JPS58190904A - Magneto-optical thin film optical waveguide - Google Patents
Magneto-optical thin film optical waveguideInfo
- Publication number
- JPS58190904A JPS58190904A JP7312982A JP7312982A JPS58190904A JP S58190904 A JPS58190904 A JP S58190904A JP 7312982 A JP7312982 A JP 7312982A JP 7312982 A JP7312982 A JP 7312982A JP S58190904 A JPS58190904 A JP S58190904A
- Authority
- JP
- Japan
- Prior art keywords
- film
- waveguide
- waveguide layer
- refractive index
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は振動電界成分が互いに直交している光導波モー
ドの伝搬位相定数を一致させた先導波路に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a guiding waveguide in which the propagation phase constants of optical waveguide modes in which oscillating electric field components are orthogonal to each other are matched.
光通信はその基本構成要素、とりわけ光ファイバの研究
開発の急激な進展によって実用段階を迎え、今まで以上
に通信系の高性能化、高信頼化が望まれ、それに伴い光
回路素子の簡素化、小形化、集積化が進められ、従来の
レンズ、プリズムの光学部品を組み合せた構成から誘電
体や半導体基板上に屈折率の高い導波層を設けて光導波
路とし、導波路内で各種光回路素子を構成する方向へ向
かいつつある。Optical communication has entered the practical stage due to the rapid progress in research and development of its basic components, especially optical fibers, and higher performance and higher reliability of communication systems are desired than ever before, and along with this, the simplification of optical circuit elements is required. , miniaturization and integration have progressed, and optical waveguides have been created by providing a waveguide layer with a high refractive index on a dielectric or semiconductor substrate, instead of a configuration that combines conventional optical components such as lenses and prisms, and various types of light can be transmitted within the waveguide. The trend is toward constructing circuit elements.
光導波路内ではTE波とTM波が独立に存在し。TE waves and TM waves exist independently within the optical waveguide.
それらの伝搬位相定数を一致させると電気光学効果ある
いは磁気光学効果を用いてTM波をTE波にあるいはそ
の逆に、TFi波をTM波に変換することができる。そ
してこのモード変換を利用することにより光変調器、光
スィッチ、光アイソレータ等の各種光回路素子への応用
が検討されている。When their propagation phase constants are matched, a TM wave can be converted into a TE wave or vice versa, and a TFi wave can be converted into a TM wave using an electro-optic effect or a magneto-optic effect. By utilizing this mode conversion, applications to various optical circuit elements such as optical modulators, optical switches, and optical isolators are being considered.
中でも光アイソレータはファイバから光源への戻り光を
阻止する素子として重要であV、導波路形に素子を形成
し大きいアイソレーションを得るにはTB、TM波の効
率良いモード変換が不可欠である。しかし基板上に高い
屈折率の導波層を設けた光導波路を伝搬するTE、TM
波の伝搬位相定数間は差があるために効率良いモード変
換は生じない。Among these, the optical isolator is important as an element that blocks light returning from the fiber to the light source.Efficient mode conversion of TB and TM waves is essential to form the element in the form of a waveguide and obtain large isolation. However, TE and TM propagating through an optical waveguide with a high refractive index waveguide layer on the substrate
Since there is a difference between the wave propagation phase constants, efficient mode conversion does not occur.
そこで何らかの方法を用いて効率の良いモード変換を実
現する必要があり、従来広のようなものが知られている
。その1つはガドリニウム、ガリウム、カーネッ) (
GGG)%結晶基板上に磁性ガーネット(Ys Ga、
、 Seo、、 Fe1−10+t )薄膜をエピタキ
シャル成長させ、このガーネット基板上に導電性薄膜の
電気回路を設は磁気光学効果を用いてモード変換を行う
ものである。(詳細は文献アプライド・フィツクス・レ
ターズの21巻8号394頁参照)。Therefore, it is necessary to implement efficient mode conversion using some kind of method, and methods such as Hiro's are known. One of them is gadolinium, gallium, carnet) (
GGG)% Magnetic garnet (Ys Ga,
, Seo,, Fe1-10+t) thin film is grown epitaxially, and an electric circuit of the conductive thin film is provided on this garnet substrate, and mode conversion is performed using the magneto-optic effect. (For details, see Applied Fix Letters, Vol. 21, No. 8, p. 394).
