JPS58183222A - Cooling device for inflatable film molding - Google Patents
Cooling device for inflatable film moldingInfo
- Publication number
- JPS58183222A JPS58183222A JP57066857A JP6685782A JPS58183222A JP S58183222 A JPS58183222 A JP S58183222A JP 57066857 A JP57066857 A JP 57066857A JP 6685782 A JP6685782 A JP 6685782A JP S58183222 A JPS58183222 A JP S58183222A
- Authority
- JP
- Japan
- Prior art keywords
- air
- resin
- cooled
- tubular
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9115—Cooling of hollow articles
- B29C48/912—Cooling of hollow articles of tubular films
- B29C48/9125—Cooling of hollow articles of tubular films internally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、押出ダイより管状に押出された管状樹脂を内
部倶1より冷却するインフレーション成形用冷却装置に
係り、特にその冷却能力の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for inflation molding that cools a tubular resin extruded into a tubular shape from an extrusion die from an internal part 1, and particularly relates to an improvement in its cooling capacity.
熱可塑性樹脂のインフレーション成形においては、生産
性向上のため高押出1成形、高速成形の要求が高くなっ
ているが、高押出1成形、高速成形を達成するためには
、押出機や押出ダイの高速押出が可能であっても、押出
される管状樹脂を十゛分に冷却することができなければ
ならないものである。また、成形フィルムの機械的強度
やフィルム外観等のフィルム物性を向上させるために4
、溶融樹脂を内外むらなく十分に冷却することが必要で
ある。In inflation molding of thermoplastic resins, there is an increasing demand for high extrusion per mold and high speed molding to improve productivity, but in order to achieve high extrusion per mold and high speed molding, the extruder and extrusion die must be Even if high-speed extrusion is possible, it is necessary to be able to sufficiently cool the extruded tubular resin. In addition, in order to improve the film properties such as the mechanical strength and film appearance of the formed film, 4
, it is necessary to sufficiently cool the molten resin evenly inside and outside.
ところで、単数あるいは複数のニアリングを用いて、押
出された管状樹脂の外周面に冷却空気を−吹きつける方
法が広く採用されているが、冷却効果を高めようとして
ニアリングのitを増大させると、例えば^密度ポリエ
チレン、ji+[状エチレン−α−オレフィン共重合体
、Iリプロピレン郷・の溶融張力の小さい樹脂にあって
は成形安定性が著しく阻害されてしまうため、管状樹脂
の外部側からのみによる冷却では冷却効果の向上には自
ずと限界があった。By the way, a method of blowing cooling air onto the outer peripheral surface of an extruded tubular resin using one or more nearings is widely adopted, but if the nearing IT is increased in order to improve the cooling effect, for example, For resins with low melt tension such as ^density polyethylene, ethylene-α-olefin copolymer, and I-propylene, the molding stability is significantly inhibited, so molding is performed only from the outside of the tubular resin. With cooling, there was naturally a limit to the improvement of the cooling effect.
さらに、管状樹脂の安定体として用いられる中芯(マン
ドレル)を水冷等により冷却して溶融樹脂管状体に接触
させる方法も識られているが、このような方法にあって
は押出ダイより押出された1((債の溶融樹脂管状体の
冷却のみを行うものであり、管状樹脂全体を効果的に冷
却するものではなかった。さらに1温度制御も非常に困
難であるという欠点もあった。Furthermore, a method is known in which a core (mandrel) used as a stabilizer for the tubular resin is cooled by water cooling or the like and brought into contact with the molten resin tubular body. (1) (It only cools the molten resin tubular body, and does not effectively cool the entire tubular resin. Furthermore, it also has the disadvantage that temperature control is extremely difficult.
