JPS5826177B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5826177B2
JPS5826177B2 JP54081126A JP8112679A JPS5826177B2 JP S5826177 B2 JPS5826177 B2 JP S5826177B2 JP 54081126 A JP54081126 A JP 54081126A JP 8112679 A JP8112679 A JP 8112679A JP S5826177 B2 JPS5826177 B2 JP S5826177B2
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
silicon layer
semiconductor device
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54081126A
Other languages
Japanese (ja)
Other versions
JPS566464A (en
Inventor
安 深津
富士雄 舛岡
昇次 有泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54081126A priority Critical patent/JPS5826177B2/en
Publication of JPS566464A publication Critical patent/JPS566464A/en
Publication of JPS5826177B2 publication Critical patent/JPS5826177B2/en
Priority to US06/545,002 priority patent/US4475964A/en
Priority to US06/665,081 priority patent/US4558343A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、高比抵抗の抵抗体を有する半導体装置の製造
方法に係り、特に半導体基体内に形成された高濃度に不
純物を拡散された多結晶シリコン層に接触された高比抵
抗の多結晶シリコン層からなる抵抗体を有する半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device having a resistor having a high specific resistance, and particularly relates to a method for manufacturing a semiconductor device having a resistor having a high resistivity, and particularly relates to a method for manufacturing a semiconductor device having a resistor having a high specific resistance, and in particular a semiconductor device that is in contact with a polycrystalline silicon layer formed in a semiconductor substrate and doped with impurities at a high concentration. The present invention relates to a method of manufacturing a semiconductor device having a resistor made of a polycrystalline silicon layer with high specific resistance.

従来、インバータ回路や基準電位発生回路等は、例えば
、駆動MO8(Metal 0xide Sem1c
−onductor))ランジスタにMOS)ランジス
タからなる負荷素子、或いは、高比抵抗の拡散層で形成
された負荷抵抗素子を接触して構成されたものが用いら
れている。
Conventionally, inverter circuits, reference potential generation circuits, etc.
A load element consisting of a -inductor) transistor and a MOS) transistor, or a load resistance element formed of a high resistivity diffusion layer is used.

しかしながら、負荷素子としてMOS)ランジスタを用
いて第1図に示す如き、いわゆるE/Dインバータ回路
を形成したものでは、MOS)ランジスタの相互コンダ
クタンスが比較的大きいため、MOS集積回路の低消費
電力化の為に相互コンダクタンスを下げようとすると、
負荷素子として使用するMOSトランジスタのチャネル
長が長くなり、高密度化を図ることができない欠点があ
った。
However, in the case where a so-called E/D inverter circuit as shown in Fig. 1 is formed using a MOS transistor as a load element, the mutual conductance of the MOS transistor is relatively large, so the power consumption of the MOS integrated circuit can be reduced. If you try to lower the mutual conductance for
This has the drawback that the channel length of the MOS transistor used as the load element becomes long, making it impossible to achieve high density.

この問題を解消するために、例えば、第2図及び第3図
に示す如く、フィールド酸化膜1の形成された半導体基
体2にその主面からソース拡散領域3及びドレイン拡散
領域4を形成し、この両拡散領域3,4間の露出表面に
ゲート酸化膜5を介してポリシリコンなどからなるゲー
ト電極6を形成すると共に、両拡散領域3,4に配線金
属7を取付けたいわゆる駆動MO8)ランジスタを形成
し、更に、フィールド酸化膜1の表面に負荷抵抗素子の
機能を果すポリシリコンからなる高比抵抗の低濃度層9
を形成し、マスク層(例えば、気相成長法で形成された
抵温酸化膜を写真蝕刻法でパターニングしたもの)11
により熱拡散後高抵抗部分9aと低抵抗部分96に分離
し、更に、電極取出部を除いて保護層10を形成すると
共に、この電極取出部とドレイン拡散領域4とを金属配
線で接続した第4図に示す如き、インバータ回路が考え
出されている。
In order to solve this problem, for example, as shown in FIGS. 2 and 3, a source diffusion region 3 and a drain diffusion region 4 are formed from the main surface of a semiconductor substrate 2 on which a field oxide film 1 is formed, A gate electrode 6 made of polysilicon or the like is formed on the exposed surface between the two diffusion regions 3 and 4 via a gate oxide film 5, and a wiring metal 7 is attached to both the diffusion regions 3 and 4 to form a so-called drive MO transistor. Furthermore, on the surface of the field oxide film 1, a high resistivity low concentration layer 9 made of polysilicon that functions as a load resistance element is formed.
A mask layer (for example, a low-temperature oxide film formed by vapor phase growth and patterned by photolithography) 11
After thermal diffusion, the high-resistance portion 9a and the low-resistance portion 96 are separated, and a protective layer 10 is formed except for the electrode extraction portion, and the electrode extraction portion and the drain diffusion region 4 are connected by metal wiring. An inverter circuit as shown in FIG. 4 has been devised.

