JPH1190179A - Method for detoxifying nitrogen trifluoride and apparatus therefor - Google Patents

Method for detoxifying nitrogen trifluoride and apparatus therefor

Info

Publication number
JPH1190179A
JPH1190179A JP9258966A JP25896697A JPH1190179A JP H1190179 A JPH1190179 A JP H1190179A JP 9258966 A JP9258966 A JP 9258966A JP 25896697 A JP25896697 A JP 25896697A JP H1190179 A JPH1190179 A JP H1190179A
Authority
JP
Japan
Prior art keywords
gas
catalyst
nitrogen trifluoride
water
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9258966A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Takashi Jinbo
隆志 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP9258966A priority Critical patent/JPH1190179A/en
Publication of JPH1190179A publication Critical patent/JPH1190179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat NF3 in a safe and efficient manner by passing NF3 -contg. waste gas and a reducing gas as a down flow through a catalyst bed heated to a specified temp. and supplying water to a position kept at a specified temp. under the catalyst bed. SOLUTION: When NF3 -contg. waste gas is detoxified, a waste gas introducing pipe 1 and a reducing gas introducing pipe 2 are connected to the top of the body 5 of a reaction tube with a catalyst bed 3, a water introducing pipe 4 and an exhaust port 6. The waste gas is passed as a down flow through the catalyst bed 3 heated to 200-800 deg.C and water is supplied from the lower water introducing pipe 4 to a position kept at >=120 deg.C under the catalyst bed 3. The gas passed through the bed 3, together with the water, is allowed to flow downward, NH4 F.HF, etc., are dissolved in the water and the water is discharged from a discharge pipe 9. The exhaust port 6 is put in a liq. in a receiver 8, the NH3 and HF in the gas are absorbed in the liq. and the remaining gas which does not affect the human body and environment is discharged into the air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三弗化窒素ガス
(以下、NFと称す)の除害方法および除害装置に関
する。
The present invention relates to the nitrogen trifluoride gas about abatement method and detoxification apparatus (hereinafter, referred to as NF 3).

【0002】[0002]

【従来技術】現在、地球環境に悪影響をもたらすフロン
やCOなどに対して規制が行われていることは周知で
あり、NFも自然界ではなかなか分解しない物質であ
る。NFガスは、近年、半導体製造に於いてクリーニ
ングガスやエッチングガスとして多量に使用されてい
る。しかし、毒性があることから、排ガス中に残存する
NFを除去する必要がある。
2. Description of the Related Art At present, it is well known that restrictions are imposed on chlorofluorocarbons and CO 2 which have a bad influence on the global environment, and NF 3 is also a substance which is not easily decomposed in nature. In recent years, a large amount of NF 3 gas has been used as a cleaning gas or an etching gas in semiconductor manufacturing. However, since it is toxic, it is necessary to remove NF 3 remaining in the exhaust gas.

【0003】NFを除去する方法の一つに、触媒を用
いる方法が知られている。これらは触媒の種類によって
異なるが、弗素が触媒上に固定化するものは触媒寿命が
短く、別のガス状の弗化物となるものは触媒が消費され
る。従ってこれらの方法は、除害装置に充填した除害剤
の交換または補充が必要で、そのためにランニングコス
トが高くなるという共通の欠点がある。また高温下で活
性炭を触媒とするカラムにNFを含む排ガスを通気す
る方法(特開昭62−237929号公報)は、地球温
暖化の原因の一つとも言われるCFを放出する結果と
なる。
[0003] One method to remove the NF 3, a method using a catalyst is known. These differ depending on the type of catalyst, but those in which fluorine is immobilized on the catalyst have a short catalyst life, and those which become another gaseous fluoride consume the catalyst. Therefore, these methods have a common drawback in that the abatement agent charged in the abatement device needs to be replaced or replenished, which increases the running cost. In addition, a method in which exhaust gas containing NF 3 is passed through a column using activated carbon as a catalyst at a high temperature (Japanese Patent Application Laid-Open No. 62-237929) has a result that CF 4, which is one of the causes of global warming, is released. Become.

【0004】別の方法として水素やプロパン等の火炎中
でNFを分解する方法も知られているが、火炎の失火
によるトラブルや、失火を防止するための様々な付帯設
備等で装置のコストが高価である。更に別の方法にNF
を含む排ガスに還元性ガスを加え、加熱した触媒層に
通気する方法も知られている。しかしこの方法も、生成
する弗化物が触媒層の下部の比較的温度の高い部分で、
固結するため閉塞し、排ガスの流通を妨げる結果とな
る。
As another method, a method of decomposing NF 3 in a flame such as hydrogen or propane is also known. However, the cost of the apparatus is reduced by troubles caused by misfiring of the flame and various incidental facilities for preventing misfiring. But expensive. NF in yet another way
A method is also known in which a reducing gas is added to an exhaust gas containing No. 3 and the gas is passed through a heated catalyst layer. However, also in this method, the generated fluoride is a relatively high temperature part under the catalyst layer,
This results in blockage due to consolidation, which hinders the flow of exhaust gas.