また、管状樹脂の内圧を常に一定に保ちながら、冷却空
気を管状樹脂内に供給する一方で管状樹脂内で熱せられ
た熱空気を管状樹脂内から排出するような給排機構を設
けて内部空気を常に低温度に維持させる方法が織られて
いる。しかしながら従来のこのような方法にあっては、
管状樹脂の内部側からの冷却効果を高めようとして内部
空気の給蝙 排気速度を大きくすると管状樹脂の内
圧を一定に保つことが困齢となり成形安定性が阻害され
てしオうものであった。また、管状樹脂内部に供給する
空気を外部側において予め極めて低温度に冷却しておく
ことも考えられるが、このような方法にあっては設備が
複雑且大型化しやすくなるため採用し難いものであった
。いずれにしても、従来の冷却装置は構造が非常に複雑
とな妙、装置が高価となるばかりか、小口径グイマンド
レルを用いる高ブローアッグ比成形への適用は技術的に
も不可能なものであつ九。In addition, while keeping the internal pressure of the tubular resin constant, a supply/discharge mechanism is provided to supply cooling air into the tubular resin while discharging hot air heated inside the tubular resin from inside the tubular resin. A method has been devised to maintain the temperature at a constant low temperature. However, in this conventional method,
If the internal air supply and exhaust speed was increased in an attempt to increase the cooling effect from the inside of the tubular resin, it would become difficult to maintain the internal pressure of the tubular resin at a constant level, which would impede molding stability. . Another possibility is to cool the air supplied to the inside of the tubular resin to an extremely low temperature on the outside in advance, but this method is difficult to adopt because it tends to complicate and enlarge the equipment. there were. In any case, conventional cooling equipment has a very complicated structure, which not only makes the equipment expensive, but also makes it technically impossible to apply it to high blow-ag ratio molding using small-diameter gouimandrels. Atsuku.
本発明の目的は、冷却効果が高く且成形安定性に優れ、
しかも、構造の簡単なインフレーション成形用冷却装置
を提供するKある。The purpose of the present invention is to have high cooling effect and excellent molding stability,
Moreover, K provides a cooling device for inflation molding with a simple structure.
本発明は、管状樹脂の内部空気を給排する丸めの空気供
給管及び空気排出管を設けるとともに、前記空気供給管
から供給される空気を膨張室において一旦断熱膨張させ
て冷却した後に管状樹脂内に吹出させることにより管状
樹脂を内部側より有効に冷却させて前記目的を達成しよ
うとするものである。The present invention provides a round air supply pipe and an air discharge pipe for supplying and discharging the internal air of the tubular resin, and the air supplied from the air supply pipe is once adiabatically expanded and cooled in an expansion chamber, and then the air is inside the tubular resin. The purpose is to achieve the above object by effectively cooling the tubular resin from the inside by blowing the resin out.
以下、本発明の実施例を図面(基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図には、第1の実施例が適用されるインフレーショ
ンフィルム成形装蓋の要部が示されている。FIG. 1 shows the main parts of a blown film molded lid to which the first embodiment is applied.
この図において、押出ダイ1の環状スリット4からけ、
押出ダイl内に供給された溶融樹脂5が連続的に押出さ
れ、押出ダイ1の上方には管状樹脂6が形成されている
。In this figure, from the annular slit 4 of the extrusion die 1,
The molten resin 5 supplied into the extrusion die 1 is continuously extruded, and a tubular resin 6 is formed above the extrusion die 1.
管状樹脂6は、押出ダイ1より押出された血抜において
は溶融状態の溶融樹脂管状体6Aとなっているが、樹脂
膨張部6Bにおいて所定の!ローアツブ比で#張された
彼、薄肉化され樹脂バブル6Cとなり、樹脂バブル6C
け完全に冷却固化され九後、図示しないニップロールに
よリニッグされて偏平化され、次いで連続的に巻取られ
る。ここにおいて、前記樹脂膨張部6Bとは溶融樹脂管
状体6Aが延伸を開始する位置、すなわち処伸点で始ま
り樹脂バブル6Cのフリストライン近傍にて終了する領
域である。The tubular resin 6 becomes a molten resin tubular body 6A in a molten state when the blood is extruded from the extrusion die 1, but a predetermined temperature is reached in the resin expansion part 6B. He is #stretched at the low-fat ratio, thinned and becomes a resin bubble 6C, and a resin bubble 6C.
