JPS58181865A - Plasma cvd apparatus - Google Patents
Plasma cvd apparatusInfo
- Publication number
- JPS58181865A JPS58181865A JP6480182A JP6480182A JPS58181865A JP S58181865 A JPS58181865 A JP S58181865A JP 6480182 A JP6480182 A JP 6480182A JP 6480182 A JP6480182 A JP 6480182A JP S58181865 A JPS58181865 A JP S58181865A
- Authority
- JP
- Japan
- Prior art keywords
- high frequency
- reaction chamber
- frequency electrode
- plasma
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は二極平行平板型のプラズマCVD(Chemi
cal Vapor Deposition)装置
の改良に関し 特に不純物混入が少なく電気的特性の優
れた酸化および窒化/リコン等の絶縁4膜を形成しうる
プラズマCVD装置を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is a bipolar parallel plate type plasma CVD (Chemi-CVD) process.
In particular, the present invention provides a plasma CVD apparatus that can form four insulating films, such as oxidation and nitride/recon, which are less contaminated with impurities and have excellent electrical characteristics.
一般に高周波グロー放電を用いたプラズマCVD装置は
、低温で種々の物質の形成が可能であるため、半導体用
のバノンベー/ヨ/膜やアモルファス7リコ/に代表さ
れる非晶質薄膜の形成技術として広く応用されている。In general, plasma CVD equipment using high-frequency glow discharge is capable of forming various materials at low temperatures, so it is used as a technology for forming amorphous thin films such as Bannon Bay film and amorphous 7-lico film for semiconductors. Widely applied.
現在最も実用化されている前記プラズマCVD装置とし
ては容量結合方式の二極平行平板型がある。この方式は
構成が単純であるが、高周波電極が直接反応室内に設置
されており、高周波グロー放電で発生したイオンによる
逆スパツタ効果で前記電極材料から形成薄膜への不純物
混入が避けられず、捷だ反応室壁からの不純物混入も問
題となる。特にプラズマCVD法では活性ガスを導入す
るため 電極や反応室の構成材料にはステンレス材等が
用いられている事が多く、前記ステンレス材を構成する
金属元素が薄膜に混入することは、ICおよびLSI等
の半導体用薄膜形成技術として応用する場合、多大の問
題が発生する。さらに従来の二極平行平板型のプラズマ
CVD装置ではプラズマ密度を変化させ反応室に導入さ
れた活性カスの反応状態を積極的に変化せしめるために
は人力している高周波電力のみしか電気的制御方法がな
い。高周波電力を変化することは単にプラズマ密度のみ
が変化するたけでなく、他のプラズマ因子、高周波電極
とプラズマとの間に発生する7−ス11」の変化、また
/−ス巾の変化に伴う高周波電極に生じる励起電圧の変
化等を含み多数のパラメータが同時に変化してしまい形
成条件の再現性や薄膜品質に大きな影響を与えてし捷う
。The plasma CVD apparatus that is currently most in practical use is a bipolar parallel plate type capacitively coupled type. Although this method has a simple configuration, the high-frequency electrode is installed directly in the reaction chamber, and the reverse spatter effect caused by ions generated by the high-frequency glow discharge inevitably causes impurities to be mixed into the formed thin film from the electrode material. However, contamination of impurities from the walls of the reaction chamber also poses a problem. In particular, in the plasma CVD method, since active gas is introduced, stainless steel materials are often used for the constituent materials of the electrodes and reaction chambers, and metal elements constituting the stainless steel materials may contaminate the thin film. When applied as a thin film forming technology for semiconductors such as LSI, many problems occur. Furthermore, in conventional bipolar parallel plate type plasma CVD equipment, the only electrical control method that can be used to change the plasma density and actively change the reaction state of the active scum introduced into the reaction chamber is high-frequency power, which is manually applied. There is no. Changing the high-frequency power not only changes the plasma density, but also changes other plasma factors, changes in the width of the plasma generated between the high-frequency electrode and the plasma, and changes in the width of the plasma. Many parameters, including changes in the excitation voltage generated at the high-frequency electrode, change simultaneously, which greatly affects the reproducibility of forming conditions and the quality of the thin film.
