JPS58129770A - Electrode for molten salt fuel cell - Google Patents
Electrode for molten salt fuel cellInfo
- Publication number
- JPS58129770A JPS58129770A JP57012934A JP1293482A JPS58129770A JP S58129770 A JPS58129770 A JP S58129770A JP 57012934 A JP57012934 A JP 57012934A JP 1293482 A JP1293482 A JP 1293482A JP S58129770 A JPS58129770 A JP S58129770A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- electrode
- metal
- molten salt
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、溶融塩型燃料電池用電極に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode for a molten salt fuel cell.
近時、発電用に用いる燃料電池の開発が活発に行われて
おり、溶融塩型燃料電池の大容量化が検討されている。Recently, fuel cells used for power generation have been actively developed, and increasing the capacity of molten salt fuel cells is being considered.
溶融塩型燃料電池は、第1図に示すような単電池を積層
して構成される。この図で1.7はそれぞれ端板で、こ
れらの端板1,7間に集電体を兼ねる燃料極側スペーサ
2、燃料極3、の大容量化のためには、大型の電極を必
要とするが、大型の電極は変形し易く、かつ強度の大き
いものを製作するには多くの問題がある。すなわち、作
動中に電極が変形すると、電極と集電面との接触抵抗が
大きくなり性能の低下を起こす。まだ、場合によっては
、ガス流路を閉塞する危険性もある。寸だ、電極の強度
が小さいと、焼結もしくはフェルト化した電極構造に壊
滅的破損がもたらされることさえある。このため、従来
から、電極の焼結条件の厳密な制御、骨格としての金網
の使用等が試みられていたが、未だに問題点を解決する
のに十分な電極は得られなかった。A molten salt fuel cell is constructed by stacking unit cells as shown in FIG. In this figure, 1 and 7 are end plates, and in order to increase the capacity of the fuel electrode side spacer 2 and fuel electrode 3, which also serve as current collectors between these end plates 1 and 7, large electrodes are required. However, large electrodes are easily deformed and there are many problems in manufacturing ones with high strength. That is, when the electrode is deformed during operation, the contact resistance between the electrode and the current collecting surface increases, resulting in a decrease in performance. In some cases, there is still a risk of clogging the gas flow path. Indeed, low electrode strength can even lead to catastrophic failure of sintered or felted electrode structures. For this reason, attempts have been made to strictly control the sintering conditions of the electrode, to use a wire mesh as a skeleton, etc., but it has not yet been possible to obtain an electrode sufficient to solve the problem.
本発明は、これらの問題点を除去し、変形が生ぜず、強
度の大きい大型の溶融塩型燃料電池用電極の提供を可能
とすることを目的とし、金属製の多孔体と、この多孔体
を骨格とし、その空隙内に充填、焼結された金属粉末と
からなることを特徴とするものである。The present invention aims to eliminate these problems and provide a large-sized molten salt fuel cell electrode that does not undergo deformation and has high strength. It is characterized by having a skeleton and metal powder filled and sintered into the voids thereof.
本発明では、金属よりなる多孔体が骨格として使用され
る。この多孔体は、例えば、発泡ポリウレタンのような
発泡樹脂に金属をメッキした後、発泡樹脂を除去して製
造され、多孔率80%以」二、好ましくは90〜98%
のものが用いられる。ここで用いられる金属は、ニッケ
ル又はニッケル・場合には、より高い耐熱性、強度を得
ることができる。このようにして作られた多孔体は平面
−」−の少なくとも三方向に孔を有する。多くの場合平
面に対して」二下の方向にも少なくとも三方向の孔をゼ
する。あらゆる方向に向けて孔がおいている多孔体とい
える。かかる多孔体を総称して、以下、三次元的に網状
の多孔体という多孔体に金属粉末を充填した後焼結され
るが、焼結は、通常は水素還元雰囲気あるいは窒素、ア
ルゴン等の不活性雰囲気の下で温度750〜1100C
で行われる。この処理で三次元網状多孔体と金属粉末と
は一体化し、溶融塩型燃料電池の作動条件下において変
形が生ぜず、しかも強度の大きな電極を得ることができ
る。なお、焼結処理を水素還元雰囲気あるいは不活性雰
囲気で行う代りに大気雰囲気下で行うこともできる。In the present invention, a porous body made of metal is used as the skeleton. This porous body is manufactured by, for example, plating a metal on a foamed resin such as foamed polyurethane, and then removing the foamed resin, and has a porosity of 80% or more, preferably 90 to 98%.
