JPS5822318A - Refining process for molten steel - Google Patents
Refining process for molten steelInfo
- Publication number
- JPS5822318A JPS5822318A JP12006981A JP12006981A JPS5822318A JP S5822318 A JPS5822318 A JP S5822318A JP 12006981 A JP12006981 A JP 12006981A JP 12006981 A JP12006981 A JP 12006981A JP S5822318 A JPS5822318 A JP S5822318A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- steel
- decarburization
- inert gas
- tapping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
- C21C7/0685—Decarburising of stainless steel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
本発明抹脱炭精錬終了後の溶鋼の還元精錬あるいは脱硫
精錬に関する方法である。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for reduction refining or desulfurization refining of molten steel after completion of decarburization refining.
溶鋼の脱炭精錬法、例えばムOD (ムrgonOxy
genI)@eaburlzatlan )法に代表さ
れる希釈脱炭によるステンレスの精錬法に於て最大の問
題は耐火物コスト及び不活性ガスコストを如何にして切
下げるかである。Decarburization refining methods for molten steel, such as MuOD (MurgonOxy
The biggest problem in the stainless steel refining method by dilution decarburization, typified by the Gen I) @eaburlzatlan method, is how to reduce the cost of refractories and inert gas.
AOD法は第1図に示す如く溶鋼1を収容した転炉2の
炉底部側壁に取付けられ九羽口3から酸素ガスと不活性
ガスの混合気体を吹込むため、溶鋼の攪拌エネルギーは
極めて大きい、このため溶鋼と接触する耐火物は高温の
溶鋼により激しく表置を洗われるのでその損耗速度は極
めて大きい、近年耐火物の品質が改善され、又AOD法
の操業方法も著しい進歩を遂げたが、普通鋼転炉の炉体
寿命レベルである1000回以上にははど遠いレベルで
ある。As shown in Figure 1, in the AOD method, a mixed gas of oxygen gas and inert gas is blown into the converter from nine tuyeres 3 attached to the bottom side wall of the converter 2 containing molten steel 1, so the energy for stirring the molten steel is extremely large. For this reason, the surface of refractories that come into contact with molten steel is violently washed by the high-temperature molten steel, resulting in extremely rapid wear and tear.Although the quality of refractories has been improved in recent years, and the operating method of the AOD method has also made significant progress. , which is far from the 1,000 or more cycles that is the furnace body lifespan of a common steel converter.
炉体寿命を極力延長させるにはワン・ヒートの精錬時間
を出来るだけ短くしかつワン・ヒート精錬過程で最も耐
火物を溶損する時期を省略することである。In order to extend the life of the furnace body as much as possible, it is necessary to shorten the one-heat refining time as much as possible and to omit the period in which refractories are most likely to be eroded during the one-heat refining process.
溶損された耐火物の量を知るための極く一般的な方法と
して、例えばムOD炉に於いては一般的にはMg0−C
指Os又はMgO−CaO系の耐火物を使用しているの
で精錬の各過程に於けるスラグ中のMgOの増加量を求
めればよい。As a very general method to know the amount of refractories that have been eroded, for example, in a MOD furnace, it is generally Mg0-C.
Since a refractory of the slag or MgO-CaO type is used, it is sufficient to calculate the amount of increase in MgO in the slag during each refining process.
この方法を用いて精錬の各過程におけるスラグ中のMg
Oの増加量を求めたのが第2図である。この図から明ら
かな如く、脱炭終了後の還元期、脱硫期にスラグ中のM
gO量の著しい増加が認められる。従って耐火物の溶損
は、還元脱硫期を省略出来れば格段に少なくなることが
予想され、また精錬所要時間の短縮によりこの間に吹込
まれる不活性ガスの大幅な削減が期待出来る・
以上のような考えから本発明者等は種々の実験を繰返し
た結果、還元脱硫期を大幅に短縮し、炉体寿命の大幅な
延長、即ち耐火物コストの大幅な削減及び精錬時間短縮
による吹込みガスの・大幅な削減を可能とする溶鋼の精
錬方法を開発した起のである。Using this method, Mg in the slag during each refining process is
Figure 2 shows the amount of increase in O. As is clear from this figure, M in the slag during the reduction period and desulfurization period after the completion of decarburization.