この方法はTE波からTM波の変換が生じる距離に合せ
て磁界の方向が交互に逆になるように電気回路を折り返
しにして、光の進行する全距離にわたってTM波からT
E波へのモード変換を相加する構成にしている。しかし
、この構成に複雑な電気回路を精度良く設定しなければ
ならない難点がある。また同じ磁気光学効果を用いてモ
ード変換を行うものとしてGGG結晶基板上にイツトリ
ウム、鉄、ガーネットの結晶層を設けて導波路を形成し
、さらに導波路上に光学的異方性結晶であるヨウ素酸リ
チウム(L iI’Os )を密着させたものがある(
詳細は文献アイトリプルイーのトランザクション、MT
T−23,70頁参照)にれは導波路から異方性結晶へ
光が浸み出し、そしてこの異方性結晶での複屈折性と、
磁性膜の持つファラデー効果を利用して偏光間の結合に
方向性を持念せると同時に伝搬位相定数の整合をとって
いる。しかし導波層と異方性結晶との密着には接着等の
歩留りの悪い手法に依らざるを得す安定性、信頼性に難
点がある。さらに位相整合を実現させる簡便な方法とし
て、結晶基板上にその基板と格子定数の異なる結晶を成
長させた時に薄膜に生じる複屈折を利用したもの(詳細
は昭和56年特許願第36988号参照)がある。この
構成はGGGのようなガーネット基板上に液相あるいは
気相成長法などKよって結晶基板よシ屈折率が高く、格
子定数が大きい磁性結晶膜を設けたものである。このと
き基板と導波層の格子定数不整合から導波層面内で引張
ゐ力が生じ、さらに光弾性効果により面内の屈折率CT
E波に対する導波N固有の屈折率n、or n、 )は
減少し、その結果、厚さ方向の屈折率(TM波に対する
導波層固有の屈折率n、)よりも小さくなる。導波層を
伝搬するTE、 ’I’M波の等側屈折率(伝搬位相定
数βを自由空間の伝搬位相定数にで除した値)は導波層
の厚さが小さいときには、基板の屈折率よりも僅かに大
きい値であり、またTE波の等側屈折率の方がTM波よ
りも太きboそして導波層の厚さが十分大きいときには
、TE、TM波の等側屈折率はそれぞれの相当する導波
層固有の屈折率にほぼ等しい値となりTE波の等側屈折
率よりもTM波の方が大きくなる。従って中間のある導
波層の厚さにおいてTE波とTM波の等側屈折率が等し
くなり1そのとき位相整合が成り立つ。しかしながら、
導波層の厚さt及び負の複屈折量(Δn =n、 −n
x)を厳密に設定する必要があるという難点がある。−
30dβ程度のアィンレーシコン性能をもつ光アイソレ
ータとして用いる場合、TE、TM波の等価屈折率差を
lXl0’以内にする必要があるが、そのためには導波
層の厚さと複屈折をそれぞれ4±0.05μm、 −3
,2士旧Xl0−4の精度で設定しなければならず実際
の製作上困難である。This method involves folding an electric circuit so that the direction of the magnetic field is alternately reversed according to the distance at which conversion from TE waves to TM waves occurs, and converting TM waves to T waves over the entire distance that light travels.
