JPS58165092A - Driving monitor device - Google Patents

Driving monitor device

Info

Publication number
JPS58165092A
JPS58165092A JP57047717A JP4771782A JPS58165092A JP S58165092 A JPS58165092 A JP S58165092A JP 57047717 A JP57047717 A JP 57047717A JP 4771782 A JP4771782 A JP 4771782A JP S58165092 A JPS58165092 A JP S58165092A
Authority
JP
Japan
Prior art keywords
signal
drive
time
neutron
output timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57047717A
Other languages
Japanese (ja)
Other versions
JPH0316638B2 (en
Inventor
福島 俊樹
遠藤 順政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57047717A priority Critical patent/JPS58165092A/en
Publication of JPS58165092A publication Critical patent/JPS58165092A/en
Publication of JPH0316638B2 publication Critical patent/JPH0316638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕        一本発明は、たと
えば原子炉の出力の校正データや中性子束分布データな
どを求めるために、炉心内を移動走査する検出器の駆動
を監視する駆動監視装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] One aspect of the present invention is to monitor the drive of a detector that moves and scans inside a reactor core in order to obtain, for example, calibration data of a nuclear reactor output, neutron flux distribution data, etc. The present invention relates to a drive monitoring device.

〔発明の技術的背景〕[Technical background of the invention]

一般に、原子力発電所は、安全面などを考慮し運転中で
も炉出力監視計装システムなどにより原子炉の出力を監
視し所定の出力となるように制御している。この炉出力
を検出する手段としては、炉心内に複数の出力系中性子
検出器を配置し、その炉心内の中性子束を検出するもの
がある。
Generally, in consideration of safety, nuclear power plants monitor the output of the reactor using a reactor output monitoring instrumentation system or the like even during operation, and control the output to a predetermined level. As means for detecting this reactor power, there is a method in which a plurality of power system neutron detectors are arranged in the reactor core and the neutron flux in the reactor core is detected.

通常、これらの出力系中性子検出器は、炉心内に設けら
れた案内管と呼ばれる複数の管の各所に配置され、その
総数は約100〜200個に到る。而して、これらの出
力系中性子検出器には、当然感度のバラツキや寿命の低
下などがあり、これらは原子炉の安全運転を行う観点か
らも正゛確に把握されなければならない。このために、
前記案内管に別の中性子検出器が挿入され、前記出力系
中性子検出器の校正などの判断基準゛となる正確な炉心
の中性子束分布データを定期的に採取している。そこで
、このような採取手段として、通常、可動インコア!ロ
ープモニタ(Trav@rsing Ineore P
robe &n1tor以下、 TIP装置と称す)と
呼ばれるものが使用されている。このTIP装置につい
て第1図を用いて説明する。図中、Ifi原子炉の炉心
であ夛、普通、1個の炉心1に対し複数のTIP装置j
、jが設置される。
Usually, these power system neutron detectors are arranged at various locations in a plurality of tubes called guide tubes provided in the reactor core, and the total number reaches about 100 to 200. Naturally, these output neutron detectors have variations in sensitivity and shortened lifespan, and these must be accurately understood from the perspective of safe operation of the reactor. For this,
Another neutron detector is inserted into the guide tube and periodically collects accurate neutron flux distribution data in the reactor core, which serves as a criterion for calibration of the power system neutron detector. Therefore, movable in-core is usually used as such a collection method. Rope monitor (Trav@rsing Ineore P
A device called a TIP device (hereinafter referred to as a TIP device) is used. This TIP device will be explained using FIG. 1. In the figure, in the core of an Ifi reactor, there are usually multiple TIP devices for one core 1.
, j are installed.