After being completely cooled and solidified, it is linched and flattened by nip rolls (not shown), and then continuously wound up. Here, the resin expansion portion 6B is a region where the molten resin tubular body 6A starts stretching, that is, a region that starts at the stretching point and ends near the frist line of the resin bubble 6C.
押出ダイ1の一ト端面側には、外部冷却装置とし。An external cooling device is provided on one end surface side of the extrusion die 1.
てのニアリング8が配置され、ニアリング8の環状の空
気吐出スリット9からは管状樹脂6の外周面に向けて冷
却空気が吐出されている。A near ring 8 is arranged, and cooling air is discharged from an annular air discharge slit 9 of the near ring 8 toward the outer peripheral surface of the tubular resin 6.
押出ダイ1の中心部上方側には、管状極脂安定体として
の略円柱体状の一体型の中芯11が配置f;され、この
中芯11は溶融樹脂管状体6Aを内周面側より案内して
いる。中芯11の径は、前記環状スリット4の径に比し
通常07〜1.3倍程度の大きさであるが、薄肉フィル
ム吟を成形する場合には環状スリット4の径よりやや大
きめ程度の大きさであることが好ましい。また、中芯1
1の中心部には中芯11を長手方向に沿ってV通する円
柱状の中空部12が形成されるとともに、中芯11の上
端部は管状樹脂6の延伸点よシ十分に高い位置まで達し
ている。Above the center of the extrusion die 1, there is disposed an integral core 11 in the form of a substantially cylindrical body as a tubular super fat stabilizer, and this core 11 holds the molten resin tubular body 6A on the inner peripheral surface side. We are providing more guidance. The diameter of the core 11 is usually about 0.7 to 1.3 times the diameter of the annular slit 4, but when forming a thin film, the diameter of the core 11 is slightly larger than the diameter of the annular slit 4. The size is preferable. Also, center core 1
1 is formed with a cylindrical hollow part 12 through which the core 11 passes in a V along the longitudinal direction, and the upper end of the core 11 reaches a position sufficiently higher than the stretching point of the tubular resin 6. has reached.
一方、押出ダイ1の中心部には押出ダイIt−貰通する
円柱状の中心穴15が穿設され、この中心穴15とAn
記中空部12とは互いに中心線位置が1なり合うよう構
成されている。On the other hand, a cylindrical center hole 15 through which the extrusion die It passes is bored in the center of the extrusion die 1, and this center hole 15 and An
The hollow portions 12 are configured such that their center line positions are 1 with each other.
この中心穴15内には、第1の空気係船Q#16、第2
の2P気供t3管17、および空気排出管18がこのM
t: M/、 IIJ序に9)つてIil+次内部側内
部側される三重管構造とされた状態で図示しない鴨熱材
を介するなどして貫挿されて支持されている。この三重
臂描散を構成する第1、第2の空気供給管16゜17、
および空気排出管18は、押出ダイ1の下方l111に
おいてはそれぞれが独立の一重管格造となるよう互いに
分岐され且コック19,20、および21がそれぞれ設
けられている。Inside this center hole 15 are the first air mooring Q#16, the second
2P air supply t3 pipe 17 and air discharge pipe 18 are connected to this M
t: M/, IIJIntroduction 9) With a triple tube structure in which the inner side is the inner side, the tube is penetrated and supported via a duck heating material (not shown). The first and second air supply pipes 16° and 17 that constitute this triple armature,
The air discharge pipes 18 are branched from each other at the lower part l111 of the extrusion die 1 so that each pipe has an independent single pipe structure, and cocks 19, 20, and 21 are provided, respectively.
第1の空気供給管16は押出ダイlの上端面より比重、
的蝮寸の所定長だけ突出されており、前記供給宥16の
上端部には前記中芯11が支持されている。また、中芯
11の下端5111と押出ダイlの」:端側との間に位
置する第1の空気供給管16の周面にはa数の連通孔2
2が穿設され、前記供給管16より供給される空気は連
通孔22を経て中芯11の下端側に供給された後中芯1
1の外周面と浴融樹脂管状体6Aとの間隙を通って樹脂
バブル6C@へと上昇するようになっている。The first air supply pipe 16 has a specific gravity from the upper end surface of the extrusion die l.