本発明は上記した欠点を除去するため、反応室内に設置
された高周波電極−ヒに石英あるいはアルミナ等の絶縁
板を配置し、電極材からの俗用元素の混入を防ぎ、さら
に対向の基板支持を兼ねる高周波電極にコ/デノサーを
接続し高周波電力の変化を伴わず前記/−ス巾や励起電
圧を独立的に変化せしめるようにし、さらに反応室壁か
らの不純物混入を防ぎ、高周波プラズマを高周波電極間
に効率的に閉じこめるため高周波電極端部に近接する反
応室部を石英あるいはアルミナ等の絶縁物で構成するよ
うにした。In order to eliminate the above-mentioned drawbacks, the present invention arranges an insulating plate made of quartz or alumina on the high-frequency electrode installed in the reaction chamber to prevent common elements from being mixed in from the electrode material, and further supports the opposite substrate. A co/denoser is connected to a high frequency electrode that also serves as a high frequency electrode, so that the width and excitation voltage can be changed independently without changing the high frequency power, and furthermore, impurities from the reaction chamber wall are prevented, and the high frequency plasma is In order to efficiently confine the radio frequency between the electrodes, the reaction chamber close to the end of the high frequency electrode is made of an insulating material such as quartz or alumina.
以下、本発明を図面に基づき説明する。Hereinafter, the present invention will be explained based on the drawings.
第1図は本発明によるンラズマCVD装置の構造を示す
断面図で、第2図は第1図における破線XYで切断した
場合の上部高周波電極と反応室の形状を示す断面図であ
る。FIG. 1 is a sectional view showing the structure of a plasma CVD apparatus according to the present invention, and FIG. 2 is a sectional view showing the shape of the upper high-frequency electrode and the reaction chamber when cut along the broken line XY in FIG.
反応室は石英あるいはアルミナ等の絶縁物材である反応
室壁部1と金属材料でアース電位を有する反応室下部2
と反応室上部3とで構成されており、前記反応室内部に
石英あるいはアルミナ等の絶縁板4を前面に配置した上
部高周波電極5と基板加熱用ヒータ6が組み込まれ基板
7の支持を兼ねる下部高周波電極8とが対向して設置し
である。The reaction chamber consists of a reaction chamber wall 1 made of an insulating material such as quartz or alumina, and a reaction chamber lower part 2 made of a metal material and having an earth potential.
and a reaction chamber upper part 3, and an upper high-frequency electrode 5 with an insulating plate 4 made of quartz or alumina placed on the front, and a substrate heating heater 6 are incorporated inside the reaction chamber, and a lower part also serves as support for the substrate 7. A high frequency electrode 8 is placed facing each other.
上部高周波電極5内部にはガス導入口9より反応ガス等
が導入さn、前記高周波電極間前面に配置された少なく
とも一つ以上のガス放出穴10より反応ガス放出が可能
となるよう構成し、マツチフグボックス11全通して周
波数が13.56MHzの高周波電源12が接続されて
いる。1上部高周波電極5より反応室内部に導入される
反応ガスv′i排気系13より排気される。下部筒周波
電極8には電気的絶縁を保ちヒータ加熱用電源14が導
入され前記下部高周波電極8には直列にコンデサ15が
接続している。@記コ/テンサ15の一方は高周波電源
12のアース電位部に接続されている。A reactive gas or the like is introduced into the upper high-frequency electrode 5 through a gas inlet 9, and the reactive gas is configured to be discharged through at least one gas discharge hole 10 arranged in front between the high-frequency electrodes, A high frequency power source 12 having a frequency of 13.56 MHz is connected throughout the Matsushi Fugu box 11. A reaction gas v'i introduced into the reaction chamber from the upper high-frequency electrode 5 is exhausted from an exhaust system 13. A heater heating power source 14 is introduced into the lower cylindrical frequency electrode 8 while maintaining electrical insulation, and a capacitor 15 is connected in series to the lower high frequency electrode 8. One end of the tensor 15 is connected to the ground potential section of the high frequency power source 12.
次に本発明を実施例に基づき説明する。Next, the present invention will be explained based on examples.