are used. If the metal used here is nickel or nickel, higher heat resistance and strength can be obtained. The porous body thus produced has pores in at least three directions of the plane. In many cases, holes are formed in at least three directions, even in two directions below the plane. It can be said to be a porous material with pores facing in all directions. Such porous bodies are collectively referred to as three-dimensional network porous bodies, which are filled with metal powder and then sintered, but sintering is usually carried out in a hydrogen-reducing atmosphere or an inert atmosphere such as nitrogen or argon. Temperature 750-1100C under active atmosphere
It will be held in Through this treatment, the three-dimensional network porous body and the metal powder are integrated, and an electrode that does not deform under the operating conditions of a molten salt fuel cell and has high strength can be obtained. Note that instead of performing the sintering treatment in a hydrogen-reducing atmosphere or an inert atmosphere, it can also be performed in an air atmosphere.
一般に、金属粉末を大気雰囲気下で焼結すると金属粉末
が酸化されるだめ強度のある焼結体、すなわち電極を得
ることができない。丑だ、溶融塩型燃料電池の作動に当
っては、陰極、すなわち電池の酸素′電極はそれ自体連
続的に酸化され、この酸化反応が急激なだめ、場合によ
っては電極の崩壊も起こる。そのだめ、水素還元雰囲気
あるいは不活性雰囲気で焼結し、焼結した電極をリチウ
ム塩処理あるいは、酸化ニック−ルー酸化コバルトのス
ピネル型表面形成処理を行って電極酸化を防ぐ方法が用
いられているが、この発明の場合には、このような酸化
防止処理を行わなくても、水素還元雰囲気あるいは不活
性雰囲気で焼結する場合のみならず、大気雰囲気下で焼
結する場合にも変形せず、しかも強度の大きな電極を得
ることができる。Generally, when metal powder is sintered in an air atmosphere, the metal powder is oxidized, making it impossible to obtain a strong sintered body, that is, an electrode. Unfortunately, during the operation of a molten salt fuel cell, the cathode, the oxygen electrode of the cell, is itself continuously oxidized, and this oxidation reaction slows down rapidly, and in some cases, the electrode collapses. Therefore, methods are used to prevent electrode oxidation by sintering in a hydrogen-reducing atmosphere or inert atmosphere, and treating the sintered electrode with lithium salt or forming a spinel-type surface with nickel oxide and cobalt oxide. However, in the case of the present invention, even without such oxidation prevention treatment, the material does not deform not only when sintered in a hydrogen-reducing atmosphere or an inert atmosphere, but also when sintered in an atmospheric atmosphere. Moreover, an electrode with high strength can be obtained.
そして、このようにして得られた電極は、酸素電極とし
て用いだ慟合、電池性能の点でも、寿命の点でも良好な
結果が認められた。When the electrode thus obtained was used as an oxygen electrode, good results were observed in terms of both battery performance and life.
次に、実施′りUについて説明する。Next, implementation U will be explained.
実施例1
ニッケル又はニッケル・クロム会合よりなる三次元網状
多孔体にニッケル、鉄、鉄・チタン合金よりなる金属粉
末を充填して、第1表に示す条件で焼結して厚さ1.5
閣の溶ゆ(塩型燃料電池用電極を作成した。同表中の試
料A1および2は比軟のために示した従来の醒憧で、実
施例の場合の変形開始抗折強度は従来の場合に較べて著
しく高く、強度も犬となっていることを示している。Example 1 A three-dimensional network porous body made of nickel or nickel-chromium association is filled with metal powder made of nickel, iron, or iron-titanium alloy, and sintered under the conditions shown in Table 1 to a thickness of 1.5 mm.
Samples A1 and 2 in the same table are the conventional ones shown for relative softness, and the bending strength at the start of deformation in the case of the example is the same as that of the conventional one. This shows that the strength is significantly higher than that in the case.