It protrudes by a predetermined length corresponding to the target size, and the core 11 is supported at the upper end of the supply receptacle 16 . In addition, a number of communication holes 2 are provided on the circumferential surface of the first air supply pipe 16 located between the lower end 5111 of the core 11 and the end side of the extrusion die l.
2 is bored, and the air supplied from the supply pipe 16 is supplied to the lower end side of the core 11 through the communication hole 22.
1 and rises to the resin bubble 6C@ through the gap between the outer circumferential surface of the resin bubble 1 and the bath melt resin tubular body 6A.
第2の空気供給管17は第1の空気供給管】6より上方
に突出して前記中空部12を貫通した後中芯11より更
に上方に突出し樹脂膨張部6Bと樹脂バブル6Cとの境
界位肴付近にて終了している。The second air supply pipe 17 protrudes upward from the first air supply pipe 6 and penetrates the hollow portion 12, and then protrudes further upward from the center core 11 to form the boundary between the resin expansion portion 6B and the resin bubble 6C. It ends nearby.
第2の空気供給管17の上端付近の所定範囲であって樹
脂膨張部6B内に位置する部分には膨張室23が設けら
れている。rftイ張室23は、中心部に前記第2の空
気供給管17が位置される中空円柱体状に形成され、周
面には径方向外側に向って初数の吹出[]25が設けら
れている。また、雇張室23内に位置する第2の空気供
給管170周面には株数の流出し]24が穿設されてお
り、第2の空気供給管17より供給される空気は流出口
24より膨張室23内に流出して膨張室23内において
断熱膨張されて冷却された後、吹出口25より史に二次
膨張されて二次的に冷却されて樹脂膨張部613へと吹
き当てられるよう構成されている。An expansion chamber 23 is provided in a predetermined range near the upper end of the second air supply pipe 17 and located within the resin expansion section 6B. The RFT expansion chamber 23 is formed into a hollow cylindrical shape in which the second air supply pipe 17 is located in the center, and an initial number of air outlets [ ] 25 are provided on the circumferential surface toward the outside in the radial direction. ing. In addition, an air outlet 24 is bored on the circumference of the second air supply pipe 170 located inside the air supply room 23, and the air supplied from the second air supply pipe 17 is passed through the outlet 24. After flowing out into the expansion chamber 23 and being adiabatically expanded and cooled in the expansion chamber 23, it is secondarily expanded through the outlet 25, cooled secondarily, and blown onto the resin expansion section 613. It is configured like this.
また、前記空気排出管18は膨張室23よシ所定長だけ
Eカに突出され且上端部において開口しており、管状樹
脂6内の内部空気は前P開口部より吸引されて管状樹脂
6の外部1LIIへと排出されるようになっている。Further, the air exhaust pipe 18 projects beyond the expansion chamber 23 by a predetermined length and is open at the upper end, so that the internal air inside the tubular resin 6 is sucked from the front P opening, and the air inside the tubular resin 6 is sucked from the front P opening. It is designed to be discharged to the outside 1LII.
次に、本実施例の作用につき説明する。Next, the operation of this embodiment will be explained.
運転開始時においては、第1、第2の空気供給管16.
17、および空気排出管18の少なくともいずれか1つ
より管状樹脂6内に空気を封入して管状樹脂6に内圧を
加えて膨張させ樹脂バブル6Cが形成されるようにする
。At the start of operation, the first and second air supply pipes 16.
Air is sealed in the tubular resin 6 through at least one of the tubes 17 and 18, and internal pressure is applied to the tubular resin 6 to cause it to expand and form a resin bubble 6C.