The configuration is such that mode conversion to E waves is added. However, this configuration has the disadvantage that a complicated electric circuit must be set with high precision. In addition, to perform mode conversion using the same magneto-optic effect, a waveguide is formed by providing a crystal layer of yttrium, iron, and garnet on a GGG crystal substrate, and an iodine layer, which is an optically anisotropic crystal, is placed on the waveguide. There is one in which lithium oxide (LiI'Os) is adhered (
For details, see the literature I Triple E Transactions, MT
T-23, page 70) In this case, light leaks from the waveguide to the anisotropic crystal, and the birefringence in this anisotropic crystal,
The Faraday effect of the magnetic film is used to impart directionality to the coupling between polarized lights and at the same time match the propagation phase constant. However, the adhesion between the waveguide layer and the anisotropic crystal has disadvantages in terms of stability and reliability, as it has to rely on techniques with poor yields, such as adhesion. Furthermore, a simple method to achieve phase matching is to utilize the birefringence that occurs in a thin film when a crystal with a lattice constant different from that of the substrate is grown on a crystal substrate (for details, see Patent Application No. 36988 of 1982). There is. In this structure, a magnetic crystal film having a higher refractive index and a larger lattice constant than a crystal substrate is provided on a garnet substrate such as GGG by a liquid phase or vapor phase growth method. At this time, a tensile force is generated in the plane of the waveguide layer due to the lattice constant mismatch between the substrate and the waveguide layer, and furthermore, due to the photoelastic effect, the in-plane refractive index CT
The refractive index n, or n, ) specific to the waveguide N for E waves decreases, and as a result, becomes smaller than the refractive index in the thickness direction (the refractive index n, or n, specific to the waveguide layer for TM waves). When the thickness of the waveguide layer is small, the isolateral refractive index (the value obtained by dividing the propagation phase constant β by the propagation phase constant of free space) of the TE and 'I'M waves propagating in the waveguide layer is determined by the refraction of the substrate. If the isolateral refractive index of the TE wave is thicker than that of the TM wave and the thickness of the waveguide layer is sufficiently large, the isolateral refractive index of the TE and TM waves is slightly larger than that of the TE wave. The value is approximately equal to the refractive index specific to each corresponding waveguide layer, and the isolateral refractive index for the TM wave is larger than the isolateral refractive index for the TE wave. Therefore, at a certain thickness of the waveguide layer in the middle, the equilateral refractive indexes of the TE wave and the TM wave become equal (1), then phase matching is established. however,
The thickness t of the waveguide layer and the amount of negative birefringence (Δn = n, −n
There is a drawback that x) must be set strictly. −
When used as an optical isolator with an in-resicon performance of about 30 dβ, it is necessary to keep the equivalent refractive index difference between TE and TM waves within lXl0', but to do so, the thickness and birefringence of the waveguide layer must be 4±0. 05μm, -3
, it must be set with an accuracy of 2 years old Xl0-4, which is difficult in actual manufacturing.
従って上記いずれの場合も位相整合を実現するため[H
1複雑な構造や厳密な製作条件を必要とし、安定性、信
頼性の点でも問題が生じてしまう。Therefore, in any of the above cases, in order to realize phase matching, [H
1. It requires a complicated structure and strict manufacturing conditions, and it also poses problems in terms of stability and reliability.
本発明の目的は上記難点を除去し、製作が容易な、位相
整合のとれた先導波路を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned difficulties and provide a phase-matched leading waveguide that is easy to manufacture.
本発明の磁気光学薄膜先導波路は結晶基板上に該基板よ
り屈折率が高く、かつ該基板より格子定数が大きい磁気
光学結晶層の光導波路を形成した光導波路において、前
記導波路の上面に緩衝膜と損失性の膜とを設け、基板に
水平方向に振動電界成分を有する先導波モード(TE波
)に対する伝搬位相定数の大きさと垂直方向に振動電界
成分を有する光導波モード(TM波)に対する伝搬位相
定数の大きさとを一致するように前記損失性の膜の膜厚
を定め九点に特徴がある。The magneto-optic thin film guiding waveguide of the present invention is an optical waveguide in which an optical waveguide of a magneto-optic crystal layer having a higher refractive index than the substrate and a larger lattice constant than the substrate is formed on a crystal substrate. A film and a lossy film are provided, and the size of the propagation phase constant for a leading wave mode (TE wave) having an oscillating electric field component in the horizontal direction and for an optical waveguide mode (TM wave) having an oscillating electric field component in the vertical direction is provided on the substrate. The thickness of the lossy film is determined so as to match the magnitude of the propagation phase constant, and there are nine characteristics.
