JPS5814102A - Optical fiber for infrared ray - Google Patents
Optical fiber for infrared rayInfo
- Publication number
- JPS5814102A JPS5814102A JP56110905A JP11090581A JPS5814102A JP S5814102 A JPS5814102 A JP S5814102A JP 56110905 A JP56110905 A JP 56110905A JP 11090581 A JP11090581 A JP 11090581A JP S5814102 A JPS5814102 A JP S5814102A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- glass tube
- fiber
- tube
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000000835 fiber Substances 0.000 claims abstract description 25
- 229920000620 organic polymer Polymers 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 229910001507 metal halide Inorganic materials 0.000 claims description 15
- 239000011247 coating layer Substances 0.000 claims description 9
- -1 metal halide compound Chemical class 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 150000004820 halides Chemical class 0.000 abstract description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 150000005309 metal halides Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Laser Surgery Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は赤外線用光ファイバーに係り、特に金属ハロゲ
ン化合物からなるファイバーにより、炭酸ガスレーザ等
により発生する波長10μm前後の大パワーレーザ光を
伝送する赤外線用光ファイバーに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared optical fiber, and more particularly to an infrared optical fiber that transmits high-power laser light with a wavelength of about 10 μm generated by a carbon dioxide laser or the like using a fiber made of a metal halide compound.
最近炭酸ガスレーザ等の数+W以上のパワーを効率よく
出せるレーザ光はレーザ・ビーム加工、医用レーザメス
等に応用されている。これ等の応用ではレーザ光の方向
と射出位置を自由に操作できる事が必要であり、可撓性
に優れ、かつ大パワー赤外光を低損失で伝送できる赤外
線用光ファイバーの開発が要求されていた。Recently, laser beams that can efficiently produce power greater than the number of watts of carbon dioxide lasers and the like have been applied to laser beam processing, medical laser scalpels, and the like. In these applications, it is necessary to be able to freely control the direction and emission position of the laser beam, and there is a need to develop an infrared optical fiber that has excellent flexibility and can transmit high-power infrared light with low loss. Ta.
そこで波長10μm前後の赤外線光を低損失で伝送する
光ファイバーのコアとしてアルカリ金属のハロゲン化合
物あるいは銀、タリウム等のハロゲン化合物を用いる事
が知られている。Therefore, it is known to use an alkali metal halogen compound or a halogen compound such as silver or thallium as the core of an optical fiber that transmits infrared light with a wavelength of about 10 μm with low loss.
これ等のハロゲン化合物は、機械的強度が小さく、また
耐湿性が低い為、直接的な外部応力、および水分から前
記コアを保護する為に、コアを気密乾燥状態に保持する
保護管が必要とされている。These halogen compounds have low mechanical strength and low moisture resistance, so a protection tube is required to keep the core in an airtight and dry state in order to protect the core from direct external stress and moisture. has been done.
又この保護管としては所定の曲率限界内では繰り返し曲
げても塑性変形あるいは破壊を起さないものでなければ
ならない。Furthermore, the protective tube must not undergo plastic deformation or breakage even if it is repeatedly bent within a predetermined curvature limit.
そこで従来は金属ハロゲン化合物からなるファイバーの
外表面をa)有機ポリマーで被覆したり、b)鉛、錫、
@、銅等の低融点金属で被覆したり、C)溶融状態の低
融点軟質ガラスを塗布する事により上記欠点を改良する
事が試みられていた。Therefore, in the past, the outer surface of the fiber made of metal halide compound was coated with a) organic polymer, b) lead, tin, etc.
Attempts have been made to improve the above-mentioned drawbacks by coating with a low melting point metal such as copper, or by coating C) with a low melting point soft glass in a molten state.
しかしながらa)の場合には水分子の透過速度はかなり
大きく、マた剛性も小さいので水分と外力に対する保護
効果は必ずしも充分でなく、b)の場合には塑性変形に
よる座屈等を生じ易く、さらにC)の場合には被覆され
た低融点ガラスの疲労(張力が働くと、表面に存在する
微少な傷が成長する事によって機械的強度が低下を破壊
する現象)による破壊の為に実用上充分な許容曲率を得
る事が困難であった。However, in case a), the permeation rate of water molecules is quite high and the rigidity is also small, so the protection effect against moisture and external forces is not necessarily sufficient, and in case b), buckling due to plastic deformation is likely to occur. Furthermore, in the case of C), the coated low melting point glass breaks down due to fatigue (a phenomenon in which minute scratches on the surface grow when tension is applied, resulting in a decrease in mechanical strength and breakage). It was difficult to obtain a sufficient allowable curvature.