安定運転時、す々わち生産時においては、第1、第2の
空気供給管16.17から冷却用空気を管状樹脂6内に
供給しながら、一方、空気排出管18からは管状樹脂6
内で熱せられた熱空気を管状樹脂6外へと排出し、これ
ら給排気の量を調整して管状樹脂6の内圧を常に一定に
保つようにする。During stable operation, that is, during production, cooling air is supplied into the tubular resin 6 from the first and second air supply pipes 16 and 17, while the air is supplied from the air exhaust pipe 18 to the tubular resin 6.
The hot air heated inside is discharged to the outside of the tubular resin 6, and the amount of supply and exhaust is adjusted to keep the internal pressure of the tubular resin 6 constant.
第1の空気供給管16からは比較的低圧の冷却用空気が
供給され、この冷却用りと気は連通孔22を介して中芯
11の下端側へと供給された後、中芯11の外周面と溶
融樹脂管状体6Aの内周面との間隙を通って樹脂バブル
6C側へと流れ、これにより浴融樹脂管状体6Aは、ニ
アリング8による外部側からの冷却だけでなく、内部側
からも冷却され、また、溶融樹脂管状体6Aと中芯11
との粘着が防止される。Relatively low-pressure cooling air is supplied from the first air supply pipe 16 , and this cooling air is supplied to the lower end side of the core 11 through the communication hole 22 . It flows through the gap between the outer peripheral surface and the inner peripheral surface of the molten resin tubular body 6A to the resin bubble 6C side, and as a result, the bath molten resin tubular body 6A is not only cooled from the outside by the near ring 8, but also cooled from the inside. The molten resin tubular body 6A and the core 11 are also cooled.
This prevents adhesion.
第2の空気供給管17からは、比較的高圧の冷却用空気
が供給され、この冷却用空気は流出口24より一旦膨張
室23内に断熱膨張的に噴出されて冷却された彼、さら
に吹出口25から二次的に断熱膨張されて再度冷却され
樹脂膨張部6Bへと吹き当てられる。したがって、樹脂
膨張部6Bが有効に冷却されることとなり、しかも、溶
融樹脂管状体6Aの内周面と中芯11の外周面との関辣
を上昇しながら溶融樹脂管状体6Aにより熱せられた空
気流が、前記吹出口25から樹脂膨張部6Bへと吹き当
てられる冷却空気により、樹脂膨張部6Bの内周面近傍
から排斥されてしまうため、樹脂膨張部6Bは一層有効
に冷却されることとなる。なお、第2の空気供給管17
より供給される冷却用空気は比較的高圧であり、流出口
24よりかなり勢い良く噴出されても、験張室23がM
衝帯として作用するため樹脂#、張部6BK働撃を加え
て息つき等を生じさせて成形安定性を阻害する −
′ようなことはない。Relatively high-pressure cooling air is supplied from the second air supply pipe 17, and this cooling air is once blown out from the outlet 24 into the expansion chamber 23 in an adiabatic expansion manner, cooled, and then further blown out. The resin is secondarily adiabatically expanded from the outlet 25, cooled again, and blown onto the resin expansion section 6B. Therefore, the resin expansion part 6B is effectively cooled, and is heated by the molten resin tubular body 6A while increasing the relationship between the inner circumferential surface of the molten resin tubular body 6A and the outer circumferential surface of the core 11. Since the air flow is rejected from the vicinity of the inner circumferential surface of the resin expansion part 6B by the cooling air blown from the outlet 25 to the resin expansion part 6B, the resin expansion part 6B can be cooled more effectively. becomes. Note that the second air supply pipe 17
Since the cooling air supplied from
Since it acts as a shock band, the resin # and tension part 6BK act to cause breathing, etc., which inhibits molding stability.
'There is no such thing.
第1、第2の空気供給管16.17より管状樹脂6内に
供給される冷却用空気は、このようにして特に冷却を要
する部分である溶融樹脂管状体6人および樹脂肌張部6
Bを効果的に冷却した後加熱されて熱空気となり管状樹
脂6内の温度が上昇しようとするが、内部空気は常に空
気排出管18より排出されるとともに空気供給管16.