以下、図面に従って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の実施例を示す図である。Iiiたとえ
ばガドリニウム・ガリウム・ガーネット単結晶である。FIG. 1 is a diagram showing an embodiment of the present invention. III.For example, gadolinium gallium garnet single crystal.
該結晶基板上に液相、あるいは気相成長法などによって
該結晶基板より屈折率が高く格子定数が大きい結晶膜、
例えばGd6.44 Y6.、@Fe、OK。A crystal film having a higher refractive index and a larger lattice constant than the crystal substrate by a liquid phase or vapor phase growth method on the crystal substrate,
For example, Gd6.44 Y6. , @Fe, OK.
のような結”晶膜を数μmの厚さで導波層2を設ける。The waveguide layer 2 is provided with a crystalline film such as the one shown in FIG.
そして導波層の上面に緩衝膜3と、さらに緩衝膜3上に
金属膜4を形成する。金属膜、例えばアルミニウムはス
パッタリング、あるいは真空蒸着で形成できるが、導波
層2上面に直接形成するとその付加による歪みのために
、導波層の複屈折が変化してしまうので導波層2との間
に緩衝膜3を設は金属膜の付加による弾性的歪みを吸収
させる。Then, a buffer film 3 is formed on the upper surface of the waveguide layer, and a metal film 4 is further formed on the buffer film 3. A metal film, such as aluminum, can be formed by sputtering or vacuum evaporation, but if it is formed directly on the top surface of the waveguide layer 2, the birefringence of the waveguide layer will change due to the distortion caused by the addition of the metal film. A buffer film 3 is provided between them to absorb the elastic strain caused by the addition of the metal film.
また緩衝膜3の形成時において本、その付加による歪み
を避ける必要があり、緩衝膜としては例えばポリイミド
、シロキサンなどの有機物のスピンコーティングあるい
はSin、のプラズマCvD法による成膜で可能である
。このとき緩衝効果を失わないために緩衝膜の厚さti
loooAは必要であり、また大きすぎると金属膜の付
加による光学的効果を失ってしまうので3000A以下
にする必要がある。Further, when forming the buffer film 3, it is necessary to avoid distortion due to its addition, and the buffer film can be formed by spin coating of an organic material such as polyimide or siloxane, or by a plasma CVD method of Sin. At this time, in order not to lose the buffering effect, the thickness of the buffer film ti
loooA is necessary, and if it is too large, the optical effect due to the addition of the metal film will be lost, so it needs to be 3000A or less.
前述の如く導波層の格子定数を基板の格子定数よりも大
きくし、導波層のTM波に対する屈折率n、をTE波に
対する屈折率n、よりも大きくなるように設定すると第
2図の実線で示すようにある導波層の厚さt。でTE波
とTM波の等側屈折率nTEt nTMが一致し、位相
整合が成り立つ。しかしながら−30dβ程度のアイソ
レーション性能ををもつ光アイソレータとして用いる場
合に#′iTE波とTM波の等価屈折率差△neffは
10−3以内にする必要があり、そのためVcti導波
層の厚さを4μmとした場合導波層の厚さと複屈折量(
Δn=nアーnx )をそれぞれ4±0.05μm、
−3,2±0.1×10−4の精度で設定しなければな
らず、製作上困難である。従って、実際に作製された導
波層は設計値とは異な9位相整合条件からずれて設定さ
れてしまう((”’i’o)。導波層を新たに付加した
りエツチングで削って膜厚を増減させて製作誤差を補償
することも可能であるが導波層に与える機械的な歪みに
よる屈折率変化、あるいは導波路表面の荒れによる散乱
損の増加が予想され適切ではない。As mentioned above, if the lattice constant of the waveguide layer is made larger than that of the substrate, and the refractive index n of the waveguide layer for TM waves is set to be larger than the refractive index n of the waveguide layer for TE waves, the result shown in Fig. 2 is obtained. The thickness t of a given waveguide layer is shown by the solid line. The equilateral refractive index nTEt nTM of the TE wave and the TM wave match, and phase matching is established. However, when used as an optical isolator with an isolation performance of about -30 dβ, the equivalent refractive index difference △neff between the #'iTE wave and the TM wave needs to be within 10-3, so the thickness of the Vcti waveguide layer When is set to 4 μm, the thickness of the waveguide layer and the amount of birefringence (
Δn=narnx) respectively 4±0.05μm,
It must be set with an accuracy of -3.2±0.1×10−4, which is difficult to manufacture. Therefore, the actually fabricated waveguide layer is set to deviate from the 9 phase matching conditions, which is different from the design value (('''i'o).A new waveguide layer is added or the waveguide layer is removed by etching. Although it is possible to compensate for manufacturing errors by increasing or decreasing the thickness, it is not appropriate because it is expected to change the refractive index due to mechanical strain on the waveguide layer or increase scattering loss due to roughness of the waveguide surface.