A significant increase in the amount of gO is observed. Therefore, it is expected that the erosion of refractories will be significantly reduced if the reductive desulfurization stage can be omitted, and by shortening the refining time, it is expected that the amount of inert gas injected during this period will be significantly reduced. Based on this idea, the inventors repeated various experiments, and as a result, they were able to significantly shorten the reductive desulfurization period, significantly extend the life of the furnace body, significantly reduce the cost of refractories, and reduce the amount of blown gas by shortening the refining time.・He developed a method for refining molten steel that enables significant reductions.
以下に本発明をAOD法に適用した例に基づいて詳細に
説明する。The present invention will be explained in detail below based on an example in which the present invention is applied to the AOD method.
以下本発明法をAOD法に適用した例と通常のムOD精
錬法とを比較して第3図を参照セして説明する。第3図
1は従来のAOD法を示し、鋼中の炭素を効率よく脱炭
する丸めに鋼中炭素量の推移に応じて吹込む酸素とアル
プンの比率を変えて、鋼中のクロムを極力酸化をしない
ように脱炭していく、シかし一般に鋼中のクロムが2−
前後酸化されるため脱炭終了後に1s溶剤(CaO等)
及び還元剤(F・−81等)を添加し適度の時間不活性
ガス吹込みKより溶鋼を攪拌し、酸化し九クロムを還元
しまた前記還元剤と同時に添加した媒溶剤によって脱硫
を行った後に出鋼している。Hereinafter, an example in which the method of the present invention is applied to an AOD method and a conventional MuOD refining method will be compared and explained with reference to FIG. Figure 3 1 shows the conventional AOD method, in which the ratio of oxygen and alponic injected into the rounding process is changed according to the changes in the amount of carbon in the steel to efficiently decarburize the carbon in the steel. Decarburization is performed to prevent oxidation, but generally the chromium in steel is 2-
Because it is oxidized before and after, 1s solvent (CaO etc.) is used after decarburization.
and a reducing agent (F.-81, etc.) were added, and the molten steel was stirred by inert gas injection K for an appropriate period of time to oxidize and reduce nine chromium, and desulfurization was performed using a solvent added at the same time as the reducing agent. It was later produced.
これに対して本発明では第3図bK示すように脱炭終了
後直ちに不活性ガス(アルプンガス等)吹込みKよシ溶
鋼を攪拌しつつ還元剤(F・−81等)を添加し、還元
剤を拡散させ溶解し易くした後出鋼する。なお還元剤添
加終了後から出鋼までの間に0.5〜1分関分配前記溶
鋼拌を継続することが望ましい* AOD炉耐火物の溶
損は前記の通シ脱炭終了から出鋼までの還元工程におい
て特に大である。On the other hand, in the present invention, as shown in Fig. 3 bK, immediately after the decarburization is completed, an inert gas (such as alponic gas) is injected into the molten steel, and a reducing agent (F.-81, etc.) is added while stirring the molten steel. After dispersing the agent and making it easier to dissolve, the steel is tapped. Note that it is desirable to continue stirring the molten steel for 0.5 to 1 minute between the end of reducing agent addition and the time of steel tapping. This is particularly important in the reduction process.
従ってこの工程の所要時間はできるだけ短かくしなけれ
ばならない。Therefore, the time required for this step must be kept as short as possible.
本発明においては還元剤添加後から出鋼開始までの時間
を還元反応の進度、言い換れば還元率との関係において
限定したものである。すなわち還元剤添加後から3分以
上を経過すると還元反応が短時間のうちに急速に進行す
ることがわかった。In the present invention, the time from the addition of the reducing agent to the start of steel tapping is limited in relation to the progress of the reduction reaction, in other words, the reduction rate. That is, it was found that when 3 minutes or more elapsed after the addition of the reducing agent, the reduction reaction rapidly proceeded within a short period of time.
従ってこの間においては耐火物の溶損が特に大である。Therefore, during this period, the melting loss of the refractory is particularly large.