本発明は上記の点に鑑み可撓性に優れ、かつ金属ハロゲ
ン化合物からなるコアが劣化する事のない低損失の赤外
線用光ファイバーを提供する事を目的とする。In view of the above points, it is an object of the present invention to provide an infrared optical fiber with excellent flexibility and low loss in which the core made of a metal halide compound does not deteriorate.
本発明は金属ハロゲン化合物からなるファイバーと、前
記ファイバーが挿入される石英ガラス管と、前記石英ガ
ラス管の外表面に設けられた有機ポリマーからなる被覆
層と、前記石英ガラス管の両端に設けられた赤外光透過
窓体又は光コネクタとを具備し、かつ、前記ファイバー
が石英ガラス管及び赤外光透過窓体又は石英ガラス管8
よび光コネクタにより気密乾燥状態に保持されている赤
外線用光ファイバーであり、さらに前記被覆層を石英ガ
ラス管より低い屈折率を有する有機ポリマーとする事に
より、実用上利用価値の高いものになる。The present invention includes a fiber made of a metal halide compound, a quartz glass tube into which the fiber is inserted, a coating layer made of an organic polymer provided on the outer surface of the quartz glass tube, and a coating layer provided on both ends of the quartz glass tube. an infrared light transmitting window body or an optical connector, and the fiber is a quartz glass tube and an infrared light transmitting window body or a quartz glass tube 8.
This is an infrared optical fiber that is kept airtight and dry by an optical connector.Furthermore, by making the coating layer an organic polymer having a lower refractive index than that of a quartz glass tube, it has high practical utility value.
つまり本発明ζこおいては石英ガラスよりなる保護管ヲ
用い金属ハロゲン化合物ファイバを湿度および外力から
保護する事を最大の特徴とする。In other words, the main feature of the present invention ζ is that the metal halide fiber is protected from humidity and external force by using a protective tube made of quartz glass.
以下本発明の赤外線用光ファイバーを実施例を示す図を
用いて説明する。石英ガラス管■は、外径10顛前後、
肉厚2H前後の透明石英ガラス管を希フッ酸エツチング
により表面の傷を除いてから約2150°0に加熱し、
外径が111前後の所定の寸法になるように引張速度を
制御しながら伸延した。DESCRIPTION OF THE PREFERRED EMBODIMENTS The infrared optical fiber of the present invention will be described below with reference to figures showing embodiments. The quartz glass tube ■ has an outer diameter of around 10 mm,
A transparent quartz glass tube with a wall thickness of approximately 2H was etched with dilute hydrofluoric acid to remove surface scratches, and then heated to approximately 2150°0.
It was stretched while controlling the pulling speed so that the outer diameter became a predetermined size of about 111 mm.
伸延の前と後で石英ガラス管の肉厚/外径比はほぼ一定
に保たれている。加熱部から1m程度離れた所で伸延し
た石英ガラス管の外表面に有機ポリマー被覆層■を施し
た。有機ポリマーとしてはシリコーン樹脂等が適してい
る。The wall thickness/outer diameter ratio of the quartz glass tube remains approximately constant before and after distraction. An organic polymer coating layer (2) was applied to the outer surface of the elongated quartz glass tube at a location approximately 1 m away from the heating section. A silicone resin or the like is suitable as the organic polymer.
石英ガラス管■の中に金属ハロゲン化物ファイバ■を装
入してから金属製端末金具■を接着した。After the metal halide fiber (■) was inserted into the quartz glass tube (■), a metal terminal fitting (■) was adhered.
この端末金具■にはOIJング■を介して赤外透過レン
ズ■を装着し、別の端子■′を■にねじ込むことによっ
て○リングを圧し赤外光透過窓体(又は光コネクタ−)
を構成して石英ガラス管■の内部を気密乾燥状態に保持
した。Attach an infrared transmitting lens ■ to this terminal fitting ■ via an OIJ ring ■, and screw another terminal ■' into ■ to press the ○ ring and connect it to an infrared light transmitting window (or optical connector).