そこで本発明では導波層に手を加えないで導波層の複屈
折量Δn、あるいは膜厚tの設定誤差を補償するために
導波層の上面に緩衝膜及び金属膜を付加する。緩衝膜と
金属膜の付加によりTE%TM波の等価屈折率差を減少
させ、その結果第2図の破線で示すようにt=t’にお
いて位相整合を実現することができる。周知の如く、導
波層の上面に等方性の誘電体膜を付加するとTB波とT
M波の等価屈折率差△”ett Fi減少するので導波
層の複屈折量〇、あるいは膜厚tが小さく製作され△n
eo>Oとなる場合のみΔn5ffの補償が可能である
。導波層の複屈折あるいは膜厚が大きくされてΔn @
f(〈0となる場合にも位相整合を実現するKu、付加
することにより等価屈折率差が増加する金属や半導体の
ような損失性の膜を用いる必要がある。Therefore, in the present invention, a buffer film and a metal film are added to the upper surface of the waveguide layer in order to compensate for the setting error of the birefringence Δn or the film thickness t of the waveguide layer without modifying the waveguide layer. By adding the buffer film and the metal film, the equivalent refractive index difference of the TE%TM wave is reduced, and as a result, phase matching can be realized at t=t' as shown by the broken line in FIG. As is well known, when an isotropic dielectric film is added to the top surface of the waveguide layer, TB waves and T
Since the equivalent refractive index difference △"ett Fi of M waves decreases, the amount of birefringence of the waveguide layer 〇 or the film thickness t can be made small △n
Compensation for Δn5ff is possible only when eo>O. By increasing the birefringence or film thickness of the waveguide layer, Δn @
It is necessary to use a lossy film such as a metal or a semiconductor whose addition of Ku to achieve phase matching even when f(<0) increases the equivalent refractive index difference.
習作上の簡使さから金属膜が適当であV、その金属膜の
厚さ1.を調整することにより等価屈折率差を変化させ
ることができる。第3図に金属の厚さt、と等側屈折率
の関係を示すが等価屈折率差はtlが0.08μm程度
で最大となりそれ以上の厚さでは一定となる。A metal film is suitable for ease of use in the study, and the thickness of the metal film is 1. The equivalent refractive index difference can be changed by adjusting. FIG. 3 shows the relationship between the metal thickness t and the isolateral refractive index, and the equivalent refractive index difference reaches its maximum when tl is approximately 0.08 μm, and remains constant at thicknesses greater than that.
厚さ4μmの導波層の上面に緩衝膜(ポリイミド)、金
R(アルミニウム)をそれぞれ0.15μm。A buffer film (polyimide) and gold R (aluminum) are each 0.15 μm thick on the top surface of the 4 μm thick waveguide layer.