このように高比抵抗の低濃度層9からなる負荷抵抗体を
有する半導体装置で構成されたインバータ回路は、負荷
素子としてMOSトランジスタを用いたものに比べて遥
かに小型化されたが、完全に高密度化が達成されたわけ
ではなかった。
In this way, an inverter circuit configured with a semiconductor device having a load resistor consisting of a low concentration layer 9 with high specific resistance is much smaller than one using a MOS transistor as a load element, but it is completely Densification was not achieved.

その理由は、例えば、低濃度高比抵抗の多結晶シリコン
からなる低濃度層9を高濃度部(低抵抗部)9bと低濃
度部(高比抵抗部)9aが分離し、この低濃度部9aの
長さを定めるためにマスク層11を形成後、熱拡散法に
よる不純物拡散を行う際に、熱拡散によってマスク層1
1に覆われた部分に不純物が拡散して低濃度部9aの高
比抵抗が失われるため、この不純物の拡散層(約10μ
報度)だけを予め考慮に入れてマスク層11の長さつま
り低濃度層9の長さを長くしておく必要があるからであ
る。
The reason for this is, for example, that the low concentration layer 9 made of polycrystalline silicon with low concentration and high specific resistance is separated into a high concentration area (low resistance area) 9b and a low concentration area (high specific resistance area) 9a, and this low concentration area After forming the mask layer 11 to determine the length of the mask layer 9a, when performing impurity diffusion by thermal diffusion, the mask layer 11 is
The impurity is diffused into the portion covered with 1 and the high resistivity of the low concentration portion 9a is lost.
This is because it is necessary to increase the length of the mask layer 11, that is, the length of the low concentration layer 9, by taking into consideration only the amount of energy (intensity) in advance.

また、このようにして製造されたインバータ回路等では
、負荷抵抗体の抵抗値のばらつきが大きい等の欠点があ
った。
Furthermore, inverter circuits and the like manufactured in this manner have drawbacks such as large variations in the resistance values of the load resistors.

本発明は、かかる点に鑑み種々の研究を行った結果、高
比抵抗の低濃度層の少なくとも一端部を駆動トランジス
タのすでに形成された拡散層に接続する高濃度に不純物
を拡散された多結晶シリコン層に直接接触することによ
り高密度化及び電気特性の向上を図った半導体装置の製
造方法を提供し従来の欠点を解消するものである。
As a result of various studies conducted in view of the above points, the present invention provides a polycrystalline material in which impurities are diffused in a high concentration to connect at least one end of a low concentration layer with high resistivity to an already formed diffusion layer of a drive transistor. The present invention provides a method for manufacturing a semiconductor device that achieves higher density and improved electrical characteristics by directly contacting a silicon layer, thereby eliminating the drawbacks of the conventional method.

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第5図E及び第6図は、本発明方法にて製造される半導
体装置の一実施例を示すものである。
FIGS. 5E and 6 show an embodiment of a semiconductor device manufactured by the method of the present invention.