本実施例では反応室壁部]および絶縁板4とを石英材で
反応室下部2、反応室上部3、上部高周波電極5および
対向する下部高周波電極8をステンレス材で構成し酸化
/リコン(S、 o、 )薄膜の形成を行った。まず下
部高周波電極8に基板7を設置し排気系13により排気
を行うが、反応室内に残留する水分等の影響を考慮しl
Xl0−5Tarr以下に排気することが望ましいう排
気後、基板温度を室温から5000Cの範囲で所定の温
度に設定するだめヒーター加熱用電源14の制御を行う
。In this embodiment, the reaction chamber wall part] and the insulating plate 4 are made of quartz, and the reaction chamber lower part 2, the reaction chamber upper part 3, the upper high-frequency electrode 5, and the opposing lower high-frequency electrode 8 are made of stainless steel. , o, ) A thin film was formed. First, the substrate 7 is placed on the lower high-frequency electrode 8, and exhaust is performed using the exhaust system 13. However, considering the influence of moisture remaining in the reaction chamber,
After evacuation, which is preferably performed to a temperature below Xl0-5 Tarr, the heater heating power source 14 is controlled to set the substrate temperature to a predetermined temperature in the range from room temperature to 5000C.
基板温度が安定した後、反応性ガスをガス導入口9より
導入するが、本実施例では酸化/リコ/#膜形成に10
0%ノラン(SiH4)と亜酸化窒素(N20)とを使
用した。前記反応ガスの導入流量は100チ/う/;2
〜40SCCM(スタンダードキューピノクセ/チメー
トルバーミニノノj亜酸化窒素;10〜4003CCM
の範囲で、前記反応ガスの導入流量比;SiH4/N2
0は1〜200の範囲で変化せしめた。ガス導入後、^
周波電源12より高周波電圧を上部高周波電極5と下部
高周波電極8との間に印加し高周波放電プラズマを発生
させ、高周波電力は10〜400w範囲で供給した。こ
の際に、マツチ/グボノクス11により高周波電力のX
ノチ/グを取ると同時に、下部高周波電極8に接続され
たコンデ/す15に50〜1000PF範囲の可変容量
型を用い前記下部高周波電極B上に出現する励起電圧を
適正値に制御する。After the substrate temperature stabilizes, a reactive gas is introduced from the gas inlet 9. In this example, oxidation/lico/# film formation
0% Noran (SiH4) and nitrous oxide (N20) were used. The introduction flow rate of the reaction gas is 100 cm/u/;2
~40SCCM (Standard Cupinoxe/Cimeter Verminonoj Nitrous Oxide; 10~4003CCM
The introduction flow rate ratio of the reaction gas is within the range of; SiH4/N2
0 was varied in the range of 1 to 200. After introducing gas,
A high frequency voltage was applied from the frequency power source 12 between the upper high frequency electrode 5 and the lower high frequency electrode 8 to generate high frequency discharge plasma, and high frequency power was supplied in the range of 10 to 400 W. At this time, the high frequency power is
At the same time, the excitation voltage appearing on the lower high frequency electrode B is controlled to an appropriate value by using a variable capacitance type in the range of 50 to 1000 PF for the capacitor 15 connected to the lower high frequency electrode 8.
上記した基本操作により酸化ノリコノ薄膜の形成を行う
ことが可能で所定の膜厚を得た時点で蒸着を停止、すな
わち高周波放電と反応ガスの導入を停止し被膜形成は完
了する。A thin oxide film can be formed by the basic operations described above, and when a predetermined film thickness is obtained, the vapor deposition is stopped, that is, the high frequency discharge and the introduction of the reaction gas are stopped, and the film formation is completed.