本発明は特に耐大物溶損の大きい時期のスラグを耐火物
に触れないようKする。すなわち還元剤添加後3分以内
に取鍋に出鋼する。この出鋼過程において出鋼流中でス
ラグとメタル間の強力な攪拌作用が得られ、還元反応が
極めて効率よく進行し、スラグ中のクロム酸の含有量は
従来法におけるムOD炉内での還元期終了時とほば同レ
ベルまで低下する。すなわち還元剤添加後3分以内に出
鋼することによシ耐火物溶損防止と効率の高い還元反応
を得、さらには従来還元反応促進のため炉内に吹込んで
いえ不活性ガスを節減できる。In the present invention, slag is heated so that it does not come into contact with refractories, especially when the slag is in a period of high corrosion of large objects. That is, the steel is tapped into a ladle within 3 minutes after adding the reducing agent. In this tapping process, a strong stirring action between the slag and metal is obtained in the tapping stream, and the reduction reaction proceeds extremely efficiently, and the content of chromic acid in the slag is lower than that in the conventional method. It drops to almost the same level as at the end of the reduction period. In other words, by tapping the steel within 3 minutes after adding the reducing agent, it is possible to prevent corrosion of the refractory and achieve a highly efficient reduction reaction, and also to save on the inert gas that would normally be blown into the furnace to promote the reduction reaction. .
取鍋内に収容され九溶鋼に対し更に補足的な還元と必要
に応じて若干の成分調整及び温度コントロールを目的と
して出鋼後、少なくとも5分間の不活性ガス(アルfy
ガス等)吹込みを伴う放置の後、連続鋳造又は造塊鋳込
みを行う、前記出鋼後のアルノンガス吹込を伴う放置が
5分未満では還元反応が不十分である他、成分調整用に
添加した合金等が均一溶解しない、なお出鋼終了後の取
鍋内溶鋼温度は5分以上の不活性ガス吹込みを行っても
鋳込み温度が確保されるように設定する。The molten steel contained in the ladle is injected with inert gas (alpha) for at least 5 minutes after tapping for the purpose of further supplementary reduction and, if necessary, slight composition adjustment and temperature control.
Continuous casting or ingot casting is performed after standing with blowing (gas, etc.).If standing with blowing of arunone gas after tapping is less than 5 minutes, the reduction reaction will be insufficient, and additions may be made to adjust the composition. The temperature of the molten steel in the ladle after the completion of tapping is set so that the casting temperature is maintained even if the alloy etc. are not uniformly melted and the inert gas is blown for 5 minutes or more.
また取鍋内に吹込む不活性ガス量は247m1n−を以
上が望ましい。Further, the amount of inert gas blown into the ladle is desirably 247 m1n- or more.
本発明において脱炭終了後に還元剤とともにCaO等の
媒溶剤を添加するととKより還元精錬の他に脱硫精錬を
同時に行うことができる。しかしこの媒溶剤を脱炭終了
後に一括投入することは溶鋼温度を下げることになるた
めその分だけ高温にしておく必簀が生じる。これは耐火
物溶損の観点から好ましくない、tた低温では脱硫反応
が十分に進行しない場合がある−これを防止するために
は媒溶剤の一部又は全部を脱炭終了前に添加し予め予熱
しておくことである。tたこれKより媒溶剤によって持
ち来たされる水分を事前に除去しておくことができる。In the present invention, if a solvent such as CaO is added together with a reducing agent after decarburization is completed, desulfurization refining can be performed simultaneously in addition to reduction refining from K. However, if this solvent is added all at once after the decarburization is completed, the temperature of the molten steel will be lowered, so it will be necessary to keep the temperature high. This is undesirable from the viewpoint of corrosion of the refractory, and the desulfurization reaction may not proceed sufficiently at low temperatures.To prevent this, some or all of the solvent should be added before the decarburization is completed. It is important to preheat it. Moisture brought in by the solvent can be removed in advance from TakoreK.
本発明法により、従来脱炭終了から出鋼開始までに約1
5分を要していたものを3分以下に短縮することが可能
となりこれにより従来法を100とする耐火物溶損指数
を約50に減少することができた。11脱炭終了から鋳
込み開始までに消費する不活性ガス、例えばアルジンガ
スの消費量指数も従来法を100とした場合的80に減
少した。With the method of the present invention, it takes approximately 1 hour from the end of decarburization to the start of steel tapping.