この半導体装置は、フィールド酸化膜20の形成された
半導体基体21に、その主面から延在するソース拡散領
域(例えば、ソース拡散領域の濃度が1019〜102
1個/d程度)22及びドレイン拡散領域(例えば、ド
レイン拡散領域の濃度が1019〜1021個/crA
程度)23を形成すると共に、この両拡散領域22,2
3間の露出表面にゲート酸化層24を介して高濃度に不
純物を拡散された多結晶シリコン層のゲート電極25a
を形成し、且つ、フィールド酸化膜20の表面に一端部
がドレイン拡散領域23に直接接触された高濃度に不純
物を拡散された多結晶シリコン層25bを形成し更にこ
れらと少くともその一端が前記高濃度に不純物を拡散さ
れた多結晶シリコン層25bに直接接触された低濃度層
(例えば低濃度層の濃度が5X 1017個/1)26
をシリコン酸化層27を介して設け、ゲート電極(例え
ば後述する多結晶シリコンからなる低濃度層26を第2
多結晶シリコン層とした場合に、第1多結晶シリコン層
となるこのゲート電極の濃度1019〜1021個/C
r1l)25及び低濃度層26の表面に配線金属28の
取出し部を除いてシリコン酸化膜29を被着し、更にそ
の表面に保護膜30を形成したものである。
This semiconductor device has a source diffusion region (for example, a concentration of 1019 to 102
1 piece/d) 22 and the drain diffusion region (for example, the concentration of the drain diffusion region is 1019 to 1021 pieces/crA)
degree) 23, and both diffusion regions 22, 2
A gate electrode 25a of a polycrystalline silicon layer in which impurities are diffused at a high concentration through a gate oxide layer 24 on the exposed surface between 3 and 3.
A highly doped polycrystalline silicon layer 25b having one end directly in contact with the drain diffusion region 23 is formed on the surface of the field oxide film 20, and furthermore, at least one end thereof is in contact with the drain diffusion region 23. A low concentration layer (for example, the concentration of the low concentration layer is 5X 1017 pieces/1) 26 that is in direct contact with the polycrystalline silicon layer 25b into which impurities are diffused at a high concentration.
is provided via a silicon oxide layer 27, and a gate electrode (for example, a low concentration layer 26 made of polycrystalline silicon, which will be described later) is provided as a second layer.
In the case of a polycrystalline silicon layer, the concentration of this gate electrode, which becomes the first polycrystalline silicon layer, is 1019 to 1021 particles/C.
A silicon oxide film 29 is deposited on the surfaces of the r1l) 25 and the low concentration layer 26 except for the lead-out portion of the wiring metal 28, and a protective film 30 is further formed on the surface.

このように低濃度層26の一端部を駆動MOSトランジ
スタのドレイン拡散領域23に接続された高濃度に不純
物を拡散された多結晶シリコン層に直接接触して得られ
た半導体装置31はインバータ回路を構成し、例えば第
5図A乃至Eに示す如き工程に従って製造することがで
きる。
In this way, the semiconductor device 31 obtained by directly contacting one end of the low concentration layer 26 with the polycrystalline silicon layer in which impurities are diffused at a high concentration and connected to the drain diffusion region 23 of the drive MOS transistor has an inverter circuit. It can be constructed and manufactured according to the steps shown in FIGS. 5A to 5E, for example.

まず、第5図Aに示す如く、例えば、基板比抵抗20Ω
・はのP型半導体基体21の主面に、高温酸化により酸
化膜21aを形成し、更にこの酸化膜21aの表面に、
例えば、気相成長法により形成された窒化シリコン膜を
写真蝕刻法によって所望形状に形成されたレジスト21
bをマスクにして、所望パターンの窒化シリコン膜21
cを形成する。
First, as shown in FIG. 5A, for example, the substrate specific resistance is 20Ω.
・An oxide film 21a is formed on the main surface of the P-type semiconductor substrate 21 by high temperature oxidation, and further, on the surface of this oxide film 21a,
For example, a resist 21 is formed by photo-etching a silicon nitride film formed by vapor phase growth into a desired shape.
Using b as a mask, silicon nitride film 21 is formed into a desired pattern.
form c.

次いで、このレジス)21bを載置した窒化シリコン膜
21cをマスクにして加速電圧120 kV、注入量2
X 1013/cr?tの条件でボロン■のイオン注
入を行って半導体基体21の反転防止を施した後、高温
酸化により厚さ約1μのフィールド酸化膜20を形成す
ると共に、窒化シリコン膜21c及びその直下の酸化膜
21aを除去してから高温酸化により400〜1000
λ程度のゲート酸化膜24を形成する。
Next, using the silicon nitride film 21c on which the resist 21b is placed as a mask, an acceleration voltage of 120 kV and an implantation amount of 2 are applied.
X 1013/cr? After boron ion implantation is performed under the conditions of t to prevent the semiconductor substrate 21 from being inverted, a field oxide film 20 with a thickness of approximately 1 μm is formed by high temperature oxidation, and the silicon nitride film 21c and the oxide film immediately below it are 400-1000 by high temperature oxidation after removing 21a.
A gate oxide film 24 having a thickness of approximately λ is formed.