本発明では下部高周波電極8に接続されたコンデンサ1
5のためプラズマ電位に対するド部尚周波電極8上の電
位制御が0T能となっており、1bj−の高周波電力に
おいても反応ガスの反応状態やプラズマノース巾の変化
が=f能となり種々の条件が設定しうるようになり、電
気的、化学量論組成的に優れた酸化ノリコン薄膜が容易
に得られた。また上部高周波電極5前面に設置された絶
縁板4および上部高周波電極5端部に近接する反応室壁
部1に石英材を用いることによって不純物混入が極めて
少ない酸化ノリコン薄膜の形成かり能となった。例えば
基板温度が3000Cで反応ガスの導入流量を100%
7ラン;20SCCM、亜酸化窒素;200SCCM、
導入流量比; S i H4/N20=10とし高周波
電力を100Wで酸化/リコノ被膜をノリコンロ型基板
(抵抗率;4〜5Ω−(7)、ボロ/ドープ)上に形成
した場合、コツプ/す15の容量を300〜350PF
範囲に設定すると、下部高周波電極8上にはプラズマ電
位に対して一数十■の電位が発生し酸化/リコノ形成の
反応状態が変化し薄膜形成速度が増加する結果が得られ
た。すなわち、通常の二極平行平板型では前記条件では
200〜250A0/mlnの薄膜形成速度であったが
、本発明では380〜500 A’/mi nであり約
1.5〜2倍の前記速度が得られた。また、絶縁耐圧特
性の評価では本発明によれば通常の二極平行平板で形成
した場合の約2〜3倍の5〜9M V / cmが得ら
れることが判明した。これは前記反応ガスの反応状態を
増加しうるため酸化/リコン薄膜の化学量 組成を十分
に満足すること75−丁能になったためと思われる。さ
らに前記効果は反応室壁部1を石英やアルミナ等の絶縁
材によることによって高周波プラズマの上部高周波電極
5と下部高周波電極8との間での閉じ込効果により一層
高められていることも判明した。また不純物に関してS
I MS (5econdary Ion Ma
ssSpectroscopy)法によって分析した結
果では通常の二極平行平板型ではステンレス材の構成元
素である鉄、ニッケルおよびクローム等が検出されたが
、本発明によればほとんど検出が不bJ−能で、半導体
用の薄膜形成装置として極めて良好な特性を有すること
が明らかになった。In the present invention, the capacitor 1 connected to the lower high frequency electrode 8
5, the potential control on the high-frequency electrode 8 with respect to the plasma potential is 0T, and even at a high-frequency power of 1bj-, the reaction state of the reactant gas and the change in plasma north width are =f, and under various conditions. can now be set, and a thin film of noricon oxide with excellent electrical and stoichiometric compositions can be easily obtained. In addition, by using quartz material for the insulating plate 4 installed in front of the upper high-frequency electrode 5 and the reaction chamber wall 1 close to the end of the upper high-frequency electrode 5, it became possible to form a thin film of noricon oxide with extremely low contamination of impurities. . For example, when the substrate temperature is 3000C, the flow rate of the reaction gas introduced is 100%.
7 runs; 20SCCM, nitrous oxide; 200SCCM,
Introducing flow rate ratio: S i H4 / N20 = 10, high frequency power is 100 W, and when an oxidation/licon coating is formed on a paste-contact type substrate (resistivity: 4 to 5 Ω-(7), boro/doped), 15 capacity 300~350PF
When the range was set, a potential of several tens of square meters was generated on the lower high-frequency electrode 8 with respect to the plasma potential, and the reaction state of oxidation/licon formation was changed, resulting in an increase in the thin film formation rate. That is, in the conventional bipolar parallel plate type, the thin film formation rate was 200 to 250 A0/mln under the above conditions, but in the present invention, it was 380 to 500 A'/min, which is about 1.5 to 2 times the above mentioned rate. was gotten. Further, in evaluation of dielectric strength characteristics, it was found that according to the present invention, a dielectric strength of 5 to 9 M V/cm, which is about 2 to 3 times that of a case formed using a normal bipolar parallel plate, can be obtained. This is thought to be because the reaction state of the reaction gas can be increased, so that the stoichiometric composition of the oxidation/recon thin film can be sufficiently satisfied to 75-75%. Furthermore, it has been found that the above effect is further enhanced by the effect of confining the high frequency plasma between the upper high frequency electrode 5 and the lower high frequency electrode 8 by using an insulating material such as quartz or alumina for the reaction chamber wall 1. . Regarding impurities, S
I MS (5secondary Ion Ma)
According to the results of analysis using the ssSpectroscopy method, iron, nickel, chromium, etc., which are the constituent elements of stainless steel, were detected with the normal bipolar parallel plate type, but with the present invention, they are almost impossible to detect, and the semiconductor It has been revealed that this method has extremely good characteristics as a thin film forming apparatus for use in commercial applications.