【0005】[0005]

【発明が解決しようとする課題】本発明は、NFを安
全、かつ効率的に処理する方法を提供することを目的と
したものである。
[0008] The present invention is intended to provide a method of processing a NF 3 safe, and efficient.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来技術
の欠点を改良し工業的実施の可能な方法について鋭意検
討した結果、NFを還元性ガスと触媒を用い分解する
方法に改良を加え、弗化物の閉塞を防止できる除害方法
および装置を開発するに至った。
Means for Solving the Problems The present inventors have intensively studied a method which can improve the disadvantages of the prior art and can be implemented industrially, and as a result, have improved the method to decompose NF 3 using a reducing gas and a catalyst. In addition, a detoxification method and apparatus capable of preventing the obstruction of fluoride have been developed.

【0007】即ち、本発明はNFを含む排ガスと還元
性ガスとをダウンフローにて200〜800℃に加熱し
た触媒層に通気したのち、120℃以上に保たれた触媒
層より下部の位置に水を供給することを特徴とする三弗
化窒素の除害方法。並びに触媒の充填層と充填層より下
部の位置に水の導入口を備えた反応管本体と、上流側に
三弗化窒素を含む排ガスの導入管と還元性ガスの導入
管、下流側に排液の受器と排液の出口管を設け、更に触
媒加熱用ヒータを備えた装置からなる三弗化窒素の除害
装置に関する。
That is, according to the present invention, an exhaust gas containing NF 3 and a reducing gas are passed through a catalyst layer heated to 200 to 800 ° C. in a down flow, and then, a position below the catalyst layer kept at 120 ° C. or higher is used. Supplying nitrogen to water. A reaction tube main body having a packed bed of the catalyst and a water introduction port at a position below the packed bed; an introduction pipe for an exhaust gas containing nitrogen trifluoride and an introduction pipe for a reducing gas on the upstream side; The present invention relates to an apparatus for removing nitrogen trifluoride, which is provided with a liquid receiver and a drain outlet pipe, and further includes a catalyst heating heater.

【0008】[0008]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の除害方法及び除害装置は、超LSIエッチ
ング装置からの排ガス、CVDクリーニングガスの排ガ
スなど、NFを含むガスの除害に適用される。このN
を含む排ガスは還元性ガスと反応し、除害される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail. The abatement method and abatement apparatus of the present invention are applied to abatement of gas containing NF 3 such as exhaust gas from a super LSI etching apparatus and exhaust gas of a CVD cleaning gas. This N
Exhaust gas containing F 3 reacts with reducing gases, abated.

【0009】還元性ガスとNFとの反応における安全
性の確保は特に重要である。これには還元性ガスとNF
が爆発性混合気体を形成しないようガス組成を制御す
ることは勿論であるが、反応に伴う発熱による反応器の
温度上昇が適切な範囲に抑えられることが重要である。
このため、NFは還元性ガスと混合されるに先立って
不活性ガスによって2容量%(以後、単に%で表示)以
下、好ましくは1.5%以下、さらに好ましくは1%以
下に希釈される。希釈用の不活性ガスとしては通常窒素
が用いられる。
[0009] ensuring safety in the reaction of the reducing gas and NF 3 is particularly important. This includes reducing gas and NF
Of course, the gas composition is controlled so that the gas mixture 3 does not form an explosive gas mixture, but it is important that the temperature rise of the reactor due to the heat generated by the reaction be suppressed to an appropriate range.
For this reason, NF 3 is diluted with an inert gas to 2% by volume or less (hereinafter simply referred to as%), preferably 1.5% or less, more preferably 1% or less before being mixed with a reducing gas. You. As the inert gas for dilution, nitrogen is usually used.

【0010】本発明の還元性ガスとは水素、アンモニア
が好適に使用される。塩化水素は、反応によりNF
還元・分解することができるガスであるが、反応管を腐
食し易いことから好ましくない。炭化水素も、還元・分
解することができるガスであるが、CFを生成するこ
とから好ましくない。
As the reducing gas of the present invention, hydrogen and ammonia are preferably used. Hydrogen chloride is a gas that can reduce and decompose NF 3 by a reaction, but is not preferable because it easily corrodes the reaction tube. Hydrocarbons are also gas that can be reduced and decomposed, but are not preferred because it generates a CF 4.