What used to take 5 minutes could be shortened to 3 minutes or less, and as a result, the refractory corrosion index could be reduced to about 50, compared to 100 for the conventional method. 11 The consumption index of inert gas such as aldine gas consumed from the end of decarburization to the start of casting was also reduced to 80 compared to 100 for the conventional method.
以下ステンレス鋼の脱炭精錬における実施例を示す。An example of decarburization refining of stainless steel will be shown below.
実施例1
脱炭終了後還元に必要な量のFs−81を添加し、添加
後3分経過後に取鍋に出鋼した。Example 1 After completion of decarburization, an amount of Fs-81 required for reduction was added, and 3 minutes after the addition, the steel was tapped into a ladle.
実施例2
脱炭終了後アルがンガスを溶鋼中に吹込みつつ還元に必
要な量の?・−81を添加し、添加後1分経過後に取鍋
に出鋼し喪。Example 2 After the completion of decarburization, argon gas is injected into the molten steel and the amount necessary for reduction is maintained?・-81 was added and 1 minute after addition, the steel was poured into a ladle and the steel was poured out.
実施9113
脱炭終了前に脱硫に必要な量の媒溶剤の一部としてCa
Oを添加し、脱炭終了後アルジンがスを溶鋼中に吹込み
つつ残シのCaOと還元に必要な量のFe−8tを添加
し、添加後1分経過後に取鍋に出鋼した。Implementation 9113 Ca as part of the amount of solvent required for desulfurization before the completion of decarburization.
O was added, and after the decarburization was completed, while alginic gas was blown into the molten steel, the remaining CaO and the amount of Fe-8t necessary for reduction were added, and 1 minute after the addition, the steel was tapped into a ladle.
実施例4
脱炭終了前に脱硫に必要な量の媒溶剤の一部としてCa
Oを添加し、脱炭終了後アルゴンがスを溶鋼中に吹込み
つつ残シのCaOと還元に必要な量のF・−81を添加
し、添加後1分経過後に取鍋に出鋼した。該取鍋自溶鋼
中にアルーf7ガスを5分間吹込んだ後連続鋳造した。Example 4 Ca as part of the amount of solvent required for desulfurization before the completion of decarburization
O was added, and after decarburization, argon gas was blown into the molten steel while the remaining CaO and the amount of F-81 necessary for reduction were added, and 1 minute after the addition, the steel was tapped into a ladle. . Alu F7 gas was blown into the ladle self-melting steel for 5 minutes and then continuous casting was performed.
光1に各実施例および従来例によるCr歩留および成品
成分を示す、を九第4図に実施例3と従来例におけるC
r歩留と溶鋼中8の推移を示す。Figure 1 shows the Cr yield and product composition in each embodiment and the conventional example, and Figure 4 shows the Cr yield in the embodiment 3 and the conventional example.
8 shows the transition of r yield and molten steel.
表 1Table 1
第1図はAOD法の実jIII11様の説明図、第2図
は精錬の各過1iKおける耐火物溶損量指数を示す図、
第3図1は通常のAOD法、同じくbは本発明を適用し
たAOD法の説明図、第4図1は従来法のCr歩留と溶
鋼中Sの推移を示す図、第4図すは本発明実施例3のC
r歩留と溶鋼中8の推移を示す図である。
竿1回
第2図
I I f
第4回
C0)
10 20 3θ J5θ どθ時間(分)
1l
to 2o 3o M jθ
lθ時同量今)Figure 1 is an explanatory diagram of the AOD method jIII11, Figure 2 is a diagram showing the refractory erosion amount index at each 1iK of refining,
Fig. 3 1 is an illustration of the normal AOD method, b is an explanatory diagram of the AOD method to which the present invention is applied, Fig. 4 1 is a diagram showing the transition of Cr yield and S in molten steel in the conventional method, and Fig. 4 C of Example 3 of the present invention
It is a figure showing the transition of r yield and molten steel 8. Rod 1 time 2nd figure I I f 4th C0) 10 20 3θ J5θ Do θ time (minutes) 1l to 2o 3o M jθ
Same amount at lθ now)
Claims (4)
を%像とする溶鋼の精錬方法。(1) A method for refining molten steel that aims at tapping the steel into a ladle within 3 minutes after adding the reducing agent.
