JPS5827671B2 - Charge pumping memory cell - Google Patents

Charge pumping memory cell

Info

Publication number
JPS5827671B2
JPS5827671B2 JP54080971A JP8097179A JPS5827671B2 JP S5827671 B2 JPS5827671 B2 JP S5827671B2 JP 54080971 A JP54080971 A JP 54080971A JP 8097179 A JP8097179 A JP 8097179A JP S5827671 B2 JPS5827671 B2 JP S5827671B2
Authority
JP
Japan
Prior art keywords
substrate
gate
charge pumping
memory cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54080971A
Other languages
Japanese (ja)
Other versions
JPS566466A (en
Inventor
潤治 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP54080971A priority Critical patent/JPS5827671B2/en
Priority to US06/159,505 priority patent/US4455566A/en
Priority to EP80302038A priority patent/EP0021776B1/en
Priority to DE8080302038T priority patent/DE3062608D1/en
Publication of JPS566466A publication Critical patent/JPS566466A/en
Publication of JPS5827671B2 publication Critical patent/JPS5827671B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は、フローティング状態の基板に電荷を注入しそ
の基板バイアス効果を利用するMO8FET構造のチャ
ージポンピング型メモリセルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge pumping memory cell having an MO8FET structure that injects charges into a floating substrate and utilizes the substrate bias effect thereof.

従来のチャージポンピング型のメモリセルは第1図に示
すように、サファイヤ基板上に島状のシリコン層を作り
、該シリコン層にMOS FETを構成したSO8構
造である。
As shown in FIG. 1, a conventional charge pumping type memory cell has an SO8 structure in which an island-shaped silicon layer is formed on a sapphire substrate and a MOS FET is formed in the silicon layer.

この図で10はサファイヤ基板、12は該基板上に島状
に形成したP型シリコン層(浮遊基板)、14はシリコ
ン層上に形成したゲート酸化膜、16は更にその上に形
成した多結晶シリコンゲート電極、18,20はフロー
ティング状態のシリコン基板12に形成したN+型のソ
ース、ドレイン領域であり、これらの12〜20がNチ
ャンネルシリコンゲートのMOS FETを構成する
In this figure, 10 is a sapphire substrate, 12 is a P-type silicon layer (floating substrate) formed in the form of an island on the substrate, 14 is a gate oxide film formed on the silicon layer, and 16 is a polycrystalline layer formed on top of it. Silicon gate electrodes 18 and 20 are N+ type source and drain regions formed on the floating silicon substrate 12, and these 12 to 20 constitute an N-channel silicon gate MOS FET.

この素子では、ゲート16に正電圧を加えてゲート酸化
膜14の下部基板部分にN反転層即ちチャンネルを作り
、ソース、ドレイン18 、20間に電圧を加えて電流
を流しておいて急激に該正電圧を零にすると、当然チャ
ンネルは消滅し電流は遮断されるが、このとき該チャン
ネルを流れていた電荷、ここでは電子は基板12内へ注
入される。
In this device, a positive voltage is applied to the gate 16 to form an N inversion layer, that is, a channel, in the lower substrate portion of the gate oxide film 14, and a voltage is applied between the source and drains 18 and 20 to cause current to flow, causing a sudden increase in the voltage. When the positive voltage is reduced to zero, the channel naturally disappears and the current is cut off, but at this time the charges, in this case electrons, flowing through the channel are injected into the substrate 12.

このチャージポンプの現象で基板12内へ注入された電
子はホールと再結合して消滅するが、この結果基板12
内ホール数は減少し、基板12のP型不純物濃度が下っ
て(この素子では基板濃度は1016個/d以上の比較
的濃いものを使う)ソース、ドレイン18゜20接合部
の空乏層が拡大し、基板12の電位は負側へ低減する。
Electrons injected into the substrate 12 due to this charge pump phenomenon recombine with holes and disappear;
The number of inner holes decreases, the P-type impurity concentration in the substrate 12 decreases (in this device, a relatively high substrate concentration of 1016 atoms/d or more is used), and the depletion layer at the source and drain 18°20 junctions expands. However, the potential of the substrate 12 decreases to the negative side.

基板が負になるとこのMOSFETのしきい値電圧vt
hはエンハンスメント側へドライブされる。
When the substrate becomes negative, the threshold voltage vt of this MOSFET
h is driven to the enhancement side.

従ってソース、ドレイン間に電圧を加えて流れる電流を
みると、チャージポンプが行なわれた場合は(“1”を
書込んだ、とする)、行なわれない場合(“0”を書込
んだ、とする)よりドレイン電流が小になり、この電流
の大小で記憶内容の”1”、”0”を知ることができる
Therefore, when we look at the current that flows when a voltage is applied between the source and drain, we see that when charge pumping is performed (assuming that "1" is written), and when it is not performed (assuming that "0" is written, ), the drain current becomes smaller, and it is possible to determine whether the memory content is "1" or "0" based on the magnitude of this current.