そして、このゲート酸化膜24の形成された半導体基体
21の表面に加速電圧50 kV、注入量3X10”/
−程度の条件でボロン■の注入を行いしきい値電圧を設
定した後、例えば、気相成長された多結晶シリコン層を
写真蝕刻法を用いて所望パターンのゲート電極25a及
び配線25bを形成する。
Then, the surface of the semiconductor substrate 21 on which the gate oxide film 24 was formed was subjected to an acceleration voltage of 50 kV and an implantation amount of 3×10”/
After implanting boron (2) under the conditions of - and setting the threshold voltage, for example, a gate electrode 25a and wiring 25b of a desired pattern are formed on the vapor-phase grown polycrystalline silicon layer using photolithography. .

次いで、このゲート電極25aをマスクにしてリン拡散
または砒素拡散を施してソース拡散領域22及びドレイ
ン拡散23を形成する。
Next, using this gate electrode 25a as a mask, phosphorus diffusion or arsenic diffusion is performed to form a source diffusion region 22 and a drain diffusion 23.

この時25bはよく知られている多結晶シリコンと基板
シリコンとのべリードコンタクト技術(直接接触技術)
によりドレイン拡散層23に接続されている。
At this time, 25b is a well-known buried contact technology (direct contact technology) between polycrystalline silicon and substrate silicon.
It is connected to the drain diffusion layer 23 by.

更にその表面に気相成長によりシリコン酸化膜27を形
成して第5図Bに示す如き駆動MOSトランジスタを得
る。
Furthermore, a silicon oxide film 27 is formed on the surface by vapor phase growth to obtain a driving MOS transistor as shown in FIG. 5B.

次にこの駆動MO8)ランジスタのシリコン酸化膜27
に第5図Cに示す如く高濃度に不純物を拡散された多結
晶シリコン層25bに通じるコンタクトホール27aを
写真蝕刻法を用いて形成する。
Next, this drive MO8) silicon oxide film 27 of transistor
Next, as shown in FIG. 5C, a contact hole 27a communicating with the polycrystalline silicon layer 25b into which impurities are diffused at a high concentration is formed by photolithography.

そして、コンタクトホール27aの形成された半導体基
体21の表面に不純物を含まない高抵抗体の層を気相成
長法等により形成すると共に、例えば、加速電圧50k
V、注入量I X 1013〜1×1o”/=の条件で
リンイオンの注入を施し、所定の高比抵抗を備えた高比
抵抗体(1011〜106Ω/口)を得る。
Then, a layer of a high resistance material containing no impurities is formed on the surface of the semiconductor substrate 21 in which the contact hole 27a is formed by vapor phase epitaxy or the like, and at an accelerating voltage of 50 k, for example.
Phosphorus ions are implanted under the conditions of V, implantation amount I x 10 13 to 1×1 o”/=, and a high resistivity body (10 11 to 10 6 Ω/hole) having a predetermined high specific resistance is obtained.

更に、このようにして所定の抵抗値が設定された低濃度
層26を第5図師に示す如く、写真蝕刻法によりパター
ニングした後、気相成長法によりシリコン酸化膜29を
成長させる。
Further, the low concentration layer 26 having a predetermined resistance value thus set is patterned by photolithography as shown in FIG. 5, and then a silicon oxide film 29 is grown by vapor phase growth.

そして、このシリコン酸化膜29に再び安定化処理を施
して半導体素子の安定化を図った後、その表面に厚さ約
500OAのリンケイ酸化ガラス(P−8−G) か
らなる保護膜30を被着すると共に、この保護膜30に
写真蝕刻法によって低濃度層26及びソース拡散領域2
2等に通じるコンタクトホールを形成して、アルミニウ
ムなどからなる配線金属28を形成し、第5図(υに示
す如き半導体装置31を得る。
After stabilizing the silicon oxide film 29 again to stabilize the semiconductor element, a protective film 30 made of phosphorus silicate glass (P-8-G) with a thickness of about 500 OA is coated on its surface. At the same time, a low concentration layer 26 and a source diffusion region 2 are formed on this protective film 30 by photolithography.
A contact hole communicating with the semiconductor device 2 and the like is formed, and a wiring metal 28 made of aluminum or the like is formed to obtain a semiconductor device 31 as shown in FIG. 5 (υ).

