JPS58171492A - Working fluid for rankine cycle - Google Patents
Working fluid for rankine cycleInfo
- Publication number
- JPS58171492A JPS58171492A JP57054642A JP5464282A JPS58171492A JP S58171492 A JPS58171492 A JP S58171492A JP 57054642 A JP57054642 A JP 57054642A JP 5464282 A JP5464282 A JP 5464282A JP S58171492 A JPS58171492 A JP S58171492A
- Authority
- JP
- Japan
- Prior art keywords
- working fluid
- cycle
- difluoroethane
- temperature
- rankine cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Lubricants (AREA)
Abstract
Description
【発明の詳細な説明】
本発明゛はラン+ンサイクル用の新規な動作流体に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel working fluid for run-on cycles.
熱エネルf−を用いて液状媒体を加熱蒸発させ膨張装置
内で膨張させることによシ機械工ネルf−を得、次いで
この媒体を凝縮させ、ポンプにより加用して液状媒体と
するサイクルをくり返すことにより熱エネル千−を機械
工ネルf−に変換するうン牛シサイクルにおいては、媒
体すなわちランキシサイクル用動作流体として従来から
使用されてきたtllとんど噌−のものは水である。動
作流体としての水は水蒸気機関に古くから実用化されて
きた。しかしながら、水は凝固点が高く、蒸気比容積が
大きいためその使用範囲が@定され、とくに低温熱源を
使用する場合は設備が大きくなり効率も低下するという
欠点がある。A cycle is carried out in which a liquid medium is heated and evaporated using heat energy f- and expanded in an expansion device to obtain a mechanical fuel f-, which is then condensed and added by a pump to form a liquid medium. In the Ugyu Cycle, which converts heat energy into mechanical energy by repeated cycles, water is used as the medium, that is, the working fluid for the Ranki Cycle, which has traditionally been used. It is. Water as a working fluid has been used in steam engines for a long time. However, since water has a high freezing point and a large steam specific volume, its range of use is limited, and especially when a low-temperature heat source is used, the disadvantage is that the equipment becomes large and the efficiency decreases.
このような水の欠点を改善する本のとして、多くの有機
動作流体が提案されているが、多くのものは可燃性であ
ったり、腐蝕性であったりして、いまだ満足し七使用で
きる本のはえられていない。Many organic working fluids have been proposed to improve the drawbacks of water, but many of them are flammable or corrosive, so there are still no books that can be used satisfactorily. It has not yet grown.
特にエネル千−有効利用の観点から最近は様々な温度し
ベルの熱源の利用が進められており低温はLNG冷熱、
高温は廃熱、地熱等までの#I源が使用されている。In particular, from the perspective of effective use of energy, the use of bell heat sources with various temperatures has recently been promoted, and for low temperatures, LNG cold energy,
For high temperatures, #I sources such as waste heat and geothermal heat are used.
そのうち、低温域に属する一25℃〜100°Cの熱源
に対する動作流体としてり00ジフルオ0メタン()O
ン22)があるがフロン22からなるランキシサイクル
用動作流体は熱エネルf−から機械工ネルf−への変換
効率が低い養魚がある。・本発明者らはそのような要望
に応えるべく神々研究を重ねた結果、従来の動作が単一
成分物質から膚1っているのに対し、各々異った特性を
有する物質を混合し混合系とし九動作流体が単一物質に
比べ優れた特性をもっていることを見出した。Among them, difluoro, methane ()O is used as a working fluid for heat sources in the low temperature range of -25℃ to 100℃.
However, the working fluid for the Lanxi cycle consisting of Freon 22 has a low conversion efficiency from heat energy f- to mechanical energy f-.・As a result of repeated research in order to meet such demands, the inventors of the present invention discovered that while the conventional operation is based on a single component substance, we have developed a system that mixes and mixes substances that each have different characteristics. It was found that nine working fluids have superior properties compared to single substances.
特に海洋の深部低温海水と浅部高温海水の温度差を利用
した海洋温度差発電のような熱源温度差の小さいサイク
ルの動作流体としてり00ジフルオ0メタン()0ン2
2)とジフルオロエタン()0ン152)の混合媒体が
優れた特性を有していることを見出し本発明を完成する
に至った。In particular, it is used as a working fluid for cycles with small heat source temperature differences, such as ocean temperature difference power generation that utilizes the temperature difference between deep low-temperature seawater and shallow high-temperature seawater.
It was discovered that a mixed medium of 2) and difluoroethane (152) had excellent properties, and the present invention was completed.