記憶内容を消去するにはアバランシェブレークダウンを
利用する。
Use avalanche breakdown to erase memory contents.

即ち読出しはドレイン20に+5V程度を加えて行なう
(書込みは+9V程度)が、消去にはこれを+16V程
度に高め、ドレイン近傍でアバランシェブレークダウン
を生じさせる。
That is, reading is performed by applying approximately +5V to the drain 20 (writing is approximately +9V), but for erasing, this is increased to approximately +16V to cause avalanche breakdown near the drain.

この結果、電子、ホール対が発生し、電子は正電位のド
レインに吸収され、ホールが基板12内に注入され、負
に帯電していた基板12を零電位へ戻す。
As a result, electron-hole pairs are generated, the electrons are absorbed by the drain at positive potential, and the holes are injected into the substrate 12, returning the negatively charged substrate 12 to zero potential.

ホールが基板に過剰に注入されると基板は正電位になる
が、これは基板とソースとが作るPN接合を順バイアス
し、ホールは零電位のソースへ流出してしまう。
When excessive holes are injected into the substrate, the substrate becomes at a positive potential, which forward biases the PN junction formed between the substrate and the source, and the holes flow out to the source at zero potential.

従って基板へのホール過剰注入はない。Therefore, there is no excessive hole injection into the substrate.

このチャージポンピングメモリ素子の詳細は特開昭54
−5635などに開示されている。
The details of this charge pumping memory element are disclosed in Japanese Patent Laid-Open No. 54
-5635, etc.

ところで、上述したSO8−MO5FET構造のチャー
ジポンピングメモリの平面的な大きさの最小値は第2図
に示すように、ゲート部G1ソースS1 ドレインDの
幅が各々最小線幅Fであり、長さもIFとすると、隣接
素子とはやはり最小線幅Fを置く必要があるので、これ
を含めると所要面積は4FX2F=8F2になる。
By the way, as shown in FIG. 2, the minimum value of the planar size of the charge pumping memory of the SO8-MO5FET structure mentioned above is that the width of the gate part G1 source S1 drain D is the minimum line width F, and the length is also If it is IF, it is necessary to set the minimum line width F between adjacent elements, so including this, the required area becomes 4FX2F=8F2.

言う迄もなくメモリセルは大容量メモリ実現のため可及
的に小さいことが望まれる。
Needless to say, it is desired that the memory cell be as small as possible in order to realize a large capacity memory.

またSO8構造は結晶欠陥が多く、リーク電流が大きい
ので、注入した電荷も速やかに放散され、従ってリフレ
ッシュを短周期で繰り返さなければならない。
Furthermore, since the SO8 structure has many crystal defects and a large leakage current, the injected charges are quickly dissipated, and therefore refreshing must be repeated at short intervals.

本発明はかかる点を改善しようとするもので、SO8構
造を止め、バルクシリコン半導体基板を用いることによ
りリーク電流を減少させ、また埋込ソース型とすること
により4F2の最小セル面積を実現できるチャージポン
ピング型メモリセルを提供するものである。
The present invention aims to improve these points by eliminating the SO8 structure, reducing leakage current by using a bulk silicon semiconductor substrate, and realizing a minimum cell area of 4F2 by using a buried source type charger. The present invention provides a pumping type memory cell.

以下、第3図に示す製造工程と共に本発明の詳細な説明
する。
Hereinafter, the present invention will be explained in detail along with the manufacturing process shown in FIG.

第3図aで30はN型シリコン半導体基板、32は該基
板上にエピタキシャル成長させてなる又は不純物拡散し
て作ったN型層(これはP型層でよいが、この場合は当
然後述のソース、ドレイン等の導電型はすべて逆になる
)、34はアイソレーション用のフィールド酸化膜であ
る。
In FIG. 3a, 30 is an N-type silicon semiconductor substrate, and 32 is an N-type layer formed by epitaxial growth on the substrate or by diffusion of impurities (this may be a P-type layer, but in this case, of course, the source described later is used). , the conductivity types of the drain, etc. are all reversed), and 34 is a field oxide film for isolation.

かかる基板に熱酸化でゲート酸化膜を形成し、CVD法
により多結晶シリコン層を被着し、これらをパタニング
して第3図すに示す如くゲート電極38゜ゲート酸化膜
40を作る。
A gate oxide film is formed on the substrate by thermal oxidation, a polycrystalline silicon layer is deposited by the CVD method, and this is patterned to form a gate oxide film 40 having a gate electrode 38° as shown in FIG.