The inside of the quartz glass tube (1) was kept airtight and dry by constructing a
例えばこのようにして得た本発明に係る赤外線用光ファ
イバー〇可撓性と石英ガラス管内部への透水性を評価し
て、下記の結果を得た。まず可撓性を評価するため石英
ガラス管を室温で破壊するまで曲げる試験を行ない、破
壊を起す曲率半径R。For example, the flexibility and water permeability into the interior of the quartz glass tube of the infrared optical fiber according to the present invention thus obtained were evaluated, and the following results were obtained. First, in order to evaluate flexibility, a test was conducted in which a quartz glass tube was bent at room temperature until it broke, and the radius of curvature R at which breakage occurred was determined.
を測定した結果を第1表に示す。The results of the measurements are shown in Table 1.
第1表 石英ガラス管が破壊する曲率半径R,と表面歪
τf
上記実施例としてはシリコーン樹脂を100μmの厚さ
に被覆したものを用いた。Rfの測定はFrance等
の方法(P、W、France et at 、 J
、Mat、 Sci 、 15(IgB□)825−8
30 )に従った。すなわち、 −蒋、二枚の溝
付き平板が平行を保ったまま距離を変えられる試験装置
を作り、平板の間に石英ガラス管をU字形に曲げてはさ
み、平板間の距離を1ON/分の割合でせばめて破壊し
た点の距離を記録した。この時、石英ガラス管の平行部
分の管中心の距離をDfとすると、破壊曲率半径Rfと
外表面に生ずる歪τfは次式で算出される#。Table 1 Radius of curvature R at which a quartz glass tube breaks and surface strain τf In the above example, a tube coated with silicone resin to a thickness of 100 μm was used. Rf was measured by the method of France et al. (P, W, France et at, J
, Mat, Sci, 15(IgB□)825-8
30) was followed. In other words, - Chiang created a test device in which the distance between two grooved flat plates could be changed while keeping them parallel, and a quartz glass tube was bent into a U shape and sandwiched between the flat plates, and the distance between the flat plates was adjusted to 1 ON/min. The distance of the broken point was recorded by reducing the percentage. At this time, if the distance between the tube centers of the parallel portions of the quartz glass tube is Df, then the radius of fracture curvature Rf and the strain τf generated on the outer surface are calculated by the following formula #.
几(= 0.42 D
(1)τ(= r /几f(2)
ここでrは石英ガラス管の外径のl/2を表わす。几 (= 0.42 D
(1) τ(=r/几f(2) where r represents l/2 of the outer diameter of the quartz glass tube.
第1表のデータは、記載した寸法の石英ガラス管を各々
開本ずつ試験した平均値を示す。標準偏差は平均値の約
7%であった。The data in Table 1 represent the average values for each open book of quartz glass tubes of the dimensions listed. The standard deviation was approximately 7% of the mean value.
また、石英ガラス管の中に挿入するファイバの材質ニツ
イてはCsI、CsBr、KR8−5(T/Brと’1
’l!Iの固溶体)等を用い、ファイバの外径について
は0.3〜0.5顛の範囲で変えて上記曲げ破壊試験を
行なったが、fLfの値には有意差は認められなかった
。In addition, the materials of the fiber inserted into the quartz glass tube are CsI, CsBr, KR8-5 (T/Br and '1
'l! The above-mentioned bending fracture test was carried out using a solid solution of I), etc., and the outer diameter of the fiber was varied in the range of 0.3 to 0.5 degrees, but no significant difference was observed in the value of fLf.
これ等のハロゲン化物の剛性率は石英ガラスの115以
下であるから、破壊は石英ガラス自体の内部応力がほぼ
支配していると考えられる。Since the rigidity of these halides is 115 or less than that of quartz glass, it is thought that the internal stress of the quartz glass itself is the dominant factor in the fracture.
次に、金属ハロゲン化物ファイバを水分から保瑣する効
果を確認するため、第1表の実施例を各寸法につき3本
ずつ恒温恒湿槽内に入れ、bO℃相対湿度80チの条件
で2ケ月保持した。試料を取出(力
してファイバの端面、側面を顕微鏡で観察したが、何の
変化も認められず、また伝送特性も変わらなかった。Next, in order to confirm the effect of protecting the metal halide fibers from moisture, three of the examples shown in Table 1 were placed in a constant temperature and humidity chamber for each dimension, and 2 It was held for several months. The sample was taken out and the end and side surfaces of the fiber were observed under a microscope, but no changes were observed, and the transmission characteristics remained the same.