【0011】還元性ガス量は、排ガス中に含まれるNF
及び酸性ガス成分に対して、量論値若しくは量論値以
上を必要とし、好ましくは量論値の1〜2倍、更に好ま
しくは量論値の1〜1.2倍を必要とする。
The amount of reducing gas is determined by the amount of NF contained in the exhaust gas.
The stoichiometric value or more than the stoichiometric value is required for 3 and the acid gas component, preferably 1-2 times the stoichiometric value, more preferably 1-1.2 times the stoichiometric value.

【0012】NFと還元性ガスの反応は触媒によって
(1)式及び(2)式のように進行する。 NF+3H→NH+3HF・・・(1) NF+NH→N+3HF ・・・(2)
The reaction between NF 3 and the reducing gas proceeds according to the equations (1) and (2) by means of a catalyst. NF 3 + 3H 2 → NH 3 + 3HF (1) NF 3 + NH 3 → N 2 + 3HF (2)

【0013】本発明で用いられる触媒に特に制限はない
が、例えばNa、K、Cs、Mg、Ca、Sr、Ba、
Al、Ga、In、Sn、Pb、Sb、Bi、Cu、Z
n、Cd、Sc、Y、La、Hf、V、Cr、Mn、T
c、Fe、Co、Ni、Zr、Ru、Rh、Pd、A
g、Ir、Os、Pt、Au等の金属、酸化物、炭酸
塩、硫酸塩、弗化物等が挙げられる。中でもFe、C
o、Ni、Cu、Zn、Ru、Rh、Pd、Ag、I
r、Pt、Auよりなる群から選ばれる単体金属、また
はこれら元素を含有する担持触媒が好ましい。なお、坦
持触媒に用いられる担体には、AlやZnOなど
の金属酸化物やNaF、CaFなどの金属弗化物を担
体として用い、そこに活性成分を担持することも本発明
の範囲に含まれる。中でも金属弗化物は弗素化による触
媒性能の経時変化がないので、好ましい担体である。触
媒の形状は特に限定するものではないが繊維状、球状、
タブレット状、リング状、破砕品(不定型)等、任意の
形状を用いることができる。
Although the catalyst used in the present invention is not particularly limited, for example, Na, K, Cs, Mg, Ca, Sr, Ba,
Al, Ga, In, Sn, Pb, Sb, Bi, Cu, Z
n, Cd, Sc, Y, La, Hf, V, Cr, Mn, T
c, Fe, Co, Ni, Zr, Ru, Rh, Pd, A
Examples include metals such as g, Ir, Os, Pt, and Au, oxides, carbonates, sulfates, and fluorides. Among them, Fe, C
o, Ni, Cu, Zn, Ru, Rh, Pd, Ag, I
A simple metal selected from the group consisting of r, Pt, and Au, or a supported catalyst containing these elements is preferable. Note that the carrier used in the supported catalyst, metal oxide or NaF, such as Al 2 0 3 and ZnO, with a metal fluoride such as CaF 2 as a carrier, also supporting an active ingredient therein of the present invention Included in the range. Among them, metal fluorides are preferred carriers because the catalyst performance does not change with time due to fluorination. The shape of the catalyst is not particularly limited, but fibrous, spherical,
Any shape such as a tablet shape, a ring shape, and a crushed product (irregular type) can be used.

【0014】還元性ガスとNFとの反応温度は還元性
ガスの種類や触媒によって異なるが、通常150〜80
0℃の範囲で適宜選択される。なかでも250〜600
℃、好ましくは300〜400℃で反応させるのが良
い。反応温度が150℃未満では、工業的に許容される
速度で反応を進めることができず、また、800℃を越
えると、装置の耐熱性、耐食性に問題が生じ、設備費が
高くなる。
The reaction temperature of the reducing gas with NF 3 varies depending on the type of the reducing gas and the catalyst, but is usually 150 to 80.
It is appropriately selected within the range of 0 ° C. Above all, 250-600
C., preferably at 300 to 400.degree. If the reaction temperature is lower than 150 ° C., the reaction cannot proceed at an industrially acceptable rate. If the reaction temperature exceeds 800 ° C., the heat resistance and corrosion resistance of the apparatus will be problematic, and the equipment cost will increase.