以上述べたごとく、本発明に基づくプラズマCVD装置
では反応状態を容易に制御しうろことによって特性の優
れた薄膜が早い成長速度で得られ、且つ不純物混入が少
ないため、半導体技術のみならず、他の技術への広い応
用かり能となった。As described above, the plasma CVD apparatus based on the present invention can easily control the reaction state, thereby producing thin films with excellent properties at a high growth rate, and with less contamination of impurities. It has become widely applied to technology.
【図面の簡単な説明】
第1図は本発明に基づくプラズマCVD装置の構造を示
す断面図、第2図は第1図における破線XYで切断した
場合の上部高周波電極と反応室の形状を示す断面図であ
る。
1・・反応室壁部、2・・・反応室下部、3 ・反応室
上部、4・・・絶縁板、5・・・上部高周波電極、6・
・・基板加熱用ヒータ、7・・・基板、8・・下部高周
波電極、9・・・ガス導入口、10・・ガス放出穴、1
1・・・マノチノグボックス、12 ・高周波電源(1
3,56M Hz )、13・・・排気系、14・・・
ヒータ加熱用電源、15・・・コンデンサ。
第1図
第2図[Brief Description of the Drawings] Fig. 1 is a cross-sectional view showing the structure of a plasma CVD apparatus based on the present invention, and Fig. 2 shows the shape of the upper high-frequency electrode and the reaction chamber when cut along the broken line XY in Fig. 1. FIG. DESCRIPTION OF SYMBOLS 1... Reaction chamber wall part, 2... Reaction chamber lower part, 3 - Reaction chamber upper part, 4... Insulating plate, 5... Upper high frequency electrode, 6...
... Heater for heating the substrate, 7 ... Substrate, 8 ... Lower high frequency electrode, 9 ... Gas inlet, 10 ... Gas discharge hole, 1
1...Manochinog box, 12 ・High frequency power supply (1
3,56MHz), 13...exhaust system, 14...
Heater heating power supply, 15... capacitor. Figure 1 Figure 2
Claims (1)
有するプラズマCVD装置において、高周波電圧が印加
される上部高周波電極上に石英あるいはアルミナ等の絶
縁板が設置され、対向の基板支持を兼ねる下部高周波電
極にはコ/テ/サーが接続され、前記一対の高周波電極
端部に近接する反応室部が石英あるいはアルミナ等の絶
縁物で構成されていることを特徴とするプラズマCVD
装置。In a plasma CVD apparatus that has a pair of upper and lower high-frequency electrodes installed opposite each other in a reaction chamber, an insulating plate made of quartz or alumina is installed on the upper high-frequency electrode to which a high-frequency voltage is applied, and the lower part also serves as support for the opposing substrate. Plasma CVD characterized in that a co/te/cer is connected to the high frequency electrode, and a reaction chamber close to the ends of the pair of high frequency electrodes is made of an insulating material such as quartz or alumina.
Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6480182A JPS58181865A (en) | 1982-04-20 | 1982-04-20 | Plasma cvd apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6480182A JPS58181865A (en) | 1982-04-20 | 1982-04-20 | Plasma cvd apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58181865A true JPS58181865A (en) | 1983-10-24 |
Family
ID=13268702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6480182A Pending JPS58181865A (en) | 1982-04-20 | 1982-04-20 | Plasma cvd apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58181865A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116369A (en) * | 1982-12-24 | 1984-07-05 | Hitachi Ltd | Plasma cvd device |
JPS6139525A (en) * | 1984-06-01 | 1986-02-25 | テキサス インスツルメンツ インコ−ポレイテツド | Method of depositing slooth ground shape and plasma depositing chamber for same method |
JPS62287077A (en) * | 1986-06-04 | 1987-12-12 | Matsushita Electric Ind Co Ltd | Plasma vapor growth device |
JPS63247373A (en) * | 1987-03-31 | 1988-10-14 | Kanegafuchi Chem Ind Co Ltd | Method and device for forming thin film |
US5302555A (en) * | 1991-06-10 | 1994-04-12 | At&T Bell Laboratories | Anisotropic deposition of dielectrics |
EP0622474A1 (en) * | 1993-04-29 | 1994-11-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Continuous process for making a silica coating on a solid substrate |
US5744403A (en) * | 1989-08-31 | 1998-04-28 | Lucent Technologies Inc. | Dielectric film deposition method and apparatus |
FR2788880A1 (en) * | 1998-10-29 | 2000-07-28 | Lg Philips Lcd Co Ltd | SILICON OXIDE LAYER FORMATION METHOD AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR THEREOF |