このようにして得られた半導体装置31では、低濃度層
26の一端部を1駆動MOSトランジスタのドレイン拡
散領域23に接続された高濃度に不純物を拡散された多
結晶シリコン層25bに直接接触するので低濃度層26
と高濃度に不純物を拡散された多結晶シリコン層25b
のコンタクトは、以後の例えば、シリコン酸化膜29等
の焼成工程による高濃度に不純物を拡散された多結晶シ
リコン層26bから低濃度層26への不純物拡散で実現
され、製造工程を簡略化して生産性を向上させることが
できる。
In the semiconductor device 31 thus obtained, one end of the low concentration layer 26 is brought into direct contact with the polycrystalline silicon layer 25b in which impurities are diffused at a high concentration and connected to the drain diffusion region 23 of the 1-drive MOS transistor. So the low concentration layer 26
A polycrystalline silicon layer 25b in which impurities are diffused at a high concentration.
The contact is realized, for example, by diffusing impurities from the polycrystalline silicon layer 26b into the low concentration layer 26, which has been diffused with impurities at a high concentration during the baking process of the silicon oxide film 29, etc., thereby simplifying the manufacturing process and making production possible. can improve sex.

また、低濃度層26の一端部が、すでに形成された高濃
度に不純を拡散された多結晶シリコン層25bに直接接
触されるので、第3図で示す如き、高抵抗部分9aと低
抵抗部分9bの分離工程を不要とし、高密度化を妨げる
原因となる不純物の拡散を防止して所定の抵抗値を有す
る低濃度層26を形成することができ、半導体装置31
の設計精度を高めて高密度化を図ることができると共に
、電気特性の向上を図ることができる。
Furthermore, since one end of the low concentration layer 26 is directly contacted with the already formed polycrystalline silicon layer 25b into which impurities are diffused to a high concentration, a high resistance portion 9a and a low resistance portion are formed as shown in FIG. The separation step 9b is not required, and the low concentration layer 26 having a predetermined resistance value can be formed by preventing the diffusion of impurities that would impede high density, and the semiconductor device 31
It is possible to increase the design accuracy and achieve higher density, and also to improve the electrical characteristics.

尚、上記実施例では、駆動MOSトランジスタを用いた
インバータ回路に本発明を適用したものについて説明し
たが、本発明はこの他にも、例えば、基準電位発生回路
等の高比抵抗体を有する回路等を構成する半導体装置に
も適用することができるものである。
In the above embodiment, the present invention was applied to an inverter circuit using a drive MOS transistor, but the present invention is also applicable to a circuit having a high specific resistance, such as a reference potential generation circuit. The present invention can also be applied to semiconductor devices constituting the above.

また、上記実施例では、低濃度層26の一端部を、駆動
MO8)ランジスタのドレイン拡散領域23につながる
高濃度に不純物を拡散された多結晶シリコン層に接触し
たものについて説゛明したが、この他にも低濃度層26
の一端部又は両端部を半導体集積回路の例えば、ソース
拡散領域22につながる高濃度に不純物を拡散された多
結晶シリコン層やゲート電極を形成する高濃度に不純物
を拡散された多結晶シリコン層など何れの高濃度に不純
物を拡散された多結晶シリコン層に接触したものでも良
い。
Furthermore, in the above embodiment, one end of the lightly doped layer 26 is in contact with the polycrystalline silicon layer into which impurities are diffused at a high concentration and which is connected to the drain diffusion region 23 of the transistor (drive MO8). In addition to this, the low concentration layer 26
One end or both ends of the semiconductor integrated circuit may be formed by, for example, a polycrystalline silicon layer in which impurities are diffused at a high concentration that connects to the source diffusion region 22, a polycrystalline silicon layer in which impurities are diffused in a high concentration and forms a gate electrode, etc. It may be in contact with any polycrystalline silicon layer into which impurities are diffused at a high concentration.