0.08μm程度設けると等価屈折率差△n5ff =
”TEnTMは1.2X10″″4増加し、緩衝膜だけ
付加した場合(f+=0)[ti3X10−’減少する
。これらのΔneffの変電は導波層の厚さtの変動−
〇、6nm、+0,1μmに相当し従って、導波層の膜
厚、複屈折の製作誤差り、△n、がそれぞれ−0,1<
t@<、+0.6μm、 −1,2x 10−’<Δn
6く+3×1O−sであっても、金属膜の厚さ1.を0
.08μmの間に適当に設定することにより位相整合を
実現できる。If approximately 0.08 μm is provided, the equivalent refractive index difference △n5ff =
``TEnTM increases by 1.2X10''4, and when only the buffer film is added (f+=0) [ti3X10-' decreases.These changes in Δneff are caused by variations in the waveguide layer thickness t-
〇, 6 nm, +0.1 μm. Therefore, the film thickness of the waveguide layer, the manufacturing error of birefringence, △n, are -0, 1<, respectively.
t@<, +0.6μm, -1,2x 10-'<Δn
Even if the thickness of the metal film is 1. 0
.. Phase matching can be achieved by appropriately setting the distance between 0.8 μm and 0.08 μm.
金属を用いず緩衝膜だけを付加した場合Kt、、Δna
FiO,15am<: t、 <o、 O<△ne<+
4x10−sであり、金属膜を用いることにより導波層
の膜厚t、複屈折△nの製作誤差を補償できる範囲を大
幅に拡げることができる。When only a buffer film is added without using metal, Kt, Δna
FiO, 15am<: t, <o, O<△ne<+
4.times.10@-s, and by using a metal film, the range in which manufacturing errors in the thickness t of the waveguide layer and the birefringence .DELTA.n can be compensated for can be greatly expanded.
以上、金属膜の厚さを調整して位相整合を実現する方法
について述べ′庭が金属膜を一定にして、緩衝膜の厚さ
を調整しても同様な効果が得られる。The above describes a method for realizing phase matching by adjusting the thickness of the metal film.The same effect can be obtained even if the thickness of the metal film is kept constant and the thickness of the buffer film is adjusted.
従来、位相整合を実現するために導波層の複屈折と膜厚
を厳密に設定する必要があったが導波層の上面に緩衝膜
と損失性の膜とを付加した本導波路においては導波層の
作製時に生じる誤差を補正して位相整合を実現でき製作
上有利である。Conventionally, in order to achieve phase matching, it was necessary to strictly set the birefringence and film thickness of the waveguide layer, but in this waveguide with a buffer film and a lossy film added to the top surface of the waveguide layer, This is advantageous in terms of manufacturing because phase matching can be achieved by correcting errors that occur during the manufacturing of the waveguide layer.
以上、本発明によれば製作が容易なTE波とTM波の位
搬位相定数が一致した光導波路が得られる。As described above, according to the present invention, it is possible to obtain an optical waveguide that is easy to manufacture and in which the phase constants of the TE wave and the TM wave match.
第1図は、本発明の実施例の構成図で1はガーネット基
板、2は基板より高い屈折率を有する磁気光学ガーネッ
ト結晶導波層、3は緩衝膜、4は金属膜である。第2図
は導波層の厚さと等価屈折率の関係の模式図、第3図は
金属膜の厚さと等価屈折率の関係を模式的に示したもの
である。FIG. 1 is a block diagram of an embodiment of the present invention, in which 1 is a garnet substrate, 2 is a magneto-optic garnet crystal waveguide layer having a higher refractive index than the substrate, 3 is a buffer film, and 4 is a metal film. FIG. 2 is a schematic diagram of the relationship between the thickness of the waveguide layer and the equivalent refractive index, and FIG. 3 is a schematic diagram of the relationship between the thickness of the metal film and the equivalent refractive index.