17からは常に冷却用空気が供給されるので内部空気は
常に低温度に維持される。In this way, the cooling air supplied into the tubular resin 6 from the first and second air supply pipes 16 and 17 is supplied to the molten resin tubular body 6 and the resin skin section 6, which are the parts that require particular cooling.
After being effectively cooled, it is heated and becomes hot air, and the temperature inside the tubular resin 6 tends to rise, but the internal air is always exhausted from the air exhaust pipe 18 and the air supply pipe 16.
Since cooling air is always supplied from 17, the internal air is always maintained at a low temperature.
このような本実施例によれば、管状樹脂6内を極めて低
温度に給持させておくことができるため、高押出都成形
や高速成形を長時間に亘り安定してヤ丁うことができる
という効果があり、しかも、管状樹脂を内外むらなく急
冷することができるため、機械的強幇やフィルム外観等
のフィルム物性を向、トさせることができるという効果
がある。According to this embodiment, since the inside of the tubular resin 6 can be kept at an extremely low temperature, high extrusion molding and high speed molding can be stably carried out over a long period of time. In addition, since the tubular resin can be rapidly cooled uniformly from the inside to the outside, there is an effect that the physical properties of the film, such as mechanical strength and film appearance, can be improved.
ゝ また、管状樹脂6のうちでも特に急冷を要す
る′ 部分である溶融樹脂管状体6Aおよび樹脂
膨張部6 Bを〃1果的に冷却することができるため、
この点からも高押出成形や高速成形に適し、フィルム物
性の向上についても一層効果が大きいものとすることが
できる。In addition, since the molten resin tubular body 6A and the resin expansion part 6B, which are parts of the tubular resin 6 that particularly require rapid cooling, can be effectively cooled.
From this point of view as well, it is suitable for high extrusion molding and high speed molding, and can be more effective in improving film physical properties.
しかも、管状樹脂6の内部空気の給排気速度を特に大き
くさせなくとも前記内部空気を常に低温度に維持させて
おくことができるため成形安定性が阻害されず、また、
管状樹脂6の外部側において予め冷却用空気を冷却させ
ておく設備等を特に敬せず、膨張室23自体の構造も極
めて簡易なものであるため全体として構造が簡単で組立
ても容易である。Moreover, since the internal air can be maintained at a low temperature without particularly increasing the supply/exhaust speed of the internal air of the tubular resin 6, the molding stability is not hindered.
There is no particular need for equipment to previously cool cooling air on the outside of the tubular resin 6, and the structure of the expansion chamber 23 itself is extremely simple, so the structure as a whole is simple and easy to assemble.
次に、第2の実施例につき説明するが、前記第1の実施
例と同−若しくは近似する部分は同一の符号を用い、説
明を簡略若しくは雀略する。Next, a second embodiment will be described. Parts that are the same as or similar to those in the first embodiment will be denoted by the same reference numerals, and the explanation will be simplified or omitted.
第2図には、第2の実施例が示されている。第2の実施
例においては、膨張室33は前記第1の実施例と一様に
中空円柱体状に形成されているが、吹出口35は前記し
張室33の外周面に筒方向に沿って設けられた俵数のス
リットから構成されている。この第2の実施例において
も前記第1の実施例と同様の作用、効果を奏することが
でき、さらに、樹脂膨張部6Bに極めて均一か状態で冷
却用空気を吹き当てることができ、成形安定性の向上と
いう点からもフィルム物性の向上という点からも好まし
いものである。A second embodiment is shown in FIG. In the second embodiment, the expansion chamber 33 is formed in the same hollow cylindrical shape as in the first embodiment, but the air outlet 35 is formed along the outer peripheral surface of the expansion chamber 33 in the cylindrical direction. It consists of slits for the number of bales provided. This second embodiment also has the same functions and effects as the first embodiment, and furthermore, cooling air can be blown onto the resin expansion part 6B in an extremely uniform manner, resulting in stable molding. This is preferable from the viewpoint of improving properties and film properties.