このTIP装置2,3の中性子検出器4,4′は炉心1
の頂部から低部まで掃引可能なように複数の案内管5〜
1,5′〜1′に挿入される。なお、これら案内管5〜
1,5′〜7′の各所に出方系中性子検出器8−1〜s
−nが備えられている―図中には2台のTIP装置2.
3を示すが、この両者は同一機能をもつ・ているので、
以下第1のTIP装置2についてのJ説明する。この第
1のTIP装置2は炉心1の一記案内管のうち所定の案
内管5〜7を担当j:’:F−・これらの案内管5〜1
は索引器9によって一ケ所にまとめられ、後記の駆動部
10の駆動により索引器9を経由し駆動線11を可動さ
せて中性子検出器4を案内管5〜7内を移動させる構成
である。すなわち、この中性子検出器4へ駆動を伝達す
る駆動線11は前記索引器9より導出され、隔離弁12
、爆発4P13、遮蔽容器14を介して前記駆動部10
に接続されている。そして、この駆動部10FiTIP
制御部15からの検出器およびその位置を示す信号によ
って動作する。
The neutron detectors 4, 4' of the TIP devices 2, 3 are connected to the core 1.
A plurality of guide tubes 5~ can be swept from the top to the bottom of the
1,5' to 1'. In addition, these guide tubes 5~
Outgoing neutron detectors 8-1 to s are installed at various locations from 1,5' to 7'.
-n - In the figure, there are two TIP devices 2.
3, but since both have the same function,
The first TIP device 2 will be explained below. This first TIP device 2 is in charge of predetermined guide tubes 5 to 7 among the guide tubes of the core 1.
are brought together in one place by an indexer 9, and a drive line 11 is moved via the indexer 9 by driving a drive unit 10, which will be described later, to move the neutron detector 4 within the guide tubes 5 to 7. That is, the drive line 11 that transmits the drive to the neutron detector 4 is led out from the indexer 9 and connected to the isolation valve 12.
, explosion 4P13, the drive unit 10 through the shielding container 14
It is connected to the. And this drive unit 10FiTIP
It operates based on a signal from the control unit 15 indicating the detector and its position.

第2のTIP装置も同様にTIP制御部15からの信号
によって制御される。なお、図中5′〜7′は案内管、
9′は索引器、J O’は駆動部、11′は駆動線、1
2′は隔離弁、13′は爆発弁、14′は遮蔽容器を示
し、16は原子炉−次格納器の一部を示すものである。
The second TIP device is similarly controlled by a signal from the TIP control section 15. In addition, 5' to 7' in the figure are guide tubes,
9' is an indexer, JO' is a drive unit, 11' is a drive line, 1
2' is an isolation valve, 13' is an explosion valve, 14' is a shielding vessel, and 16 is a part of the reactor-subcontainer.

以上のような構成でTIP制御部15よシ各TIP装置
x、”s’に操作指令を与えてそれぞれのビL11 中性子検出器(,4′を順次走査し、炉心1の中性子束
分布の=””′正データを得るものである。
With the above configuration, the TIP control unit 15 gives operation commands to each TIP device ``''' This is to obtain correct data.

通常、炉の規模によって異なるが、炉心内の出力系中性
子検出器は百数十個あり、案内管は数十本になる。これ
ら案内管は複数本を1組として、その各組がそれぞれの
TIP装置によって担当される。このようなTIP装置
による校正データの採取は測定の性格上長時間かけてゆ
っくりと行われ、約1ケ月に1同根度の頻度で行われる
。したがって、炉の通常運転中は中性子照射による中性
子検出器の感度低下、寿命低下を防ぐために前記遮蔽容
器1.4 *、、 J 4’まで引抜いて収納している
。このため、原子炉の構造面などから案内管は第1図に
示すように長尺の曲った形状となっている0通常、炉心
高は約144インチ、案内管の曲部から索引器までは約
850インチである。また、索引器から導蔽容器までが
約300インチである。したがって、中性子検出器は少
なくとも前記の長さの距離を案内管の曲部を経由して移
動されることになる。
Normally, there are over 100 power system neutron detectors in the reactor core, and there are several dozen guide tubes, although this varies depending on the scale of the reactor. A plurality of these guide tubes constitute one set, and each set is handled by a respective TIP device. Collection of calibration data using such a TIP device is performed slowly over a long period of time due to the nature of the measurement, and is performed at a frequency of about once every month. Therefore, during normal operation of the reactor, the shielding container 1.4*, J4' is pulled out and stored in order to prevent the sensitivity and life of the neutron detector from decreasing due to neutron irradiation. For this reason, due to the structure of the reactor, the guide tube has a long and curved shape as shown in Figure 1.Normally, the height of the reactor core is approximately 144 inches, and the distance from the curved part of the guide tube to the indexer is approximately 144 inches. It is approximately 850 inches. Additionally, the distance from the indexer to the guiding container is approximately 300 inches. The neutron detector will therefore be moved via the bend of the guide tube over a distance of at least said length.