Claims (1)
格子定数が大きい磁気光学結晶層の光導波路を形成した
先導波路において、前記導波路の上面に、緩衝膜と損失
性の膜とを設け、基板に水平方向に振動電界成分を有す
る光導波モード(TE波、)に対する伝搬位相定数の大
きさと垂直方向に撮動電界成分を有する光導波モード(
TM波)に対する伝搬位相定数の大きさとを一致するよ
うに前記損失性の膜の膜厚を定めたことを特徴とする磁
気光学薄膜先導波路。In a guiding waveguide in which an optical waveguide of a magneto-optic crystal layer having a higher refractive index and a larger lattice constant than that of the substrate is formed on a crystal substrate, a buffer film and a lossy film are provided on the upper surface of the waveguide. The size of the propagation phase constant for an optical waveguide mode (TE wave) having an oscillating electric field component in the horizontal direction and the optical waveguide mode (TE wave) having an oscillating electric field component in the vertical direction are provided on the substrate.
1. A magneto-optic thin film guided waveguide, characterized in that the thickness of the lossy film is determined so as to match the magnitude of a propagation phase constant for a TM wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7312982A JPS58190904A (en) | 1982-04-30 | 1982-04-30 | Magneto-optical thin film optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7312982A JPS58190904A (en) | 1982-04-30 | 1982-04-30 | Magneto-optical thin film optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58190904A true JPS58190904A (en) | 1983-11-08 |
Family
ID=13509294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7312982A Pending JPS58190904A (en) | 1982-04-30 | 1982-04-30 | Magneto-optical thin film optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58190904A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986006503A2 (en) * | 1985-04-29 | 1986-11-06 | American Telephone & Telegraph Company | Optical systems with antireciprocal polarization rotators |
EP0205220A2 (en) * | 1985-06-12 | 1986-12-17 | Philips Patentverwaltung GmbH | Magneto-optical wave guide structure for the conversion of the modes guided in this structure |
US4886332A (en) * | 1987-10-19 | 1989-12-12 | American Telephone And Telegraph Company | Optical systems with thin film polarization rotators and method for fabricating such rotators |
-
1982
- 1982-04-30 JP JP7312982A patent/JPS58190904A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986006503A2 (en) * | 1985-04-29 | 1986-11-06 | American Telephone & Telegraph Company | Optical systems with antireciprocal polarization rotators |
JPH0727127B2 (en) * | 1985-04-29 | 1995-03-29 | エイ・テイ・アンド・テイ・コーポレーシヨン | Optical system with reciprocal polarization rotator |
EP0205220A2 (en) * | 1985-06-12 | 1986-12-17 | Philips Patentverwaltung GmbH | Magneto-optical wave guide structure for the conversion of the modes guided in this structure |
US4886332A (en) * | 1987-10-19 | 1989-12-12 | American Telephone And Telegraph Company | Optical systems with thin film polarization rotators and method for fabricating such rotators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sugimoto et al. | A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit | |
US20190271897A1 (en) | Optical waveguide element and optical modulator using the same | |
US9664857B2 (en) | Nonreciprocal coupler isolator | |
Kirsch et al. | Semileaky thin‐film optical isolator | |
US4746182A (en) | Phase-matched magnetooptical mode converter | |
JPS58190904A (en) | Magneto-optical thin film optical waveguide | |
US4032217A (en) | Optical wave guide for carrying out phase-tuning between two modes of light propagation | |
JPS589B2 (en) | optical isolator | |
Shirato et al. | High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift | |
JP2758457B2 (en) | Waveguide type optical circulator | |
JPH07318876A (en) | Optical non-reciprocal circuit | |
JPS58137808A (en) | Optical circuit | |
CN113281550A (en) | Straight waveguide phase modulator, integrated assembly and preparation method | |
JPH0850261A (en) | Optical circulator | |
CN218383532U (en) | Electro-optical modulator | |
Wolfe | Thin films for non-reciprocal magneto-optic devices | |
JPH0567926B2 (en) | ||
JPS5977408A (en) | Optical isolator | |
JPS59224819A (en) | Faraday rotator | |
CN115437168A (en) | Electro-optical modulator | |
JPS60111203A (en) | Optical waveguide device | |
JP2784496B2 (en) | Waveguide type optical isolator | |
JPS6038689B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
CN116047821A (en) | Active polarization converter based on liquid crystal cladding slab waveguide | |
EP1315007A1 (en) | Polarisation dependence compensation |