なお、上述の各実施例においては、膨張室23゜33は
樹脂膨張部6B内に位置されているものとしたが、樹脂
バブル6C内等に位置されていてもよく、マた、吹出口
25.35についても必らずしも樹脂膨張部6Bに向け
られていなくともよいが、樹脂膨張部6B内に膨張室2
3.33が位置され、また、吹出口25.35が樹脂膨
張部6Bに向けられていれば、特に急冷を要する樹脂膨
張部6Bを効果的に冷却することができるという効果が
ある。In each of the above-mentioned embodiments, the expansion chamber 23° 33 is located within the resin expansion section 6B, but it may also be located within the resin bubble 6C, etc. Regarding .35, the expansion chamber 2 does not necessarily have to be directed toward the resin expansion section 6B, but the expansion chamber 2 is located inside the resin expansion section 6B.
3.33 is located and the blower outlet 25.35 is directed toward the resin expansion part 6B, there is an effect that the resin expansion part 6B, which particularly requires rapid cooling, can be effectively cooled.
また、膨張室23.33の形状は中空円柱体状に限らず
、中空逆円錐体状や樹脂膨張部6Bと略相似の形状等の
如く他の形状であってもよく、@2の空気供&i管17
を回転軸として回転するものでもよい。Further, the shape of the expansion chamber 23.33 is not limited to a hollow cylindrical shape, but may be other shapes such as a hollow inverted cone shape or a shape substantially similar to the resin expansion part 6B. &i tube 17
It may also be one that rotates with the axis of rotation as the axis of rotation.
さらに、第1の空気供給管16は設けられていす、中芯
11の肉厚部′に中芯11の上下両端側を連通する連通
路が設けられ、この連通路内を下降する内部空気が中芯
11の外周面と溶融樹脂管状体6Aの内周面との間隙を
上昇するよう構成されているものであってもよい。Furthermore, the first air supply pipe 16 is provided with a communication passage that communicates both the upper and lower ends of the inner core 11 in the thick wall part' of the inner core 11, and the internal air descending through this communication passage is It may be configured to raise the gap between the outer circumferential surface of the core 11 and the inner circumferential surface of the molten resin tubular body 6A.
また、前記中芯11は円柱体状の一体型のものに限らず
、多段分割型、リプ型、螺旋管型等のものであってもよ
く、構造はやや複雑になるが、水冷等により中芯11が
常に十分な冷却能力を有するよう構成されているもので
もよい。Furthermore, the core 11 is not limited to a cylindrical integral type, but may also be of a multi-stage split type, a lip type, a spiral tube type, etc. Although the structure will be somewhat complicated, The core 11 may be configured to always have sufficient cooling capacity.
上述のように、本発明によれば冷却効果が高く且成形安
定性に優れ、しかも、構造の簡単なインフレーション成
形用冷却装置を提供することができるという効果がある
。As described above, the present invention has the advantage that it is possible to provide a cooling device for inflation molding that has a high cooling effect and excellent molding stability, and has a simple structure.
第1図およびi1!2図は、それぞれ本発明の第1およ
び82の実施例を示す断面図である。
l・・・押出グイ、5・・・溶融樹脂、6・・・管状樹
脂1.6A・・・耐融樹脂管状体、6B・・・樹脂膨張
部、6C・・・樹脂パズル、11・・・中芯、16.1
7・・・空気供給管、18・・・空気排出管、23.3
3・・・膨張室。Figures 1 and 1!2 are cross-sectional views showing the first and eighty-second embodiments of the invention, respectively. l... Extrusion guide, 5... Molten resin, 6... Tubular resin 1.6A... Melt-resistant resin tubular body, 6B... Resin expansion part, 6C... Resin puzzle, 11...・Center core, 16.1
7...Air supply pipe, 18...Air discharge pipe, 23.3
3... Expansion chamber.