〔背景技術の問題点〕[Problems with background technology]

ところで、上記したTIP装置において、中性子検出器
4.4′の駆動状態を把握できるのは作業員の手動運転
時のみで、それ以外では把握することは#1とんど困難
である。このため、特に作業能率向上のため自動化して
いる装置では、中性子検出器4.4′を移動させるにあ
たシ、案内管5〜1.5′〜7′の曲部に同検出幸41
4’がひっかかって挿入・引抜が困難になる事態が生じ
たときKその発見が、遅れてしまい、長時間中性子検出
器4.4′が炉心近くに放置され、るため、その特性を
著しく劣化させ交換寿命を早めてしまう。また、従来の
自動化装置では、異常監視の1つの手段として、一連の
検出シーケンスに要する時間を基準にして検出終了時間
の早・遅によって異常を監視するものがあるが、これと
て検出終了まで異常の有無が不明であり、検出器の長時
間放置はまぬがれない。
By the way, in the TIP device described above, the driving state of the neutron detectors 4 and 4' can only be grasped during manual operation by an operator, and it is very difficult to grasp it at other times. For this reason, especially in devices that are automated to improve work efficiency, when moving the neutron detector 4.4', the neutron detector 4.4' is placed in the curved part of the guide tube 5-1.
If the neutron detector 4.4' gets stuck and becomes difficult to insert or withdraw, its discovery will be delayed and the neutron detector 4.4' will be left near the reactor core for a long time, resulting in significant deterioration of its characteristics. This will shorten the replacement life. In addition, in conventional automated equipment, as one means of monitoring abnormalities, there is a method that monitors abnormalities by determining whether the detection ends early or late based on the time required for a series of detection sequences. It is unclear whether there is an abnormality or not, and the detector cannot be left unused for a long time.

また、異常駆動の中性子検出器4.4′が発見されない
ままの状態で原子炉隔離の必要性が生じ石場合もあり、
この時は駆動線1.1 、I J’を爆発弁J 3 、
 J 3’によって切断して隔離弁12゜12′の作動
を行わなければならなくな夛装置自体を不能にしてしま
う。
In addition, there may be cases where it becomes necessary to isolate the reactor if the abnormally operated neutron detector 4.4' remains undiscovered.
At this time, drive line 1.1, I J' is connected to explosion valve J 3,
J3' must be disconnected to operate the isolation valves 12 and 12', which disables the device itself.

〔発明の目的〕[Purpose of the invention]

本発明は、たとえばTIP装置などの中性子検出器の駆
動異常を早期に知ることができるとともに、駆動の自動
化を容易にする駆動監視装置を提供することを目的とす
る。
An object of the present invention is to provide a drive monitoring device that can detect drive abnormalities in a neutron detector such as a TIP device at an early stage, and facilitates drive automation.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的達成のために、被駆動体を所要の速
度で移動させるとともに該被駆動体が単位長ごとに移動
したときに信号を出力する駆動部と、この駆動部からの
前記単位長移動といはその時刻を記憶する記憶回路と、
この記憶回路に記憶された前回信号の□入力タイミング
を示す信号ある込は時刻を所定・(φ遅延時間で読出。
In order to achieve the above object, the present invention provides a drive unit that moves a driven body at a required speed and outputs a signal when the driven body moves for each unit length; Long travel means a memory circuit that remembers the time,
A signal indicating the input timing of the previous signal stored in this memory circuit is read out at a predetermined time (φ delay time).

:、、置・ して今回信号の入力タイオン□グを示す信号ある、4工
2−オ、。i、:・t、□え、わ。2今回の信号の入力
タイミングを示す信号同志の一致、あるいは前回信号入
力時刻が今回信号入力時刻よシ小となった時に警報信号
を得るものとし、前記被駆動体の移動速度が所要速度よ
り遅くなっていることを検知できる駆動監視装置とする
:,、Place・This time, there is a signal indicating input terminal □, 4-engine 2-o. i, :・t, □Eh, wow. 2. An alarm signal shall be obtained when the signals indicating the input timing of the current signal match, or when the previous signal input time is less than the current signal input time, and the moving speed of the driven object is slower than the required speed. A drive monitoring device that can detect whether the