図示の如くゲート電極38およびゲート酸化膜40は、
フィールド酸化膜二周辺限定される活性領域の片側に片
寄っており、他側は窓部Wとして基板を露出させている
As shown in the figure, the gate electrode 38 and gate oxide film 40 are
The field oxide film is biased to one side of the active region defined around the periphery, and the other side serves as a window W to expose the substrate.

次にこの窓部Wを通して先ずP型不純物の拡散を深く行
ない、その後N型不純物の拡散を浅く行ない第3図Cに
示すようにP型層(浮遊基板)42、N+型層(ドレイ
ン領域)44を作る。
Next, P-type impurities are first diffused deeply through this window W, and then N-type impurities are diffused shallowly to form a P-type layer (floating substrate) 42 and an N+-type layer (drain region) as shown in FIG. Make 44.

然るのちゲート電極38の周囲に二酸化シリコンなどの
絶縁膜46を付け、次いでアルミニウムを被着シ、かつ
パターニングし、ビット線48を作る。
Thereafter, an insulating film 46 such as silicon dioxide is formed around the gate electrode 38, and then aluminum is deposited and patterned to form a bit line 48.

ワード線はゲート電極38の延長部で構成される。The word line is formed by an extension of the gate electrode 38.

ソース領域となる層32は基板30と導電的に接触して
おり、この基板30が共通ソース配線となる。
The layer 32 serving as the source region is in conductive contact with the substrate 30, and this substrate 30 serves as the common source wiring.

このチャージポンピングメモリセルを第2図の如き平面
パターンで考えてみると、最小幅は2Fでよく、それに
長さは不変でやはり2Fであるからセル面積は2 FX
2 F=4 F2になる。
If we consider this charge pumping memory cell as a planar pattern as shown in Figure 2, the minimum width may be 2F, and the length remains unchanged and is also 2F, so the cell area is 2FX.
2 F=4 F2.

またチャンネルはゲート電極46に対向するP型層42
部分にできるから極めて短くすることができる。
In addition, the channel is formed by a P-type layer 42 facing the gate electrode 46.
Because it can be made into sections, it can be made extremely short.

また使用半導体層はシリコン基板上に積んだシリコンエ
ピタキシャル成長層またはシリコン基板そのものに所望
濃度または所望導電型の不純物を導入して作ったもので
あるから良質のものであり、SO8素子のようにリーク
電流が犬などの欠点がない。
In addition, the semiconductor layer used is of good quality because it is made by introducing impurities of a desired concentration or conductivity type into a silicon epitaxial growth layer stacked on a silicon substrate or into the silicon substrate itself, and it has a high leakage current like an SO8 element. There are no drawbacks as a dog.

動作は第1図と同様で、ゲート電極38によりP型層4
2にチャンネルを作ってドレイン領域44、該チャンネ
ル、ソース領域(層32)の経路で電流を流し、これを
急激に遮断して42にに電荷を注入する。
The operation is similar to that shown in FIG.
A channel is formed in 2, a current is passed through a path between the drain region 44, the channel, and the source region (layer 32), and this is abruptly interrupted to inject charges into 42.

この層42は層44.32との間に形成されるPN接合
等で周囲を完全に絶縁されているので、この電荷注入で
電位が変り、バンクゲート効果を生じる。
Since this layer 42 is completely insulated from its surroundings by a PN junction or the like formed between layers 44 and 32, this charge injection changes the potential and produces a bank gate effect.

読出しはこのバックゲート効果によるドレイン電流の相
違を検出すればよい。
For reading, it is sufficient to detect the difference in drain current due to this back gate effect.

なお、P領域42は図示の如く小さく、従って注入され
る電荷量も少ないが、層42のポテンシャルが変ればバ
ンクゲート効果が現われるので、1トランジスタ1キヤ
パシタセルなどと異なりチャージ量の大小が動作に影響
することはない。
Note that the P region 42 is small as shown in the figure, and therefore the amount of charge injected is small, but if the potential of the layer 42 changes, a bank gate effect will appear, so unlike a one-transistor, one-capacitor cell, etc., the amount of charge will affect the operation. There's nothing to do.

以上述べたように本発明によれば、チャージポンピング
型メモリの1セル当りの最小面積を4F2とすることが
できるもので、大容量記憶装置の高集積化を図る際に極
めて有利であり、またSO8構造ではなくシリコンバル
ク構造であるのでリーク電流が小さいなどの利点がある
As described above, according to the present invention, the minimum area per cell of a charge pumping type memory can be reduced to 4F2, which is extremely advantageous in achieving high integration of large capacity storage devices. Since it has a silicon bulk structure rather than an SO8 structure, it has advantages such as low leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は508−MO8FET構造のチャージポンピン
グメモリの一例を示す断面図、第2図は同チャージポン
ピングメモリの占有面積の説明図、第3図a ” cは
本発明素子の製造工程を示す断面図である。 図中、30はN型シリコン半導体基板(共通ソース領域
)、32はN型シリコン層、38は多結晶シリコンゲー
ト、40はゲート酸化膜、42はP型層(浮遊基板領域
)、44はN+型層(ドレイン領域)である。
Figure 1 is a cross-sectional view showing an example of a charge pumping memory with a 508-MO8FET structure, Figure 2 is an explanatory diagram of the area occupied by the same charge pumping memory, and Figures 3a and 3c are cross-sectional views showing the manufacturing process of the device of the present invention. In the figure, 30 is an N-type silicon semiconductor substrate (common source region), 32 is an N-type silicon layer, 38 is a polycrystalline silicon gate, 40 is a gate oxide film, and 42 is a P-type layer (floating substrate region). , 44 is an N+ type layer (drain region).