本発明のフOシ22とフOシ152との混合糸はうン+
シサイクル用動作流体として次の特性を有している。The mixed yarn of the fold 22 and the fold 152 of the present invention is
It has the following characteristics as a working fluid for cycycle.
第一に−りr]0ジフルオ0メタンとジフルオロエタン
との混合系を用いたランキシサイクルは、IARエネル
f−から得られる機械工ネルf−1即ちエネルギー変動
効率が、従来ランキシサイクル用動作流体として使用さ
れているフロン22に比し十分高い特性を有している。Firstly, in the Lanxicycle using a mixed system of methane and difluoroethane, the mechanical energy f-1 obtained from IAR Enel f-1, that is, the energy fluctuation efficiency, is It has sufficiently higher characteristics than Freon 22, which is used as a fluid.
第二に、ランキシサイクル用動作流体として具備すべき
重要な特性として高い安定性が要求されるが、本発明の
りooジフルオ0メタシは常温で分解することはなく、
高温域においても高い安定性を保持している。またこの
混合物についても同じ高い安定性をもっている。Second, although high stability is required as an important property for a working fluid for Lanxicycle, the fluoride of the present invention does not decompose at room temperature;
It maintains high stability even at high temperatures. This mixture also has the same high stability.
さらにジフルオロエタンは、可燃性であるがり00ジフ
ルオ0メタシと混合することにより燃焼性を減小させる
ことができ、り00ジフルオ0メタシの混合比が大きい
組成では燃焼性がない。Furthermore, although difluoroethane is flammable, its flammability can be reduced by mixing it with 00 difluoro 0 metal, and a composition with a large mixing ratio of 00 difluoro 0 metal has no flammability.
本発明のジフルオロエタンは2つの異性体である1、
I−ジフルオ0エタシ及び1.2−ジフルオロエタンの
いずれであっても、また混合物であって本差支えない。The difluoroethane of the present invention has two isomers: 1,
It does not matter whether it is I-difluoroethane or 1,2-difluoroethane, or a mixture thereof.
第1図は本発明のりoOジフルオ0メタンとジフルオロ
エタンとの混合物の圧力−エンタルじ線図(p−ttH
図)で組成はりoOジフルオ0メタン90%、ジフルオ
ロエタン10%である。FIG. 1 is a pressure-ental diagram (p-ttH
In the figure, the composition is 90% oO difluoromethane and 10% difluoroethane.
第2図は熱エネルf−を機械工ネルf−に変換するため
のランキシサイクルの系統図であり、第3図はり00ジ
フルオ0メタンとジフルオロエタンとの混合物を動作流
体として用いたランキシサイクルを温度−エントoeM
図上に記入して示したものである。なお、第2図におけ
るアルファベット(A”〜E)は、第3図におけるアル
ファベット(A、E)で示した各状態点に対応する。Figure 2 is a system diagram of the Ranxi cycle for converting thermal energy f- into mechanical energy f-, and Figure 3 is a Ranxi cycle using a mixture of 00 difluoro methane and difluoroethane as the working fluid. The temperature - ent oeM
It is shown written on the diagram. Note that the alphabets (A" to E) in FIG. 2 correspond to the state points indicated by the alphabets (A, E) in FIG. 3.
蒸気発生装置(4)で加熱された動作流体は蒸発し、高
温高圧の蒸気となる。この状態は第3図においてυ、■
、囚の変化で示される。この間で液状動作流体は加熱さ
れ温度が上昇し、沸騰が始まり全量が気化する。この動
作流体蒸気はつぎに膨張袋@ (1)に入り、断熱膨張
を行ない、温度、子方が低下し第3図に示す(2)−■
間の仕事を行なう。膨張装置(])内で仕事を行ない低
温低圧になった動作流体はつぎに凝縮装置(2)に入シ
、第3図の@−〇で示すように凝縮液化する。The working fluid heated by the steam generator (4) evaporates and becomes high-temperature, high-pressure steam. This state is represented by υ and ■ in Figure 3.
, indicated by the change in prisoners. During this time, the liquid working fluid is heated, its temperature rises, and the entire amount begins to boil. This working fluid vapor then enters the expansion bag @ (1) and undergoes adiabatic expansion, resulting in a decrease in temperature and temperature, as shown in Figure 3 (2)-■
Do the work in between. The working fluid, which has undergone work in the expansion device () and has become low temperature and low pressure, then enters the condensation device (2) and is condensed and liquefied as shown by @-○ in FIG.