【0015】以上述べたように還元性ガスと触媒を用い
NFが分解するが、分解で生じるHFが、同じく分解
で生じるNH、または還元性ガスとして用いるNH
と反応し、(3)式に示すNHF・HF(酸性弗化ア
ンモン)を形成し、触媒層の下部配管に付着し、これが
配管の閉塞原因となり、運転を停止しなければならなく
なる。
As described above, NF 3 is decomposed by using a reducing gas and a catalyst, and HF generated by decomposition is converted into NH 3 generated by decomposition or NH 3 used as a reducing gas.
To form NH 4 F.HF (ammonium fluoride acid) shown in the formula (3), which adheres to the lower pipe of the catalyst layer, which causes a blockage of the pipe, and the operation must be stopped.

【0016】従って、安全、かつ効率的な運転が損なわ
れ、定期的なメインテナンス管理を必要とされることか
ら、管理コストが増加する結果となる。 NH+2HF→NHF・HF・・・(3) 本発明は、この配管の閉塞原因となるNHF・HFを
簡便なる方法で処理し、閉塞を防止することにある。
Accordingly, safe and efficient operation is impaired, and regular maintenance management is required, resulting in an increase in management costs. NH 3 + 2HF → NH 4 F · HF (3) The present invention is to treat NH 4 F · HF, which causes blockage of the pipe, by a simple method to prevent blockage.

【0017】先ず、発明者らはNHF・HFが付着す
る部分の配管の温度を測定したところ120℃より低い
部分で付着していることを突き止めた。このことは、N
F・HFの融点が125℃であることからも理論づ
けられる結果である。そこで、NHF・HFは水に対
して可溶であることを利用し、触媒層の下部とNH
・HFが付着し始める部分の間に、水の導入管を設け、
水を供給することで閉塞を防止した。
First, the inventors of the present invention measured the temperature of the pipe at the portion where NH 4 F.HF adhered, and found that it adhered at a portion lower than 120 ° C. This means that N
This is also a theoretical result from the fact that the melting point of H 4 F · HF is 125 ° C. Therefore, utilizing the fact that NH 4 F · HF is soluble in water, NH 4 F
-Install a water introduction pipe between the parts where HF begins to adhere,
Blockage was prevented by supplying water.

【0018】水の供給量は、NFのガス容量の0.1
〜10倍、好ましくは1〜5倍の容量を通液する。水の
供給量がNFのガス容量の0.1倍未満ではNH
・HFを完全に溶解することができず、本発明の目的を
果たすことができない。また、水の供給量がNFのガ
ス容量の10倍を越えると排液の処理コストが増加する
ので好ましくない。
The supply amount of water is 0.1% of the gas volume of NF 3.
The solution is passed through 10 to 10 times, preferably 1 to 5 times the volume. If the supply amount of water is less than 0.1 times the gas capacity of NF 3 , NH 4 F
-HF cannot be completely dissolved, and the object of the present invention cannot be achieved. On the other hand, if the supply amount of water exceeds 10 times the gas capacity of NF 3 , it is not preferable because the cost of treating the wastewater increases.

【0019】触媒層に水が直接接触すると触媒の形状変
化や、能力低下となることから触媒層の上部からの水の
供給は好ましくない。従って、触媒層に水が直接接触し
ないように、三弗化窒素を含む排ガスと還元性ガスはダ
ウンフローにて触媒層に通気しなければならない。触媒
層で分解されたNFは、N、NH、HF、NH
F・HFに変化し、Nを除く殆どが水に溶解される。
If water comes into direct contact with the catalyst layer, the shape of the catalyst will change, and the capacity will decrease, so it is not preferable to supply water from above the catalyst layer. Therefore, the exhaust gas containing nitrogen trifluoride and the reducing gas must be flown downflow through the catalyst layer so that water does not directly contact the catalyst layer. NF 3 decomposed in the catalyst layer is N 2 , NH 3 , HF, NH 4
Changed to F · HF, almost excluding the N 2 is dissolved in water.

【0020】水に溶解された水溶液は、下部の受器で捕
集され、処理工程で中和処理される。従って、触媒層及
び水と接触した排ガスには、以下に説明する装置によっ
てNHやHFを除去し、そのまま大気に放出すること
が出来る。
The aqueous solution dissolved in water is collected in a lower receiver and neutralized in a processing step. Therefore, NH 3 and HF can be removed from the exhaust gas that has come into contact with the catalyst layer and water by the apparatus described below, and can be directly discharged to the atmosphere.