以上の結果から明らかな如を本発明の赤外線用光ファイ
バーを構成する有機ポリマー被覆層附き石英ガラス管は
、第1表の曲げ試験結果が示すように約0.04の表面
歪に耐える。As is clear from the above results, the quartz glass tube with an organic polymer coating layer constituting the infrared optical fiber of the present invention can withstand a surface strain of about 0.04, as shown in the bending test results in Table 1.
なお上記のような短時間測定で得られる破壊時単位の寿
命を持つ事がよく知られている。It is well known that the life span is measured in units of time to failure, which can be obtained by short-time measurements as described above.
従って上記石英ガラス管の常用最大許容歪τ、と常用最
小許1容曲率fLsl′i次のように設定できるτ、=
τf/3中0.014
R,=r / f 、 * 3 R(中7Or赤外線用
光ファイバをパワー伝送路として使う場合、金属ハロゲ
ン化物ファイバは内部のパワー密度が破壊開直を越さな
いようにするためパワーに比例した18?而槓が必要で
あり、従って保護管の外径もそれに伴ない太くなるから
、保護管の材料時(8)
性としてはτ、 −r / R,が林いことが重要であ
る。Therefore, the maximum permissible strain τ for the above-mentioned quartz glass tube, and the minimum permissible 1-volume curvature fLsl′i can be set as follows: τ, =
0.014 R in τf/3, = r / f, * 3 R (When using a medium 7Or infrared optical fiber as a power transmission path, the metal halide fiber must be made so that the internal power density does not exceed the fracture aperture. In order to make the protection tube 18? It is important that
これに対し従来知られている前記の低融点金属。On the other hand, the previously known low melting point metals mentioned above.
被覆では、弾性限界τeを越えると数回曲げただけで複
雑な塑性変形や屈曲を起して光ファイバの伝送特性を劣
化させるから、τ5≦τ8 とする必要がある。上記金
属ではτ8はたかだか0.005 である。石英ガラス
管のτ、はこれ等の金属のτ、の約3倍に相当するから
、保護管あるいは保護被覆を必要とする赤外ファイバの
可撓性・操作性に関する制約をゆるめるのに、顕著な効
果をもたらした。In the coating, if the elastic limit τe is exceeded, complicated plastic deformation or bending occurs even after bending a few times, degrading the transmission characteristics of the optical fiber, so it is necessary to satisfy τ5≦τ8. In the above metals, τ8 is at most 0.005. Since the τ of a quartz glass tube is approximately three times as large as that of these metals, it is a remarkable material for loosening restrictions on the flexibility and operability of infrared fibers that require protective tubes or protective coatings. It had a great effect.
更に、石英ガラスが有機ポリマーに対してはもとより、
前記低融点金属と比較してはるかに大きな弾性率を持つ
ので、断面の局部的な変形や軸方向に過度に小さな曲率
半径で曲げようとする外力に対して強い反撥力を示す。Furthermore, quartz glass is not only effective for organic polymers, but also for organic polymers.
Since it has a much larger modulus of elasticity than the low melting point metals, it exhibits a strong repulsive force against local deformation of its cross section and external forces that attempt to bend it in the axial direction with an excessively small radius of curvature.
従って、外部応力から金属ハロゲン化物ファイバを保護
する効果は従来の金属又は有機ポリマー保画材より大き
い。Therefore, it is more effective in protecting metal halide fibers from external stresses than conventional metal or organic polymer preservation materials.
また、本発明に係る石英ガラス管は、水または水蒸気を
実質上完全に遮断するので、水分に弱い金属ハロゲン化
物ファイバを保護する点では、有機ポリマーよりはるか
に優れていることが確認された。Furthermore, it has been confirmed that the quartz glass tube according to the present invention substantially completely blocks water or water vapor, and therefore is far superior to organic polymers in terms of protecting metal halide fibers that are sensitive to moisture.
又本願において、有機ポリマーからなる被覆層として可
視光に対して透明でかつ石英ガラスよシ低い屈折率を有
するものを用いた場合には、石英ガラス管が保護管とし
ての機能の上にさらに可視光の導波路としての機能を有
し、実用上有効なものとなる。つまυ、この石英ガラス
管にHe −Neレーザ光等の可視光を送る事により、
金属ハロゲン化合物のコア中を伝送される炭酸ガスレー
ザ光の出射方向、照射位置を肉眼で確認する事が可能と
な9、レーザメス、レーザ加工に用いる場合に、その位
置決め等が極めて容易となる。In addition, in the present application, when a coating layer made of an organic polymer is used that is transparent to visible light and has a lower refractive index than quartz glass, the quartz glass tube functions as a protective tube and also has a visible light It has a function as a light waveguide and is practically effective. By sending visible light such as He-Ne laser light into this quartz glass tube,
It is possible to confirm with the naked eye the emission direction and irradiation position of the carbon dioxide laser beam transmitted through the core of the metal halide compound 9, making it extremely easy to position the laser knife when used for laser processing.