この液化した動作流体はポンプ(3)に入り、昇圧され
再び、蒸気発生装置(4)に入シ、前述のごときサイク
ルが繰り返される。なお、第3図中点(a)は熱源であ
る温海水がランキシサイクルの蒸気発生装置に入ったと
きの状態を示し、<b>はとの温海水が蒸気発生装置を
出た時の状態を示し、点(d)から点(A)にひいえ直
線上の矢印は温海水の流れの方向を示している。また点
(→<1>は凝縮器内の冷海水の状態を示し、(7)は
凝縮器内の冷海水の状態を示し、(4は凝縮器入口の冷
海水を(I)は凝縮器出口の冷海水の状態を示し、点(
イ)から点<1>にひいえ直線上の矢印は冷海水の流れ
の方向を示している。This liquefied working fluid enters the pump (3), is pressurized, and enters the steam generator (4) again, repeating the cycle described above. Note that the middle point (a) in Figure 3 shows the state when warm seawater, which is the heat source, enters the steam generator of the Lanxi cycle, and <b> shows the state when the warm seawater leaves the steam generator. The arrow on the straight line from point (d) to point (A) indicates the direction of flow of warm seawater. In addition, points (→<1> indicate the state of cold seawater in the condenser, (7) indicate the state of cold seawater in the condenser, (4 indicates the state of cold seawater at the condenser inlet, and (I) indicate the state of cold seawater in the condenser. Indicates the condition of cold seawater at the outlet, and indicates the condition of the cold seawater at the outlet (
The arrow on the straight line from b) to point <1> indicates the direction of the flow of cold seawater.
上記のランキシサイクルに用いられる膨張装置としては
、回転式または往復式の答檀型膨張機やタービシ膨張機
が使用可能であり、蒸気発生装置としては水蒸気の発生
に用いられるボイう−と同じ形式の本の本使用可能であ
り、また凝縮装置として”は冷凍装置に使用されている
形式のものが使用可能である。そしてポンプ・とじては
、化学装置に一般に用いられている有機溶剤の加圧送液
ポンプが使用可能である。As the expansion device used in the above-mentioned Lanxi cycle, a rotary or reciprocating type expander or a turbidity expander can be used, and as a steam generation device, it is the same as a boiler used to generate steam. For condensation equipment, the type used in refrigeration equipment can be used.As for pumps and closures, organic solvents commonly used in chemical equipment can be used. A pressurized liquid pump can be used.
次に、本発明を実施例によってさらに詳細に説明する。Next, the present invention will be explained in more detail by way of examples.
実施例
前記の第1〜3図に示したうン士シサイクルに従い本発
明の900ジフルオDメタンとジフルオロエタンとの混
合物及び単一成分の900ジフルオ0メタンを動作流体
として以下のような条件で運転した。EXAMPLES According to the cycle shown in Figures 1 to 3 above, the mixture of 900 difluoro methane and difluoroethane of the present invention and the single component 900 difluoro methane were used as working fluids under the following conditions. did.
(1)温海水
1)流量 27000tam/kr
i)蒸発器入口湿度 30°C(第3図a点)i)蒸発
器出口温度 27.5℃(第3図す点)(2)冷海水
i)凝縮器入口温度 6.3℃(第3図d点)i)凝縮
器出口温度 8.8°C(第3図を点)(3)媒体凝縮
温度
10℃、11℃、+2°C
結果は第1表に示すとおシである。すなわち温海水によ
シ得られた発電出力は、フ0:/22単−戊分と比べて
フ0.:/15’2を混合した混合系動作流体が大きい
。しかも出力はフロン152の混合組成が増すほど増加
し、10°c、11°C,12℃の各凝縮温度について
フロン152の組成が30%付近のと仁ろで最大出力が
得られることがわがった。(1) Warm seawater 1) Flow rate 27,000 tam/kr i) Evaporator inlet humidity 30°C (point a in Figure 3) i) Evaporator outlet temperature 27.5°C (point in Figure 3) (2) Cold seawater i ) Condenser inlet temperature 6.3°C (point d in Figure 3) i) Condenser outlet temperature 8.8°C (point in Figure 3) (3) Medium condensing temperature 10°C, 11°C, +2°C Results is shown in Table 1. In other words, the power generation output obtained using warm seawater is F0. :/15'2 The mixed working fluid is large. Furthermore, it is clear that the output increases as the mixture composition of Freon 152 increases, and for each condensation temperature of 10°C, 11°C, and 12°C, the maximum output can be obtained at Tojiro where the composition of Freon 152 is around 30%. It was.