〔発明の実施例〕[Embodiments of the invention]

本発明の一施例を適用した第2図のTIP装置の!ロッ
ク構成図を用いて説明する。2oは炉心内の案内管(図
示せず)に挿入される中性子検出器である。この中性子
検出器20には検出された中性子束信号を伝送する中性
子束信号線を兼ねた駆動伝達用の駆動線21が接続され
る。
The TIP device shown in FIG. 2 to which an embodiment of the present invention is applied! This will be explained using a lock configuration diagram. 2o is a neutron detector inserted into a guide tube (not shown) in the core. A drive line 21 for drive transmission, which also serves as a neutron flux signal line for transmitting a detected neutron flux signal, is connected to this neutron detector 20.

この駆動線21は駆動部22へ導入され、′駆動部22
の駆動によって中性−子検出器20を移動させる。そし
てこめ駆動部22はTIP制御部23へ中性子束信号お
iび中性子検出器20の検出器位置信号を送出子る。
This drive line 21 is introduced into the drive section 22, and 'drive section 22
The neutron detector 20 is moved by driving. The drive unit 22 then sends the neutron flux signal i and the detector position signal of the neutron detector 20 to the TIP control unit 23.

而して、TIP制一部23fi、、中性子束信号を増幅
し所定データml処理する中性子束増幅回路24と、前
記駆動部j2に対し駆動速度の切換、挿入・引抜などの
制御を行う駆動制御部25と、この駆動制御部25を介
して駆動部22からの検出器位置信号を受けて異常であ
れば前記駆動制御部25へ警報信号を出力する検出器駆
動異常監視部26とで構成される。
A TIP control section 23fi, a neutron flux amplification circuit 24 that amplifies a neutron flux signal and processes predetermined data ml, and a drive control that controls drive speed switching, insertion/extraction, etc. for the drive section j2. 25, and a detector drive abnormality monitoring section 26 which receives a detector position signal from the drive section 22 via the drive control section 25 and outputs an alarm signal to the drive control section 25 if an abnormality occurs. Ru.

また、駆動制御部26は中性子検出器20の駆動速度(
高速・低速)を選択す、る位置信号切換回路2rを備え
、さらに、検出器駆動異常監視部26には、検出器位置
信号の正常・異常の判別を行う割込受付回路1#、演算
処理回路29および記憶回路30と、検出器、位置信号
が異常と判別された時前記演算処理回路29の信号によ
って警報信号を出力する警報回路3ノとが設けられてい
る。
The drive control unit 26 also controls the drive speed of the neutron detector 20 (
The detector drive abnormality monitoring section 26 further includes an interrupt reception circuit 1# for determining whether the detector position signal is normal or abnormal, and an arithmetic processing circuit. A circuit 29, a memory circuit 30, and an alarm circuit 3 which outputs an alarm signal based on the signal from the arithmetic processing circuit 29 when the detector and position signal are determined to be abnormal are provided.

次に、上記の半うに構成されたTIP装置の駆動監視作
用を説明する。
Next, the drive monitoring function of the TIP device configured in the above manner will be explained.

中性子検出器2#によって炉心内の案内管を走査して中
性子分布データを採取する場合、駆動制御部25から出
力される引抜・挿入あるいは位置信号切換回路2−によ
企走査速度(高速・低速)などを含めた制御堺号によっ
て中性子検出器20は所定の動作を行う。この時、駆動
部22から検出器20の位置信号として駆動線21がl
θ単位長移動する毎に単位長に相当する幅の・母ルス信
号が駆動制御部25へ出力される。
When the neutron detector 2# scans the guide tube in the reactor core to collect neutron distribution data, the extraction/insertion or position signal switching circuit 2- outputted from the drive control unit 25 determines the scanning speed (high speed/low speed). ), etc., the neutron detector 20 performs predetermined operations. At this time, the drive line 21 is sent as a position signal of the detector 20 from the drive unit 22.
Every time the θ unit length is moved, a base pulse signal having a width corresponding to the unit length is output to the drive control section 25.