この効果は下記の実験で確認した。This effect was confirmed in the experiment below.
前述の実施例で用いた保護管ではシリコーン樹脂の屈折
率がno = 1.406 (25°0)であシ、石英
ガラスの屈折率がIlo ”” 1.458であるから
、導波路が形成されている。In the protection tube used in the above example, the refractive index of silicone resin is no = 1.406 (25°0) and the refractive index of quartz glass is Ilo 1.458, so a waveguide can be formed. has been done.
この保護管を1mの長さに切断して両端面を研磨し、同
じ長さの金属ハロゲン化物ファイバを挿入した。保護管
とファイバの端面と軸が一致するように固定した。保護
管の石英ガラス部分端面にf(e’−Neレーザ光を入
射させ、同時に金属ハロゲン化物ファイバ端面にC02
レーザ光を同じ向きに入射させた。他端から出射する二
種のレーザ光を一つのZn5e製凸レンズ結像させたと
ころ、保護管のリング状可視光像の内部にCO2レーザ
光が結像し、保護管を曲げてもこのような像の位置関係
は実質上変化しなかった。This protective tube was cut into a length of 1 m, both end faces were polished, and metal halide fibers of the same length were inserted. The protective tube and fiber were fixed so that their end faces and axes were aligned. The f(e'-Ne laser beam is incident on the end face of the quartz glass part of the protection tube, and at the same time, C02 is applied to the end face of the metal halide fiber.
The laser beams were incident in the same direction. When the two types of laser beams emitted from the other end are imaged on one Zn5e convex lens, the CO2 laser beam is imaged inside the ring-shaped visible light image of the protection tube. The positional relationship of the images remained virtually unchanged.
又、本願において、石英ガラス管の代りに、硬質ガラス
管を用いても、石英ガラス管と同様の保護効果を得るこ
とができる。Further, in the present application, even if a hard glass tube is used instead of the quartz glass tube, the same protective effect as that of the quartz glass tube can be obtained.
例を示す断面図
1・・・金属ハロゲン化合物からなるファイバー2・・
石英ガラス管 3・・・被 覆 層4.4′・・・
端末金具 5・・・赤外透光レンズ代理人 弁理
士 則 近 憲 佑
(ほか1名)Cross-sectional view 1 showing an example...Fiber 2 made of metal halide compound...
Quartz glass tube 3...covering layer 4.4'...
Terminal fitting 5... Infrared transparent lens agent Patent attorney Noriyuki Chika (and 1 other person)
Claims (1)
ァイバーが挿入される石英ガラス管と、前記石英ガラス
管の外表面に設けられた有機ポリマーからなる被覆層と
、前記石英ガラス管の両端に設けられた赤外光透過窓体
又は光コネクタとを具備し、かつ前記ファイバーが石英
ガラス管及び赤外光透過窓体又は石英ガラス管及び光コ
ネクタにより気密乾燥状態に保持されている事を特徴と
する赤外線用光ファイバー。 2、特許請求の範囲第1項において、有機ポリマーから
なる被覆層が石英ガラス管より低い屈折率を有する有機
ポリマーからなる事を特徴とする赤外線用光ファイバー
。 3)特許請求の範囲第1項において有機ポリマーからな
る被覆層がシリコン樹脂からなる事を特徴とする赤外線
用光ファイバー。 4)特許請求の範囲第1項又は第2項において石英ガラ
ス管を硬質ガラス管としたことを特徴とする赤外線用光
ファイバー。[Scope of Claims] l) A fiber made of a metal halide compound, a quartz glass tube into which the fiber is inserted, a coating layer made of an organic polymer provided on the outer surface of the quartz glass tube, and the quartz glass tube. an infrared light transmitting window body or an optical connector provided at both ends of the fiber, and the fiber is held in an airtight dry state by the quartz glass tube and the infrared light transmitting window body or the quartz glass tube and the optical connector. An infrared optical fiber that is characterized by 2. The optical fiber for infrared rays according to claim 1, wherein the coating layer made of an organic polymer is made of an organic polymer having a refractive index lower than that of a quartz glass tube. 3) The optical fiber for infrared rays according to claim 1, characterized in that the coating layer made of an organic polymer is made of a silicone resin. 4) An optical fiber for infrared rays according to claim 1 or 2, characterized in that the quartz glass tube is a hard glass tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56110905A JPS5814102A (en) | 1981-07-17 | 1981-07-17 | Optical fiber for infrared ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56110905A JPS5814102A (en) | 1981-07-17 | 1981-07-17 | Optical fiber for infrared ray |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5814102A true JPS5814102A (en) | 1983-01-26 |
JPS6119964B2 JPS6119964B2 (en) | 1986-05-20 |
