicates the outer interface, and 7 indicates the outermost surface.

Claims (1)

【特許請求の範囲】 1 内層が飽和ポリエステル樹脂から成り且つ中間層乃
至は外層が飽和ポリエステル樹脂よりも温度伝導率の小
さい熱可塑性樹脂から戒る多層パリソン乃至はプリフォ
ームを製造し、この多層パリソン乃至プリフォームを前
記飽和ポリエステル樹脂の融点よりも低く且つそのガラ
ス転移点よりも高い温度で軸方向に延伸する操作と、該
多層パリソン乃至プリフォームを金型内に保持してその
内部に流体を吹込んで膨張させる操作とを同時に或いは
この順序に行い、多層パリソン乃至はプリフォーム中に
吹込む流体として90℃以上の温度の流体を使用し、且
つ最外層の樹脂が自己保形性を有する温度以下に金型表
面温度を維持することを特徴とする熱固定された二軸延
伸プラスチック容器の製法。 2 中間層乃至は外層の熱可塑性樹脂が3.5×1o’
m/h以下の温度伝導率であることを特徴とする特許請
求の範囲第1項記載の二軸延伸プラスチック容器の製法
。 3 内層のポリエステル樹脂と中間層乃至は外層の熱可
塑性樹脂との厚さの比が1:1〜200 :1であるこ
とを特徴とする特許請求の範囲第1項記載の二軸延伸プ
ラスチック容器の製法。 4 内層のポリエステル樹脂がポリエチレンテレフタレ
ートであり、中間層乃至は外層の熱可塑性樹脂がホリプ
ロピレン、エチレン−ビニルアルコール共重合体、ポリ
塩化ビニリデン又はポリスチレンを主体とすることを特
徴とする特許請求の範囲第1項記載の二軸延伸プラスチ
ック容器の製法。
[Claims] 1. Produce a multilayer parison or preform in which the inner layer is made of a saturated polyester resin and the intermediate layer or outer layer is made of a thermoplastic resin whose temperature conductivity is lower than that of the saturated polyester resin; An operation of stretching the preform in the axial direction at a temperature lower than the melting point of the saturated polyester resin and higher than its glass transition point, and holding the multilayer parison or preform in a mold and introducing a fluid into the inside thereof. Blowing and expanding operations are performed simultaneously or in this order, and a fluid with a temperature of 90°C or higher is used as the fluid to be blown into the multilayer parison or preform, and the temperature at which the outermost layer resin has self-shape retention. A method for producing a heat-set biaxially stretched plastic container characterized by maintaining the mold surface temperature as follows. 2 The thermoplastic resin of the middle layer or outer layer is 3.5×1o'
2. The method for producing a biaxially stretched plastic container according to claim 1, wherein the biaxially stretched plastic container has a temperature conductivity of not more than m/h. 3. The biaxially oriented plastic container according to claim 1, characterized in that the thickness ratio of the polyester resin of the inner layer to the thermoplastic resin of the intermediate layer or outer layer is 1:1 to 200:1. manufacturing method. 4. Claims characterized in that the polyester resin of the inner layer is polyethylene terephthalate, and the thermoplastic resin of the intermediate layer or outer layer is mainly composed of polypropylene, ethylene-vinyl alcohol copolymer, polyvinylidene chloride, or polystyrene. A method for producing a biaxially stretched plastic container according to item 1.
JP55181316A 1980-12-23 1980-12-23 Method for manufacturing hot-fillable plastic containers Expired JPS5841182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55181316A JPS5841182B2 (en) 1980-12-23 1980-12-23 Method for manufacturing hot-fillable plastic containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55181316A JPS5841182B2 (en) 1980-12-23 1980-12-23 Method for manufacturing hot-fillable plastic containers

Publications (2)

Publication Number Publication Date
JPS57105320A JPS57105320A (en) 1982-06-30
JPS5841182B2 true JPS5841182B2 (en) 1983-09-10

Family

ID=16098542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55181316A Expired JPS5841182B2 (en) 1980-12-23 1980-12-23 Method for manufacturing hot-fillable plastic containers

Country Status (1)

Country Link
JP (1) JPS5841182B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199237A (en) * 1983-04-28 1984-11-12 東洋製罐株式会社 Manufacture of multilayer stretched polyester bottle
JPS60141522A (en) * 1983-12-29 1985-07-26 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
FR2557499B1 (en) * 1984-01-04 1986-05-23 Cibie Projecteurs METHOD FOR MANUFACTURING A COMPOSITE ARTICLE BY COEXTRUSION AND COMPOSITE ARTICLE OBTAINED
JPH058127Y2 (en) * 1984-12-28 1993-03-01
GB2188272B (en) * 1986-02-28 1990-10-10 Toyo Seikan Kaisha Ltd A process for preparation of a biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties.
US4764403A (en) * 1986-11-10 1988-08-16 Owens-Illinois Plastic Products Inc. Multilayer biaxially oriented heat set articles
CA2005995C (en) * 1988-12-20 1994-03-22 Hiroji Niimi Method for molding saturated crystalline polyesters and molding equipment therefor
PE9895A1 (en) * 1993-05-13 1995-05-15 Coca Cola Co METHOD FOR OBTAINING A BEVERAGE CONTAINER HAVING AN INTERNAL SURFACE WITH A RELATIVELY LOW PERMEABILITY / ABSORPTION
EP2349869A2 (en) * 2008-10-23 2011-08-03 The Procter & Gamble Company Multi-chamber material dispensing system and method for making same

Also Published As

Publication number Publication date
JPS57105320A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
US5622735A (en) Fluid supply apparatus for blow mold
US4522779A (en) Method for production of poly(ethylene terephthalate) articles
US4318882A (en) Method for producing a collapse resistant polyester container for hot fill applications
US4497855A (en) Collapse resistant polyester container for hot fill applications
KR100742076B1 (en) Polyester resin lamination vessel and molding method therefor
JPH0351568B2 (en)
AU4664293A (en) Method of forming multi-layer preform and container with low crystallizing interior layer
US4603066A (en) Poly(ethylene terephthalate) articles
JPS5841182B2 (en) Method for manufacturing hot-fillable plastic containers
JP3350192B2 (en) Pressure-resistant self-standing container and method of manufacturing the same
JPS5892536A (en) Biaxially stretched plastic bottle
JPS6356104B2 (en)
JPS61268426A (en) Manufacture of oriented polyester container with resistance to heat shrinkage
JPH01157828A (en) Heat-setting polyester orientation molding container
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
JPH0531792A (en) Manufacture of heat resistant container
JPS61197205A (en) Orientation blow molding preform
JPH0622860B2 (en) Biaxial stretching blow molding method
JPH054895B2 (en)
JPH0443498B2 (en)
JP2632960B2 (en) Biaxial stretch blow molding method and apparatus
JPH0443499B2 (en)
JPS60189418A (en) Manufacture of heat resisting polyester bottle
JPS61244738A (en) Biaxial oriented molded vessel