この信号形態はBCDコードか純10進コードの形態を
なす。いま、純10進コード形態として具体的に第3図
に示すような41ルス信号を考える。すなわち、第3図
(a)は駆動線21の1インチを単位長として10イン
チ毎に1インチ単位長を示す幅のノヤルス信号で\、あ
り、同図(b)は10インチを単位長として100イン
チ桁単桁毎に10インチ単位長を示す幅のパルス信号で
ある。
This signal form is in the form of a BCD code or a pure decimal code. Now, we will specifically consider a 41 pulse signal as shown in FIG. 3 as a pure decimal code format. That is, Fig. 3(a) shows a Noyals signal with a width of 1 inch per 10 inches of the drive line 21, and Fig. 3(b) shows a Noyals signal with a unit length of 1 inch per 10 inches of the drive line 21. This is a pulse signal whose width indicates a unit length of 10 inches for each single digit of 100 inches.

したがって、前記位置信号切換回路27で選択される低
速駆動を1.5インか、速度駆動を12インチ/1とす
ると、パルス信号の幅t1りおよびtls n同図(a
)ではt l、 @ #670 msおよびtB#83
m5、同図(b)でu tl、1#6.71およびts
* #830m5となり、パルス信号の周期’rt、s
および’I’1mは図(m)でu T1.1 ’、# 
6.7 s * Tll #830 ms図(b)では
Tl、1 #671 * T11 #8−3 mとなる
Therefore, if the low speed drive selected by the position signal switching circuit 27 is 1.5 inches or the speed drive is 12 inches/1, the pulse signal width t1 and tlsn (a
) in t l, @ #670 ms and tB #83
m5, u tl, 1#6.71 and ts in the same figure (b)
* #830m5, the period of the pulse signal 'rt, s
and 'I'1m is u T1.1' in figure (m), #
6.7 s * Tll #830 ms In figure (b), Tl, 1 #671 * T11 #8-3 m.

そこで、上記のようなパルス信号のうち、低速駆動時は
第3図(a)のノタルス信号、高速駆動時は同図(b)
のノ譬ルス信号を用いるとする。そうすると正常駆動の
場合、駆動部22から低速駆動時は約6.7秒毎に、高
速駆動時は約8.3秒毎にノ々ルス信号が駆動制御部2
5を介して割込受付回路2Iへ入力される。したがって
、この割込受付回路28より前記的6.7秒あるいは約
8.3秒毎に演算処理回路29へ割込信号が入力される
ことになる。こζで、演算処理回路29は、順次入力さ
れる割込信号によって書替えられる駆動フラグを設け、
さらに割込信号の所定の入力時間間隔は低速駆動時の約
6.7秒および高速駆動時の約8.3秒の両時、間に対
応するように10秒と設定する。そして、:。第4図に
示すフローチャートに従って演算処理回路29を動作さ
せる。
Therefore, among the above-mentioned pulse signals, the notarus signal shown in Fig. 3(a) is used during low-speed driving, and the notarus signal shown in Fig. 3(b) is used during high-speed driving.
Suppose we use the nollus signal of Then, in the case of normal drive, the Norse signal is sent to the drive control unit 22 from the drive unit 22 approximately every 6.7 seconds during low-speed driving, and approximately every 8.3 seconds during high-speed driving.
5 to the interrupt reception circuit 2I. Therefore, the interrupt reception circuit 28 inputs an interrupt signal to the arithmetic processing circuit 29 every 6.7 seconds or about 8.3 seconds. In this case, the arithmetic processing circuit 29 is provided with a drive flag that is rewritten by interrupt signals that are sequentially input.
Further, the predetermined input time interval of the interrupt signal is set to 10 seconds to correspond to both approximately 6.7 seconds during low-speed driving and approximately 8.3 seconds during high-speed driving. and,:. The arithmetic processing circuit 29 is operated according to the flowchart shown in FIG.

、′” te〜゛″Zf(l!−j!に:1t&IIJR11(
A)K”°“その時の駆動フラグ信、の判定@)が行わ
れ、e′1#の時は0#に書替C)が行われ、l”でな
い時(10#の時)は“1“ に書替υ)が行われる。
,'” te~゛″Zf(l!-j!ni: 1t&IIJR11(
A) Judgment @) of the drive flag signal at that time is performed, and when it is e'1#, C) is rewritten to 0#, and when it is not l" (when it is 10#), " 1” is rewritten υ).