このように本発明のフロン22/フ0シ152の混合系
は熱源のエネルギーを有効に回収でき、フロン22単一
成分よ静圧力が低いため媒体ボンづ動力が軽減できる。As described above, the Freon 22/Foxy 152 mixed system of the present invention can effectively recover the energy of the heat source, and because the static pressure is lower than that of the single component of Freon 22, the force of media bombardment can be reduced.
特に海洋温度差を利用したような高熱源と低熱源の差が
小さい熱サイクルに用いる動作流体として従来のフロン
22よシ勝っており、すぐれ九うン+ンサイクル用動作
流体として使用することができる。In particular, it is superior to conventional Freon 22 as a working fluid used in thermal cycles where the difference between high and low heat sources is small, such as those that utilize ocean temperature differences, and it can be used as a working fluid for nine-cycle cycles. can.
第1図は本発明のラシ+ンサイクル用動作流体であるフ
ロン22/フ0ン152混合系で、−例としてフO:/
152組成10%のぞ−H線図、第′2図はラン牛ンサ
イクルの系統図、第3図はフロン22/フ0ン152混
合系を動作流体として用い九ラン士ンサイクルをr−s
@同図上記入した図である。
l・・・膨張装置 2・・・凝縮装置3・・・ポン
プ 4・・・蒸気発生装置(以 上)
第2図
Δ
第3図
エントロピ
手続補正書(自制
1、事件の表示
昭和57年特 許 願第54642 号2・発明o
名称 、、牛5..イ、、用動作流体3、補正をする
者
4、代理人
大阪市東区平野町2のlO平平和ビル主電話06203
〜0941(代)(6521)弁理士 三 枝 英 二
°ハ5、補正命令の日付
自発
6、補正により増加する発明の数
なし
補 正 の 内 容
1 明細書第2頁第16行の[に属する一25℃〜10
0℃」を削除する。
2 明細書第4頁第2行の「変動効率」を「変換効率」
と訂正する。
3 明細書第4頁第7行の「り00ジフルオ0メタシ」
を「り00ジフルオ0メタン及びジフルの状態を示し、
」を削除する。
5 明細書第9頁の第1表の記載中、左欄第2行目の「
)0シ22/フ0:J152−」を「フロン22/フ0
ン152」と訂正する。
6 第1図ないし第3図を添付図面の通り訂正するO
(以 上)
第20
A
第3図
工二−トDヒ9
手続補正書(自発)
昭和58年3 月2−y日
1、事件の表示
昭和57年 特許軸 第54642号
2、発明の名称
ランキンサイクル用動作流体
3、補正をする者
事件との関係 特許出願人
大阪市北区梅田1丁目12番39号
斬阪急ビル
4、補正命令の日付
自発
6、補正の内容
(11明細書第3頁第4行[Il1作jのつぎ(こ1流
体jを加えろう
以 上FIG. 1 shows a mixture system of Freon 22/Fron 152, which is the working fluid for the racin cycle of the present invention.
152 composition 10% Z-H diagram, Figure 2 is a systematic diagram of the Run Cycle, and Figure 3 is the R- s
@This is the diagram filled in above. 1... Expansion device 2... Condensing device 3... Pump 4... Steam generator (and above) Figure 2 Δ Figure 3 Entropy procedure amendment (Restraint 1, Incident indication 1982 special Permit No. 54642 2 Invention o
Name: Cow 5. .. A. Working fluid 3. Person making the correction 4. Agent 1O Tairaheiwa Building, 2 Hirano-cho, Higashi-ku, Osaka City, main phone number 06203.