-
1982
- 1982-04-20 JP JP6480182A patent/JPS58181865A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116369A (en) * | 1982-12-24 | 1984-07-05 | Hitachi Ltd | Plasma cvd device |
JPH0525951B2 (en) * | 1982-12-24 | 1993-04-14 | Hitachi Ltd | |
JPS6139525A (en) * | 1984-06-01 | 1986-02-25 | テキサス インスツルメンツ インコ−ポレイテツド | Method of depositing slooth ground shape and plasma depositing chamber for same method |
JPS62287077A (en) * | 1986-06-04 | 1987-12-12 | Matsushita Electric Ind Co Ltd | Plasma vapor growth device |
JPS63247373A (en) * | 1987-03-31 | 1988-10-14 | Kanegafuchi Chem Ind Co Ltd | Method and device for forming thin film |
US5744403A (en) * | 1989-08-31 | 1998-04-28 | Lucent Technologies Inc. | Dielectric film deposition method and apparatus |
US5302555A (en) * | 1991-06-10 | 1994-04-12 | At&T Bell Laboratories | Anisotropic deposition of dielectrics |
US5576076A (en) * | 1993-04-29 | 1996-11-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for creating a deposit of silicon oxide on a traveling solid substrate |
FR2704558A1 (en) * | 1993-04-29 | 1994-11-04 | Air Liquide | Method and device for creating a deposit of silicon oxide on a solid moving substrate. |
EP0622474A1 (en) * | 1993-04-29 | 1994-11-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Continuous process for making a silica coating on a solid substrate |
US5753193A (en) * | 1993-04-29 | 1998-05-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device for creating a deposit of silicon oxide on a traveling solid substrate |
FR2788880A1 (en) * | 1998-10-29 | 2000-07-28 | Lg Philips Lcd Co Ltd | SILICON OXIDE LAYER FORMATION METHOD AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR THEREOF |
US6337292B1 (en) | 1998-10-29 | 2002-01-08 | Lg. Philips Lcd Co., Ltd. | Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby |
US6627545B2 (en) | 1998-10-29 | 2003-09-30 | Lg.Philips Lcd Co., Ltd | Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby |
US6716752B2 (en) | 1998-10-29 | 2004-04-06 | Lg.Philips Lcd Co., Ltd. | Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby |
US7378304B2 (en) | 1998-10-29 | 2008-05-27 | Lg.Philips Lcd Co., Ltd. | Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4223048A (en) | Plasma enhanced chemical vapor processing of semiconductive wafers | |
EP0015694B1 (en) | Method for forming an insulating film on a semiconductor substrate surface | |
US4818560A (en) | Method for preparation of multi-layer structure film | |
US4898118A (en) | Apparatus for forming functional deposited film by microwave plasma CVD process | |
KR20020062559A (en) | Method of cleaning a cvd device | |
JPS61136229A (en) | Dry etching device | |
US5660694A (en) | Film forming method | |
JPS58181865A (en) | Plasma cvd apparatus | |
US4633812A (en) | Vacuum plasma treatment apparatus | |
Chapple‐Sokol et al. | Energy Considerations in the Deposition of High‐Quality Plasma‐Enhanced CVD Silicon Dioxide | |
JPH0641631B2 (en) | Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film | |
JPH04233731A (en) | Integrated circuit soluble oxide | |
JP2700208B2 (en) | Thin film formation method | |
JP2730693B2 (en) | Thin film formation method | |
JPS5893323A (en) | Manufacturing apparatus for semiconductor device | |
JP2652676B2 (en) | Thin film forming equipment | |
JP2004111506A (en) | Method of manufacturing silicon oxide film | |
JP3396395B2 (en) | Amorphous semiconductor thin film manufacturing equipment | |
JPS62291081A (en) | Metal-insulator-metal type element | |
JPH0273979A (en) | Formation of thin film | |
JP2890032B2 (en) | Silicon thin film deposition method | |
JPH0633245A (en) | Cvd device | |
JPS6214937B2 (en) | ||
JPS63170927A (en) | Formation of silicon oxide film and its system | |
JP2723112B2 (en) | Thin film formation method |