そして、書替えられた0” あるいF′i″″1# の
信号は記憶回路S0に記憶され10秒後に読出し@)、
(ロ)が行われる。そして、この読出された信号と現時
点の駆動フラグの信号が判定a)、(ロ)まれ、一致し
た時を異常駆動(り、一致しない時を正常駆動(J)と
する、つまり、正常駆動時であれば低速・高速にかかわ
らず10秒後Kfl駆動フラグは書替えられており、駆
動線21の停止や極端に遅い動きなどの異常駆動時には
書替えがなされてないからである。したがって、前記判
定幅)あるいは(6)で一致した時、警報回路31より
警報信号を出力して警報表示した9、駆動制御部25に
引抜や停止などの必要な処理を行わせ九ヤすることがで
きる。
Then, the rewritten 0" or F'i""1# signal is stored in the storage circuit S0 and read out after 10 seconds @),
(b) will be carried out. Then, the read signal and the current drive flag signal are determined (a) and (b), and when they match, it is called abnormal drive (i), and when they do not match, it is called normal drive (J), that is, normal drive. This is because the Kfl drive flag is rewritten after 10 seconds regardless of whether the speed is low or high, and it is not rewritten during abnormal driving such as when the drive line 21 stops or moves extremely slowly. ) or (6), an alarm signal is output from the alarm circuit 31 and an alarm is displayed (9), and the drive control unit 25 can be made to perform necessary processing such as pulling out or stopping.

ところで、上記実施例では駆動フラグを用いたが、これ
を用、いず演算処理回路2gに通常使われるクロック信
号を基に直接割込信号入力時刻を記憶させ七シ同様の効
果が得られる。これを第5図のフローチャートに従って
説明すると、演算処理回路29は位置信号による割込発
生0りより、その時の割込時刻Tを記憶回路30に記憶
(B′)させる、そして、次回割込信号が入力された時
に前回の記憶された時刻に10秒加えた時刻(T+10
 )の読出しくC′)を行う、この読出し時点の現時刻
と前記時刻(T+10)との大小を判定ω′)シ、時刻
(T+10 )が大ならば正常駆動(E′)、小ならば
異常駆動伊′)とするよ″うな動作を行う。
By the way, although the drive flag is used in the above embodiment, the same effect as in the seventh embodiment can be obtained by using the drive flag to directly store the interrupt signal input time in the arithmetic processing circuit 2g based on the normally used clock signal. To explain this according to the flowchart of FIG. 5, the arithmetic processing circuit 29 stores the current interrupt time T in the storage circuit 30 (B') when the interrupt occurs due to the position signal (B'), and then outputs the next interrupt signal. is input, the time added by 10 seconds to the previous memorized time (T+10
) is read out (C'), and the magnitude of the current time at the time of this reading and the time (T+10) is determined ω'). If the time (T+10) is large, normal driving (E') is performed, and if it is small, the drive is normal (E'). Abnormal drive (i').

つま夛、正常駆動時Fiio秒以内の進みで時刻が記憶
されるため、割込信号入力毎に前回時刻に10秒加算し
た時刻と現時刻とでは現時刻の方が小さいからであル、
大きい場合は駆動速度が何等かの原因で遅くなっている
と判断できる。
This is because the time is stored with an advance of less than Fiio seconds during normal operation, so the current time is smaller than the time obtained by adding 10 seconds to the previous time every time an interrupt signal is input.
If it is large, it can be determined that the drive speed is slow for some reason.

なお、上記2つの実施例ては割込信号の所定間隔時間を
10秒と設定したが、低速・高速3動に対し別kf/C
設定しても良い、しかしながら、原子炉の規模が大きく
なった場合、中性子検出器の数も多くなシ、所定間隔時
間が2種類設定されると演算処理回路での処理も繁雑に
なるので、上記実施例のように所定間隔時間の設定は1
つの方が良い。
In addition, in the above two embodiments, the predetermined interval time of the interrupt signal was set to 10 seconds, but a different kf/C was set for the low speed and high speed three movements.
However, if the scale of the reactor increases, the number of neutron detectors will increase, and if two types of predetermined interval times are set, the processing in the arithmetic processing circuit will become complicated. As in the above embodiment, the predetermined interval time is set to 1.
It's better to have one.