~0941 (Representative) (6521) Patent Attorney Eiji Saegusa 5. Date of amendment order Voluntary 6. No number of inventions increased by the amendment Contents of the amendment 1 [in the 16th line of page 2 of the specification] Belongs to -25℃~10
0℃" is deleted. 2. Change “variable efficiency” in the second line of page 4 of the specification to “conversion efficiency”
I am corrected. 3 “Ri00 Difluoro0 Metashi” on page 4, line 7 of the specification
``re00 difluoro0 methane and diflu state,
” to be deleted. 5 In the description in Table 1 on page 9 of the specification, in the second line of the left column, "
)0C22/F0:J152-” to “Freon22/F00
152”. 6 Correct figures 1 to 3 according to the attached drawings O (and above) 20 A 3rd figure engineer 2-to-Dhi 9 Procedural amendment (voluntary) March 2-y, 1988, Incident Indication of 1981 Patent axis No. 54642 2, Name of the invention Working fluid for Rankine cycle 3, Relationship with the person making the amendment Patent applicant Zan Hankyu Building 4, 1-12-39 Umeda, Kita-ku, Osaka City, Amendment Date of order 6, Contents of amendment (11 Specification, page 3, line 4
Claims (1)
エタンを混合することを特徴とするラン+ンサイクル用
動灼流体。 (2) りOOジフルオ0メタン60〜95重轍襲及[Claims] CI> Ri(]] Owl; A dynamic ablation fluid for run+on cycles characterized by mixing difluoroethane with fluoro-methane. (2) RiOO difluoro-methane 60-95 heavy rut attack Reach
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57054642A JPS58171492A (en) | 1982-03-31 | 1982-03-31 | Working fluid for rankine cycle |
US06/479,178 US4562995A (en) | 1982-03-31 | 1983-03-28 | Working fluids for Rankine cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57054642A JPS58171492A (en) | 1982-03-31 | 1982-03-31 | Working fluid for rankine cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171492A true JPS58171492A (en) | 1983-10-08 |
JPS6312506B2 JPS6312506B2 (en) | 1988-03-19 |
Family
ID=12976425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57054642A Granted JPS58171492A (en) | 1982-03-31 | 1982-03-31 | Working fluid for rankine cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171492A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049296A (en) * | 1989-01-28 | 1991-09-17 | Chujun Gu | Working media for a thermodynamic engineering device operating in accordance with the Gu thermodynamic cycle |
US5622645A (en) * | 1992-01-24 | 1997-04-22 | Gu; Chujun | Nonazeotropic working fluid media for use in thermodynamic cycle applications |
US8181463B2 (en) | 2005-10-31 | 2012-05-22 | Ormat Technologies Inc. | Direct heating organic Rankine cycle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4997351A (en) * | 1972-12-21 | 1974-09-13 |
-
1982
- 1982-03-31 JP JP57054642A patent/JPS58171492A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4997351A (en) * | 1972-12-21 | 1974-09-13 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049296A (en) * | 1989-01-28 | 1991-09-17 | Chujun Gu | Working media for a thermodynamic engineering device operating in accordance with the Gu thermodynamic cycle |
US5622645A (en) * | 1992-01-24 | 1997-04-22 | Gu; Chujun | Nonazeotropic working fluid media for use in thermodynamic cycle applications |
US5670080A (en) * | 1992-01-24 | 1997-09-23 | Gu; Chujun | Nonazeotropic working fluid media for use in thermodynamic cycle applications |
US8181463B2 (en) | 2005-10-31 | 2012-05-22 | Ormat Technologies Inc. | Direct heating organic Rankine cycle |
Also Published As
Publication number | Publication date |
---|---|
JPS6312506B2 (en) | 1988-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2611185B2 (en) | Energy conversion device | |
WO2010065081A1 (en) | Refrigerant mixtures for an organic rankine cycle drive | |
WO1998006791A1 (en) | Pentafluoropropanes and hexafluoropropanes as working fluids for power generation | |
Tchanche | Low grade heat conversion into power using small scale organic rankine cycles | |
Sharma et al. | Review and preliminary analysis of organic rankine cycle based on turbine inlet temperature | |
JPS6126832B2 (en) | ||
EP0110389B1 (en) | Working fluids for rankine cycle | |
US4562995A (en) | Working fluids for Rankine cycle | |
JPH01123886A (en) | Hydraulic fluid for rankine cycle | |
JPS58171492A (en) | Working fluid for rankine cycle | |
US4459810A (en) | Working fluids for use with rankine cycle | |
US4557851A (en) | Working fluids for the Rankine cycle comprising trichlorofluoromethane and 1,1-difluoroethane, isobutane or octafluorocyclobutane | |
JPH05279659A (en) | Working fluid for rankine cycle | |
JPS5912995A (en) | Working fluid for rankine cycle | |
JPS60212481A (en) | Operating medium mixture | |
JPS6312508B2 (en) | ||
JPH0119719B2 (en) | ||
JPS58171493A (en) | Working fluid for rankine cycle | |
JPS5912993A (en) | Working fluid for rankine cycle | |
JPS60255885A (en) | Mixed hydraulic fluid for rankine cycle | |
JPS59165808A (en) | Working fluid for rankine cycle | |
JPH0223591B2 (en) | ||
JPH0152431B2 (en) | ||
JPS61244880A (en) | Low temperature geothermal power system | |
JPS58171494A (en) | Working fluid for rankine cycle |