とを特徴とする特許請求の範囲第1項記載の溶鋼の精錬
方法・(2) A method for refining molten steel according to claim 1, characterized in that inert gas is injected simultaneously with the addition of a reducing agent.
囲第1項又は第2項記載の溶鋼の精錬方法。(3) A method for refining molten steel according to claim 1 or 2, characterized in that a solvent is added.
ガス吹込みを伴う放置の後、鋳込むことを特徴とする特
許請求の範囲第1項又は第2項又は第3項記載の溶鋼の
精錬方法。(4) Jli! The method for refining molten steel according to claim 1, 2, or 3, characterized in that after tapping the steel into a ladle, the steel is allowed to stand for at least 5 minutes with inert gas blowing, and then cast.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12006981A JPS5822318A (en) | 1981-07-31 | 1981-07-31 | Refining process for molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12006981A JPS5822318A (en) | 1981-07-31 | 1981-07-31 | Refining process for molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5822318A true JPS5822318A (en) | 1983-02-09 |
JPS6354045B2 JPS6354045B2 (en) | 1988-10-26 |
Family
ID=14777115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12006981A Granted JPS5822318A (en) | 1981-07-31 | 1981-07-31 | Refining process for molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5822318A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162215A (en) * | 1983-03-05 | 1984-09-13 | Nippon Steel Corp | Treatment of molten steel under pressure |
JPS6178522U (en) * | 1984-10-29 | 1986-05-26 | ||
US4689782A (en) * | 1984-09-10 | 1987-08-25 | Teac Corporation | Recording disk centering and clamping apparatus |
US4705279A (en) * | 1986-06-25 | 1987-11-10 | Ye Data Inc. | Device for clamping a flexible disk |
US4787079A (en) * | 1987-02-19 | 1988-11-22 | Teac Corporation | Recording disk centering and clamping apparatus |
-
1981
- 1981-07-31 JP JP12006981A patent/JPS5822318A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162215A (en) * | 1983-03-05 | 1984-09-13 | Nippon Steel Corp | Treatment of molten steel under pressure |
US4689782A (en) * | 1984-09-10 | 1987-08-25 | Teac Corporation | Recording disk centering and clamping apparatus |
JPS6178522U (en) * | 1984-10-29 | 1986-05-26 | ||
JPH045217Y2 (en) * | 1984-10-29 | 1992-02-14 | ||
US4705279A (en) * | 1986-06-25 | 1987-11-10 | Ye Data Inc. | Device for clamping a flexible disk |
US4787079A (en) * | 1987-02-19 | 1988-11-22 | Teac Corporation | Recording disk centering and clamping apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6354045B2 (en) | 1988-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011038142A (en) | Converter steelmaking method with the use of large quantity of iron scrap | |
JPS5822318A (en) | Refining process for molten steel | |
JP4411934B2 (en) | Method for producing low phosphorus hot metal | |
JPH0355538B2 (en) | ||
JPH0437135B2 (en) | ||
JP3644307B2 (en) | Hot phosphorus dephosphorization method | |
JPH0841516A (en) | Pre-refining method | |
JPS6315965B2 (en) | ||
JPH1150122A (en) | Dephosphorize-refining of molten iron in converter type refining vessel | |
US4451288A (en) | Method for producing low hydrogen content in steels produced by subsurface pneumatic refining | |
JP2758056B2 (en) | Melting method of high chromium low P steel | |
JPS6152208B2 (en) | ||
SU968077A1 (en) | Method for melting stainless steel | |
JPS5819421A (en) | Manufacture of steel with converter | |
JPH0892627A (en) | Production of stainless steel | |
JPH02221310A (en) | Production of ni-and cr-containing molten metal | |
JPH01252753A (en) | Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere | |
SU1092189A1 (en) | Method for making stainless steel | |
JP2000008113A (en) | Production of medium and high carbon steel | |
SU1188209A1 (en) | Method of refining low-manganese cast iron | |
JPH02274804A (en) | Production of ni and cr containing molten metal | |
JPH0696729B2 (en) | Steelmaking process with smelting reduction of manganese ore | |
JPS63143212A (en) | Refining method for molten iron | |
JPH07238311A (en) | Production of molten stainless steel by smelting reduction | |
JPS59104412A (en) | Desiliconization and dephosphorization of molten iron |