また、上記実施例では1つのTIP装置に1つの駆動監
視装置を設けたが、本発明の要旨を逸脱しない限り複数
のTIP装置の場合にも対応できる駆動監視装置に変形
できるものである。
Further, in the above embodiment, one drive monitoring device is provided for one TIP device, but the drive monitoring device can be modified to accommodate a plurality of TIP devices without departing from the gist of the present invention.

このように、TIP装置などで中性束分布め校正データ
を採取するにあ九り、捷来おこ゛なわれていた自動化で
は、中性子検出口の一連の検出シーケンスが終了した時
点で、該シーケンスに要した時間を基に異常を判断した
が、上記実施例に示した駆動監視装置によってシ゛ニケ
ンスの途中で即座に異常が検知でき、早期の処理が行え
る。
In this way, when collecting calibration data for neutral flux distribution using a TIP device, etc., the automation that has been used in the past requires that the detection sequence of the neutron detection port be automatically Although the abnormality was determined based on the time required for the sequence, the drive monitoring device shown in the above embodiment can detect the abnormality immediately during the sequence, and can take early action.

本発明によれば、原子炉の炉心よや中性子束分布の校正
データを採取する中性子検出器などの駆動異常が自動的
に検出できる。したがって、複数のチャンネル番つかっ
てデータを採取する場合など、1うのチャンネルに異常
が生゛じた時に、このチャンネルの警報出力で他チャン
ネルの中性子検出器の引抜きを−行うことができ、異常
チャンネルを検査するためにデータ採取の運転中止を行
うにあたり、他チャンネルの中性子検出器が炉心内に清
まることを防ぐことができ、中性子検出器の炉心内走査
の自動化には非常に有効である。
According to the present invention, it is possible to automatically detect abnormalities in the operation of the core of a nuclear reactor, a neutron detector that collects calibration data of neutron flux distribution, and the like. Therefore, when collecting data using multiple channel numbers, when an abnormality occurs in one channel, the alarm output of this channel can be used to pull out the neutron detectors of other channels, and the abnormality can be detected. When stopping data collection operations to inspect channels, it is possible to prevent neutron detectors from other channels from being swept into the reactor core, and this is very effective in automating the scanning of neutron detectors in the core.

また、従来の中性子検出器自動駆動制御に使用されてい
る演算処理装置に、簡単に駆動異常の検出機能をもたせ
ることができ、実現容易な駆動監視装置を提供できる。
Furthermore, the arithmetic processing unit used for conventional automatic drive control of neutron detectors can be easily provided with a drive abnormality detection function, and an easy-to-implement drive monitoring device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成図、第2図は本発明に係る駆動
監視装置に適用したTIP装置の実施例を示す構成図、
第3図は本発明に係る駆動監視装置の位置信号の一例を
示す図、第4図は本発明に係る駆動監視装置の位置信号
の一処理例を示すフローチャート、第5図昧本発明に係
る駆動監視装置の位置信号の弛め処理例を示すフロ・円 一チヤードである0、、・:1 21・・・駆動線、22・・・駆動部、25・・・駆動
制御部、26・・・駆動異常監視部、28・・・割込受
付回路、29・・・演算処理回路、30・・・記憶回路
、31・・・警報回路。 出願人代理人  弁理士 鈴 江−武 彦、′:: □□□′:11:1...:、−5 1 第4図 第5図
FIG. 1 is a configuration diagram of a conventional device, and FIG. 2 is a configuration diagram showing an embodiment of a TIP device applied to a drive monitoring device according to the present invention.
FIG. 3 is a diagram showing an example of a position signal of the drive monitoring device according to the present invention, FIG. 4 is a flowchart showing an example of processing of a position signal of the drive monitoring device according to the present invention, and FIG. 0, . . .: 1 is a flow circle chart showing an example of loosening processing of a position signal of a drive monitoring device. 21... Drive line, 22... Drive unit, 25... Drive control unit, 26... ... Drive abnormality monitoring unit, 28 ... Interrupt reception circuit, 29 ... Arithmetic processing circuit, 30 ... Memory circuit, 31 ... Alarm circuit. Applicant's agent Patent attorney Suzue-Takehiko,':: □□□':11:1. .. .. :, -5 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被駆動体を所要の速度で移動させるとともに該被駆動体
が単位長ごとに移動したとき信号を出力する駆動部と、
尤の駆動部から出力′される前回信号の出力タイミング
を示す信号あ・るいは時刻を記憶する記憶回路と、この
記憶された信号あるいは時刻を所定の遅延時間で読出し
て今回信号の出力タイミングを示す信号あ仝いは時刻と
比較する手段とを備え、前記出力タイミングを示す信号
同士の一致あるいは前記前回信号の出力タイミングを示
す時刻が前記今回信号の出力タイミングを示す時□刻よ
り小となった時警報信号を得ることを特徴とする駆動監
視装置。
a drive unit that moves the driven body at a required speed and outputs a signal when the driven body moves by unit length;
A memory circuit that stores a signal or time indicating the output timing of the previous signal outputted from the drive unit, and a memory circuit that stores the signal or time that indicates the output timing of the previous signal output from the drive unit, and reads out the stored signal or time with a predetermined delay time to determine the output timing of the current signal. means for comparing the signals indicating the output timing with a time, and the signals indicating the output timing match each other, or the time indicating the output timing of the previous signal is smaller than the time indicating the output timing of the current signal. A drive monitoring device characterized in that it obtains an alarm signal when
JP57047717A 1982-03-25 1982-03-25 Driving monitor device Granted JPS58165092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047717A JPS58165092A (en) 1982-03-25 1982-03-25 Driving monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047717A JPS58165092A (en) 1982-03-25 1982-03-25 Driving monitor device