Family
ID=14547629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56110905A Granted JPS5814102A (en) | 1981-07-17 | 1981-07-17 | Optical fiber for infrared ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5814102A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031742A (en) * | 1983-07-29 | 1985-02-18 | オリンパス光学工業株式会社 | Laser probe |
JPS61141350A (en) * | 1984-12-08 | 1986-06-28 | メツセルシユミツト‐ベルコウ‐ブローム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Apparatus for radiating body with laser |
US4776663A (en) * | 1985-12-12 | 1988-10-11 | 501 Socapex S.A. | Disconnectable collimation assembly |
JP2008076798A (en) * | 2006-09-22 | 2008-04-03 | Nippon Electric Glass Co Ltd | Optical component and light emitting device using the same |
JP2008147289A (en) * | 2006-12-07 | 2008-06-26 | Nippon Electric Glass Co Ltd | Optical component and light-emitting device using the same |
-
1981
- 1981-07-17 JP JP56110905A patent/JPS5814102A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031742A (en) * | 1983-07-29 | 1985-02-18 | オリンパス光学工業株式会社 | Laser probe |
JPS61141350A (en) * | 1984-12-08 | 1986-06-28 | メツセルシユミツト‐ベルコウ‐ブローム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Apparatus for radiating body with laser |
US4776663A (en) * | 1985-12-12 | 1988-10-11 | 501 Socapex S.A. | Disconnectable collimation assembly |
JP2008076798A (en) * | 2006-09-22 | 2008-04-03 | Nippon Electric Glass Co Ltd | Optical component and light emitting device using the same |
JP2008147289A (en) * | 2006-12-07 | 2008-06-26 | Nippon Electric Glass Co Ltd | Optical component and light-emitting device using the same |
Also Published As
Publication number | Publication date |
---|---|
JPS6119964B2 (en) | 1986-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4045119A (en) | Flexible laser waveguide | |
US5567471A (en) | Coherent, flexible, coated-bore hollow-fiber waveguide, and method of making same | |
Merberg | Current status of infrared fiber optics for medical laser power delivery | |
US10823917B2 (en) | Optical connection component | |
US4490008A (en) | Infrared fibers | |
JPH055813A (en) | Flexibility graded type optical fiber substantially holding mode structure and transmitting high-output laser radiation | |
JPS5814102A (en) | Optical fiber for infrared ray | |
US4778249A (en) | Middle infra-red hollow optical fibres and a method for forming them | |
Harrington et al. | Transmission properties of hollow glass waveguides for the delivery of CO/sub 2/surgical laser power | |
US5575960A (en) | Method of manufacturing an infrared optical fiber | |
EP0186679B1 (en) | Middle infra-red hollow optical fibres | |
JPH11109152A (en) | Halide oxide glass composition for optical waveguide, this optical waveguide, and optical device using it | |
Shakhanov et al. | All-silica optical fibers with reduced losses beyond two microns | |
JP2003057479A (en) | Polarization holding optical fiber and optical component using the same | |
Croitoru et al. | Optical measurements of plastic (polyimide) hollow waveguides for IR radiation | |
Sanghera et al. | Optical and mechanical properties of IR-transmitting chalcogenide glass fibers | |
George et al. | Hollow plastic waveguides for sensor applications | |
JPH05188225A (en) | Hollow waveguide for uv laser beam | |
JP2024022878A (en) | Optical connector structure and optical fiber cable having the same | |
Matsuura et al. | ZnSe-coated Ag waveguide for CO2 laser light transmission | |
Krohn et al. | Silica optical fibers: technology update | |
Nakazawa et al. | Flexible hollow polycarbonate fiber for endoscopic infrared laser treatment | |
Cook et al. | New fiber optic faceplate glass systems development | |
JPH0784130A (en) | Optical fiber cable | |
JPH0428082B2 (en) |