実施例2
実施例1と同様の方法で作った′a極を用いて、作動温
度650Cで溶融塩型燃料電池の性能試験を行った。試
料A1の従来の電極域ネ」を用いて試験を行った場合に
は、試験開始当初においては、電圧o、sv、゛g流密
度100 m A / c1n2でお一つだが、開始後
50時間で、重圧O,SVX電流密度50mA−/cm
2に低下した。この電池は解体して調べたところ、電極
の一部に崩壊が生じており、しかもヤれが反応ガス流路
を閉塞していた。これに対して、試料扁3を陽憾とし、
試料届4〜7を陰惨として試験を行った場合には、金線
粉末としてニッケルを便用した試料蔦4,5を用いた場
合には、100時間の連続作動中、電圧はO,SV。Example 2 A performance test of a molten salt fuel cell was conducted at an operating temperature of 650C using the 'a electrode made in the same manner as in Example 1. When the test was conducted using the conventional electrode area of sample A1, at the beginning of the test there was one voltage o, sv, ゛g flow density 100 mA/c1n2, but after 50 hours after the start So, heavy pressure O, SVX current density 50mA-/cm
It dropped to 2. When this battery was disassembled and examined, it was found that part of the electrode had collapsed, and the damage was blocking the reactant gas flow path. On the other hand, sample number 3 is considered to be negative,
When the test was carried out using sample reports 4 to 7 as gruesome, when samples 4 and 5 using nickel as the gold wire powder were used, the voltage was O and SV during 100 hours of continuous operation.
電流密度100 mA /crn2の性能を示した。壕
だ、金属粉末として鉄−チタン、鉄を使用した試料屋6
〜7を用いた場合には、100時間の連続作動において
、試料JP6.4〜5よりも性能は劣るものの、・低圧
0.8VX電流密度85mA/cm2を維持した。It exhibited performance at a current density of 100 mA/crn2. It's a moat, a sample shop that uses iron-titanium and iron as metal powder 6
-7, in 100 hours of continuous operation, the performance was inferior to samples JP6.4 to 5; however, low voltage 0.8VX current density of 85 mA/cm2 was maintained.
そして、これらの電池は試験後解体して調べたと(7) ころ、いずれも構造上の劣化は認められなかった。After testing, these batteries were disassembled and examined (7). No structural deterioration was observed in either case.
実施例3
来j再例1の第1表に示しだ条件を用いて大きさ100
0mmX10100O,厚さ1.5wnの大型電極の製
作を行った。比較例として示した試料A1,2の条件を
用いたものは、滉結操作中に変形を生じ、一部に亀裂の
発生が認められだが、試料A3〜7の条件を用いたもの
は、焼結操作中に変形を生ぜず、亀裂の発生も認められ
ず、大型電極の製作が可能なことを示している。Example 3 Using the conditions shown in Table 1 of Example 1, a size of 100
A large electrode with a size of 0 mm x 10100 O and a thickness of 1.5 wn was manufactured. Samples using the conditions of samples A1 and A2 shown as comparative examples were deformed during the compacting operation, and cracks were observed in some parts, but samples using the conditions of samples A3 to A7 were not sintered. No deformation occurred during the tying operation, and no cracks were observed, indicating that it is possible to manufacture large electrodes.
以上の如く、本発明の溶融塩型燃料電池用電極は、変形
が生ぜず、強度の大きい大型の電極の提供を可能とする
もので、産業上の効果の犬なるものである。As described above, the electrode for a molten salt fuel cell according to the present invention makes it possible to provide a large-sized electrode with high strength without causing deformation, and is an industrially effective dog.
第1図は溶融塩型燃料電池の単電池の構成要素を示す断
面図である。
■、7・・・端板、2・・・(集電体を兼ねる)燃料極
側スペーサ、3・・・燃料極、4・・・電解質板、5・
・・空気極、6・・・(集電体を兼ねる)空気極側スペ
ーサ。
代理人 弁理士 長崎博男
(8)(ほか1名)
工■二]へm−
7711\
□]]\
321−
′4
y
7FIG. 1 is a sectional view showing the constituent elements of a unit cell of a molten salt fuel cell. ■, 7... End plate, 2... Fuel electrode side spacer (also serves as current collector), 3... Fuel electrode, 4... Electrolyte plate, 5...
... Air electrode, 6... Air electrode side spacer (also serves as current collector). Agent Patent attorney Hiroo Nagasaki (8) (and 1 other person) [Eng.