Publications (2)

Publication Number Publication Date
JPS58165092A true JPS58165092A (en) 1983-09-30
JPH0316638B2 JPH0316638B2 (en) 1991-03-06

Family

ID=12783058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047717A Granted JPS58165092A (en) 1982-03-25 1982-03-25 Driving monitor device

Country Status (1)

Country Link
JP (1) JPS58165092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205119A (en) * 2012-03-27 2013-10-07 Toshiba Corp Mobile reactor power measuring apparatus and extraction control method for mobile detector therein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107594A (en) * 1977-02-28 1978-09-19 Toshiba Corp Rector neutron flux detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107594A (en) * 1977-02-28 1978-09-19 Toshiba Corp Rector neutron flux detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205119A (en) * 2012-03-27 2013-10-07 Toshiba Corp Mobile reactor power measuring apparatus and extraction control method for mobile detector therein

Also Published As

Publication number Publication date
JPH0316638B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US3932211A (en) Method of automatically monitoring the power distribution of a nuclear reactor employing movable incore detectors
KR930010418B1 (en) Method and apparauts for remotely monitoring a process structure
US3092819A (en) Apparatus for monitoring a physical magnitude at a multiplicity of distinct points and in particular for detecting burst slugs in the channels of a heterogeneous nuclear reactor
US10229763B2 (en) Neutron flux mapping system and control method for neutron flux mapping system
US4005392A (en) Method and apparatus for detecting and recording abnormal conditions in the operation of spinning machines
JPS58165092A (en) Driving monitor device
JP3881399B2 (en) Fixed reactor instrumentation
US6633622B2 (en) Reactor power output measurement device
JP5762839B2 (en) TIP system and TIP monitoring and control apparatus
JP4592397B2 (en) Mobile reactor neutron measurement apparatus and method
JPH05281390A (en) Automatic tester for control rod controller
US9842663B2 (en) Core monitoring system
GB910445A (en) Display device for use in installations for cyclically checking by means of a limited number of apparatus, the valves of a magnitude at a multiplicity of points
JP4115772B2 (en) Mobile in-core instrumentation system
JPS6193993A (en) Core monitor device for routine inspection
JPS6339674Y2 (en)
JP2563964B2 (en) TIP scanning control device
JP2672668B2 (en) Fuel loading abnormality diagnosis system
JPH05323086A (en) Control rod position monitor and control device
JP2646115B2 (en) Test monitoring control apparatus and method
JPS6162886A (en) Radiation monitor
JPS5938691A (en) Action time measuring device for control rod
JPS5935207A (en) Testing method of process operation system
JPS5887403A (en) Detector for falling of moving object
CN117594266A (en) Method, device, terminal and medium for monitoring and processing faults of rod control rod position system