Claims (1)
されて冷却固化後にy続的に巻取られる管状樹脂の内部
に空気を供給する空気供給管と、前記空気供給管から供
給される空気を−B断熱膨張させた後管状樹脂内に吹出
させる膨張室と、前記管状樹脂内部の空気を排出する′
空気排出管と、が備えられていることを特徴とするイン
フレーション成形用冷却装置。 (2、特許請求の範囲第1項において、前記彬張室は、
管状樹脂内の樹脂膨張部に向って空気を吹出すよう構成
されていることを特徴とするインフレーション成形用冷
却装置。(1) An air supply pipe that supplies air to the inside of the tubular resin that is extruded into a tubular shape from an extrusion die, expanded by internal pressure, cooled and solidified, and then continuously wound up, and air supplied from the air supply pipe. -B An expansion chamber for adiabatic expansion and blowing out into the tubular resin, and an expansion chamber for discharging the air inside the tubular resin.
A cooling device for inflation molding, characterized in that it is equipped with an air discharge pipe. (2. In claim 1, the above-mentioned Bikhang room is
A cooling device for inflation molding, characterized in that the cooling device is configured to blow air toward a resin expansion part within a tubular resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57066857A JPS58183222A (en) | 1982-04-21 | 1982-04-21 | Cooling device for inflatable film molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57066857A JPS58183222A (en) | 1982-04-21 | 1982-04-21 | Cooling device for inflatable film molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58183222A true JPS58183222A (en) | 1983-10-26 |
Family
ID=13327936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57066857A Pending JPS58183222A (en) | 1982-04-21 | 1982-04-21 | Cooling device for inflatable film molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58183222A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0340335A2 (en) * | 1988-05-06 | 1989-11-08 | Paul Kiefel GmbH, Maschinenfabrik | Method and apparatus for cooling in the manufacture of bioriented sheets from thermoplastics of high or medium molecular weight |
CN106827481A (en) * | 2017-01-17 | 2017-06-13 | 瑞安市铭德机械有限公司 | Film blowing device |
-
1982
- 1982-04-21 JP JP57066857A patent/JPS58183222A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0340335A2 (en) * | 1988-05-06 | 1989-11-08 | Paul Kiefel GmbH, Maschinenfabrik | Method and apparatus for cooling in the manufacture of bioriented sheets from thermoplastics of high or medium molecular weight |
CN106827481A (en) * | 2017-01-17 | 2017-06-13 | 瑞安市铭德机械有限公司 | Film blowing device |
CN106827481B (en) * | 2017-01-17 | 2022-09-30 | 瑞安市铭德机械有限公司 | Film blowing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4606879A (en) | High stalk blown film extrusion apparatus and method | |
US3898028A (en) | Apparatus for cooling plastics material tubing made by a blow head | |
CA1271606A (en) | Air cooling ring for plastic film | |
IL29315A (en) | Production of blown tubular foils | |
JPH11508196A (en) | Method for processing extruded plastic profiles and extruder for the same | |
US4842803A (en) | Method and apparatus for extruding blown thermoplastic film tubes | |
US3577488A (en) | Manufacture of plastic tubular film | |
JPS60228125A (en) | Air ring for manufacture of inflation film | |
US4165356A (en) | Method of forming tubular plastic material having a flare-top edge using a blow head | |
JPS63503296A (en) | Ribbed tube manufacturing method and device | |
SU1500148A3 (en) | Bag film cooling arrangement | |
US3371376A (en) | Apparatus for the production of hollow objects with relatively wide openings | |
US3865530A (en) | Pressure control during blow-moulding | |
US6068462A (en) | Apparatus for continuously forming a blown film | |
JPS63315219A (en) | Device used for continuous extrusion manufacture of inflate film and continuous extrusion method of inflate film | |
JPS58183222A (en) | Cooling device for inflatable film molding | |
US3944645A (en) | Method for balloon blown plastic molding | |
US3618169A (en) | Manufacture of plastic film | |
US3955908A (en) | Balloon blow molding tooling | |
JPS58179620A (en) | Cooler for blown-film extrusion | |
US3085293A (en) | Plastic tube forming method | |
JPS58179619A (en) | Cooler for blown-film extrusion | |
JP2000141450A (en) | Spiral die | |
JPS58183223A (en) | Cooling device for inflatable film molding | |
JP2004284270A (en) | Molding machine for inflation film |