Claims (1)
内に充填、焼結された金属粉末とからなることを特徴と
する浴融塩型燃料電池用電極。 2゜前記多孔体が、発泡体の表面に金属を被着した後、
前記発泡体を分解除去したものである特許請求の範囲第
1項記載の溶融塩型燃料電池用電極。 3、前記金属が、ニッケルまだはニッケル・クロム合金
である特許請求の範囲第1項まだは第2項記載の溶融塩
型燃料電池用電極。[Scope of Claims] 1. An electrode for a bath-molten salt fuel cell characterized by comprising a metal porous body and a metal powder using the porous body as a skeleton and filling and sintering the voids of the porous body. . 2゜After the porous body deposits metal on the surface of the foam,
The electrode for a molten salt fuel cell according to claim 1, wherein the foam is decomposed and removed. 3. The electrode for a molten salt fuel cell according to claim 1 or 2, wherein the metal is nickel or a nickel-chromium alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57012934A JPS58129770A (en) | 1982-01-28 | 1982-01-28 | Electrode for molten salt fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57012934A JPS58129770A (en) | 1982-01-28 | 1982-01-28 | Electrode for molten salt fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58129770A true JPS58129770A (en) | 1983-08-02 |
Family
ID=11819113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57012934A Pending JPS58129770A (en) | 1982-01-28 | 1982-01-28 | Electrode for molten salt fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58129770A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60154466A (en) * | 1984-01-24 | 1985-08-14 | Matsushita Electric Ind Co Ltd | Manufacture of fuel electrode for molten carbonate fuel cell |
WO2004059765A2 (en) * | 2002-12-26 | 2004-07-15 | Nissan Motor Co., Ltd. | Gas permeable substrate and solid oxide fuel cell using the same |
JP2015173079A (en) * | 2014-03-12 | 2015-10-01 | 日本電信電話株式会社 | lithium air secondary battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5050644A (en) * | 1973-09-07 | 1975-05-07 |
-
1982
- 1982-01-28 JP JP57012934A patent/JPS58129770A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5050644A (en) * | 1973-09-07 | 1975-05-07 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60154466A (en) * | 1984-01-24 | 1985-08-14 | Matsushita Electric Ind Co Ltd | Manufacture of fuel electrode for molten carbonate fuel cell |
WO2004059765A2 (en) * | 2002-12-26 | 2004-07-15 | Nissan Motor Co., Ltd. | Gas permeable substrate and solid oxide fuel cell using the same |
WO2004059765A3 (en) * | 2002-12-26 | 2005-03-03 | Nissan Motor | Gas permeable substrate and solid oxide fuel cell using the same |
KR100685215B1 (en) * | 2002-12-26 | 2007-02-22 | 닛산 지도우샤 가부시키가이샤 | Gas permeable substrate and solid oxide fuel cell using the same |
CN100345328C (en) * | 2002-12-26 | 2007-10-24 | 日产自动车株式会社 | Gas permeable substrate and solid oxide fuel cell using the same |
JP2015173079A (en) * | 2014-03-12 | 2015-10-01 | 日本電信電話株式会社 | lithium air secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0710995A2 (en) | Electrode plate for battery and process for producing the same | |
JP2655810B2 (en) | Manufacturing method of alkaline secondary battery and catalytic electrode body | |
JPS58129770A (en) | Electrode for molten salt fuel cell | |
JP7248030B2 (en) | Fuel cell | |
JPS58131664A (en) | Fuel cell | |
JPH05205746A (en) | Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery | |
JPH07320742A (en) | Electrode for alkaline storage battery and manufacture thereof | |
JP7243728B2 (en) | Chromium adsorption materials and fuel cells | |
JPS62136759A (en) | Manufacture of electrode for battery | |
JP2001503911A (en) | Metal foam for secondary battery electrode | |
JPS62139256A (en) | Sealed nickel-cadmium storage battery | |
JPH03141555A (en) | Manufacture of fuel electrode for molten carbonate fuel cell | |
JPH05101821A (en) | Manufacture of hydrogen storage alloy electrode | |
JPS63261673A (en) | Electrode for alkaline storage battery and its manufacture | |
JPH0311503B2 (en) | ||
JPH09204919A (en) | Electrode base for alkaline battery and its manufacture | |
JP3670800B2 (en) | Method for producing hydrogen storage alloy electrode | |
JP3408047B2 (en) | Alkaline storage battery | |
JPH04286864A (en) | Secondary battery | |
JPS5825560Y2 (en) | Hydrogen storage electrode | |
Hryniewicz et al. | Porous sinters for elevated-temperature natural-gas fuel cells | |
JP3092262B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JPH08138680A (en) | Electrode base plate for battery and manufacture thereof | |
JPH05258750A (en) | Manufacture of hydrogen storage alloy electrode | |
JPS6276158A (en) | Electrode material for fuel cell of molten carbonate type |