また、上記実施例では低濃度層26がフィールド酸化膜
20の上方にシリコン酸化膜27を介して形成されたも
のについて説明したが、本発明は、この他にも例えば、
ゲート電極25aの上方に位置する低濃度層26を設け
たもの等を包含するものである。
Further, in the above embodiment, the low concentration layer 26 is formed above the field oxide film 20 with the silicon oxide film 27 interposed therebetween, but the present invention is also applicable to other methods, for example,
This includes a structure in which a low concentration layer 26 is provided above the gate electrode 25a.

以上説明した如く、本発明に係る半導体装置の製造方法
では、高抵抗部分と低抵抗部分の分離を行って、高比抵
抗の抵抗体を得るための拡散工程を不要とすることによ
りマスク操作を除去して、作業性の向上を図ると共に製
造コストの低減化を図ることができる等顕著な効果を有
するものである。
As explained above, in the method for manufacturing a semiconductor device according to the present invention, the high resistance part and the low resistance part are separated, and the mask operation is simplified by eliminating the need for a diffusion process to obtain a high resistivity resistor. This has remarkable effects such as being able to improve workability and reduce manufacturing costs by removing it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、MOSトランジスタを負荷素子として用いた
E/Dインバータ回路を示す回路図、第2図は、従来の
インバータ回路を構成する半導体装置を示す断面図、第
3図は、第2図に示す半導体装置をその主面から見た状
態を示す説明図、第4図は、高比抵抗の抵抗体を用いた
インバータ回路を示す回路図、第5図A乃至同図Eは、
本発明に係る半導体装置の製造工程を示し、同図Aは、
半導体基体にボロンを注入している状態を示す断面図、
同図Bは、同図Aに示す半導体基体を用いて得られた駆
動MO8)ランジスタを示す断面図、同図Cは、同図B
に示す駆動MO8)ランジスタにドレイン拡散領域につ
ながった高濃度に不純物を拡散された多結晶シリコン層
にコンタクトホールを穿設したものを示す断面図、同図
りは、同図Cに示す半導体基体の表面に高濃度層及びシ
リコン酸化膜を形成したものを示す断面図、同図Eは、
同図りに示す半導体基体の表面にシリコン酸化膜、保護
膜、及び配線金属を設けた本発明に係る半導体装置の一
実施例を示す断面図、第6図は、第5図Eに示す半導体
装置をその主面から見た状態を示す説明図である。 2.21・・・・・・半導体基体、4,23・・・・・
・ドレイン拡散領域、7,28・・・・・・配線金属、
27,29・・・・・・シリコン酸化膜、9,26・・
・・・・低濃度層、11・・・・・・マスク層、31・
・・・・・半導体装置。
FIG. 1 is a circuit diagram showing an E/D inverter circuit using MOS transistors as load elements, FIG. 2 is a cross-sectional view showing a semiconductor device constituting a conventional inverter circuit, and FIG. FIG. 4 is a circuit diagram showing an inverter circuit using a high resistivity resistor, and FIGS. 5A to 5E are
The manufacturing process of the semiconductor device according to the present invention is shown in FIG.
A cross-sectional view showing a state in which boron is implanted into a semiconductor substrate,
Figure B is a cross-sectional view showing a driving MO8) transistor obtained using the semiconductor substrate shown in Figure A, and Figure C is a cross-sectional view of
A cross-sectional view showing a drive MO8) in which a contact hole is formed in a polycrystalline silicon layer in which impurities are diffused at a high concentration and connected to a drain diffusion region of a transistor. A cross-sectional view showing a structure with a high concentration layer and a silicon oxide film formed on the surface, FIG.
FIG. 6 is a cross-sectional view showing an embodiment of the semiconductor device according to the present invention in which a silicon oxide film, a protective film, and a wiring metal are provided on the surface of a semiconductor substrate, and FIG. 6 is a cross-sectional view of the semiconductor device shown in FIG. 5E. FIG. 2 is an explanatory diagram showing the state seen from the main surface. 2.21... Semiconductor substrate, 4,23...
・Drain diffusion region, 7, 28... Wiring metal,
27, 29... Silicon oxide film, 9, 26...
...Low concentration layer, 11...Mask layer, 31.
...Semiconductor device.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基体の所定領域の一部に直接接触し
て高濃度に不純物を有する第1多結晶シリコン層を前記
半導体基体の主面に形成した後に、反対導電型不純物を
導入して前記所定領域を反対導電型の不純物領域に変換
する工程と、前記第一多結晶シリコン層の不純物濃度よ
り少ない不純物濃度を有し該第1多結晶シリコン層に接
続する第2多結晶シリコン層からなる抵抗体を前記主面
に絶縁層を介して形成する工程と、前記第1多結晶シリ
コン層に熱処理を施して前記第2多結晶シリコン層への
不純物拡散を行う工程とを具備することを特徴とする半
導体装置の製造方法。
1. After forming a first polycrystalline silicon layer having a high concentration of impurities on the main surface of the semiconductor substrate in direct contact with a part of a predetermined region of a semiconductor substrate of one conductivity type, impurities of the opposite conductivity type are introduced to a step of converting a predetermined region into an impurity region of the opposite conductivity type; and a second polycrystalline silicon layer having an impurity concentration lower than the impurity concentration of the first polycrystalline silicon layer and connected to the first polycrystalline silicon layer. It is characterized by comprising the steps of forming a resistor on the main surface via an insulating layer, and performing heat treatment on the first polycrystalline silicon layer to diffuse impurities into the second polycrystalline silicon layer. A method for manufacturing a semiconductor device.
JP54081126A 1979-02-20 1979-06-27 Manufacturing method of semiconductor device Expired JPS5826177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54081126A JPS5826177B2 (en) 1979-06-27 1979-06-27 Manufacturing method of semiconductor device
US06/545,002 US4475964A (en) 1979-02-20 1983-10-24 Method of manufacturing a semiconductor device
US06/665,081 US4558343A (en) 1979-02-20 1984-10-26 Semiconductor device having a high resistivity layer in direct contact with a polycrystalline silicon layer of high impurity concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54081126A JPS5826177B2 (en) 1979-06-27 1979-06-27 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS566464A JPS566464A (en) 1981-01-23
JPS5826177B2 true JPS5826177B2 (en) 1983-06-01