Claims (1)

【特許請求の範囲】[Claims] 1 周側を絶縁した一導電型の半導体層上に窓部を残し
てゲート絶縁膜を、更にその上にワード線に接続される
ゲート電極を取付け、該窓から前記半導体層に対して不
純物拡散を行なって該窓側から同一導電型のそしてビッ
ト線に接続されるドレイン領域、該ドレイン領域の下な
らびに該ドレイン領域側のゲート電極部分の下に延びて
チャンネルが形成されかつそのチャンネルに、電荷注入
によるバンクゲート効果を与える反対導電型の浮遊基板
領域、を順次形成してなることを特徴とするチャージポ
ンピング型のメモリセル。
1. A gate insulating film is left on a semiconductor layer of one conductivity type whose circumferential side is insulated, a gate insulating film is attached, and a gate electrode connected to a word line is attached on top of the gate insulating film, and an impurity is diffused into the semiconductor layer through the window. A channel is formed extending from the window side to a drain region of the same conductivity type and connected to the bit line, below the drain region, and below the gate electrode portion on the drain region side, and charge is injected into the channel. A charge pumping type memory cell characterized in that floating substrate regions of opposite conductivity type are sequentially formed to provide a bank gate effect.
JP54080971A 1979-06-18 1979-06-27 Charge pumping memory cell Expired JPS5827671B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54080971A JPS5827671B2 (en) 1979-06-27 1979-06-27 Charge pumping memory cell
US06/159,505 US4455566A (en) 1979-06-18 1980-06-16 Highly integrated semiconductor memory device
EP80302038A EP0021776B1 (en) 1979-06-18 1980-06-17 Semiconductor memory device and method of making same
DE8080302038T DE3062608D1 (en) 1979-06-18 1980-06-17 Semiconductor memory device and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54080971A JPS5827671B2 (en) 1979-06-27 1979-06-27 Charge pumping memory cell

Publications (2)

Publication Number Publication Date
JPS566466A JPS566466A (en) 1981-01-23
JPS5827671B2 true JPS5827671B2 (en) 1983-06-10

Family

ID=13733394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54080971A Expired JPS5827671B2 (en) 1979-06-18 1979-06-27 Charge pumping memory cell

Country Status (1)

Country Link
JP (1) JPS5827671B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582064A (en) * 1981-06-27 1983-01-07 Fujitsu Ltd Semiconductor memory unit
JPS59212472A (en) * 1983-05-16 1984-12-01 Sumitomo Chem Co Ltd 4,5,6,7-tetrahydro-2h-isoindole-1,3-dione derivative, its production and herbicide containing the same as active constituent

Also Published As

Publication number Publication date
JPS566466A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
US4298962A (en) Memory
US4425631A (en) Non-volatile programmable integrated semiconductor memory cell
JPH0799251A (en) Semiconductor memory cell
JPWO2002067320A1 (en) Semiconductor storage device and semiconductor integrated circuit
US6195292B1 (en) Semiconductor memory with floating gate type FET
GB1425985A (en) Arrangements including semiconductor memory devices
JPH0132660B2 (en)
CN101604693B (en) Memory devices
CN103972238A (en) Memory unit structure
JPS6050066B2 (en) MOS semiconductor integrated circuit device
US10074658B2 (en) Non-volatile SRAM memory cell and non-volatile semiconductor storage device
CN110047833B (en) Memory, working method and forming method thereof
JPS5827671B2 (en) Charge pumping memory cell
US6399989B1 (en) Radiation hardened silicon-on-insulator (SOI) transistor having a body contact
KR100237900B1 (en) Semiconductor storage device
JPS5814747B2 (en) semiconductor storage device
US4247863A (en) Semiconductor memory device
JPS6143859B2 (en)
JPS59135B2 (en) semiconductor storage device
EP0058998A1 (en) Semiconductor memory device
JPS6138866B2 (en)
JPS6281750A (en) Semiconductor integrated circuit device
JPS5811104B2 (en) hand tied memory cell
JPS623588B2 (en)
JPS6040709B2 (en) semiconductor storage device