Family

ID=13737691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54081126A Expired JPS5826177B2 (en) 1979-02-20 1979-06-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5826177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195084U (en) * 1987-12-16 1989-06-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898838A (en) * 1985-10-16 1990-02-06 Texas Instruments Incorporated Method for fabricating a poly emitter logic array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024230A (en) * 1973-02-16 1975-03-15
JPS50134389A (en) * 1974-04-10 1975-10-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024230A (en) * 1973-02-16 1975-03-15
JPS50134389A (en) * 1974-04-10 1975-10-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195084U (en) * 1987-12-16 1989-06-22

Also Published As

Publication number Publication date
JPS566464A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
JP3031855B2 (en) Method for manufacturing semiconductor device
JPS6187368A (en) Self-matching metal silicide process for ic having self-matching polycrystalline silicon electrode
JPS5826177B2 (en) Manufacturing method of semiconductor device
JP3298476B2 (en) Method for manufacturing MOS transistor
JPH043469A (en) Thin film transistor and manufacture thereof
JPS6220711B2 (en)
JP2654056B2 (en) Method for manufacturing semiconductor device
JPH0481327B2 (en)
JPH0247853B2 (en)
JP2594697B2 (en) Method for manufacturing semiconductor device
JPH03166757A (en) Semiconductor device
JPS5826178B2 (en) semiconductor equipment
JP3147374B2 (en) Semiconductor device
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPS62149172A (en) Manufacture of semiconductor nonvolatile memory
JPH0567623A (en) Manufacture of semiconductor device
JPS6323362A (en) Manufacture of semiconductor device
JPH02148851A (en) Manufacture of semiconductor device
JPS5882572A (en) Manufacture of semiconductor device
JPH02291120A (en) Manufacture of gaas field-effect transistor
JPS60132372A (en) Semiconductor device and manufacture thereof
JPS63301554A (en) Method of forming polycrystalline silicon layer
JPS61206219A (en) Manufacture of semiconductor device
JPS583391B2 (en) The power of transistors is high.
JPS6184049A (en) Manufacture of semiconductor device