【0021】次に、本発明の装置について説明する。N
を含む排ガス導入管と還元性ガス導入管を、反応管
本体の上部に接続する。反応管本体は触媒充填層と水導
入管と排出口で構成され、ダウンフローにて触媒層に排
ガスが流通される。触媒層を通過したガスは下部の水導
入管より供給される水と共に下方へ流れる。この水はN
F・HFなどを溶解し、受器にて一旦回収され排液
管より排出される。
Next, the device of the present invention will be described. N
An exhaust gas inlet pipe and a reducing gas inlet tube containing F 3, connected to the upper part of the reaction tube body. The reaction tube main body is composed of a catalyst packed layer, a water introduction tube, and a discharge port, and exhaust gas flows through the catalyst layer in a down flow. The gas that has passed through the catalyst layer flows downward together with the water supplied from the lower water introduction pipe. This water is N
H 4 F, HF, etc. are dissolved, collected once in a receiver, and discharged from a drain pipe.

【0022】処理後のガスは、いくつかの方法で安全に
排気することが出来る。一つは図1に示すように、受器
中の液に反応管本体の排出口を侵液させることで、ガス
中のNHやHFを吸収させ、人体や環境に影響を及ぼ
さないガスを大気に放出する方法である。
The treated gas can be safely vented in several ways. One, as shown in FIG. 1, is to cause the liquid in the receiver to immerse the outlet of the reaction tube main body, thereby absorbing NH 3 and HF in the gas and removing the gas that does not affect the human body or the environment. It is a method of releasing to the atmosphere.

【0023】また処理後のガスを集合させ、別の経路に
導く方法として、図2に示すような構造とすることもで
きる。即ち、反応管本体の排出口を外管と内管との二重
管構造とし、外管を内管よりも長くし、外管及び内管を
受器中の液に侵液させ、外管の一部に放出管を設ける方
法である。
As a method of collecting the processed gases and guiding them to another path, a structure as shown in FIG. 2 may be employed. That is, the outlet of the reaction tube main body has a double tube structure of an outer tube and an inner tube, the outer tube is made longer than the inner tube, and the outer tube and the inner tube are immersed in the liquid in the receiver. Is a method in which a discharge tube is provided in a part of.

【0024】反応管本体の材質には、一般的にステンレ
ス、ニッケル、ハステロイが使用され、また受器の材質
には、ステンレス、ニッケル、または軟質塩ビ、ナイロ
ンを除く樹脂を用いることができる。触媒充填層の加熱
には、マントルヒーターやシースヒーター等に温度コン
トローラーを備えた加熱器を用いる。
Generally, stainless steel, nickel, and Hastelloy are used for the material of the reaction tube main body, and stainless steel, nickel, or a resin other than soft vinyl chloride and nylon can be used for the material of the receiver. A heater equipped with a temperature controller such as a mantle heater or a sheath heater is used for heating the catalyst packed bed.

【0025】[0025]

【実施例】以下、実施例により本発明を更に詳しく説明
する。 実施例1 使用する装置は、図2に示す同型状の装置であって、触
媒充填層は内径4.1mmφ×長さ76mm(1c
)とした。尚、本体の材質にニッケル、受器にはポ
リエチレン樹脂を用いた。0.5〜1mmφの粒径の酸
化銅30wt%、弗化カルシウム70wt%からなる触
媒を触媒充填層(3)に1.6g充填した。受器(8)
に予め水を溜め、水導入管(4)より10cc/hの市
水を通液し、加熱器(10)にて触媒充填層(3)を4
00℃に加熱し、排ガス導入管(1)よりNF1%、
残部窒素からなる排ガスを1L/h 、還元性ガス導入
管(2)より水素を50cc/hで反応管本体(5)に
供給し処理した。水導入管部の温度を130℃に保ちな
がら、排液は排液管(9)より回収した。また処理後の
ガスは二重管構造の排出口(6)を経てガス放出管
(7)に放出した。供給開始から24時間後と48時間
後にガス放出管(7)より出口の排ガスをガスクロマト
グラフで分析したところNFは検出されなかった。ま
た、NHF・HFによる閉塞もなかった。
The present invention will be described in more detail with reference to the following examples. Example 1 The apparatus used is the same type of apparatus shown in FIG. 2, and the catalyst packed bed has an inner diameter of 4.1 mmφ × length of 76 mm (1 c
m 3 ). The main body was made of nickel, and the receiver was made of polyethylene resin. 1.6 g of a catalyst composed of 30 wt% of copper oxide and 70 wt% of calcium fluoride having a particle size of 0.5 to 1 mmφ was filled in the catalyst packed layer (3). Receiver (8)
, And 10 cc / h of city water is passed through the water inlet pipe (4), and the catalyst packed bed (3) is heated by the heater (10).
Heated to 00 ° C, NF 3 1% from exhaust gas introduction pipe (1),
Exhaust gas consisting of the remaining nitrogen was supplied to the reaction tube main body (5) at 1 L / h and hydrogen was supplied to the reaction tube main body (5) at 50 cc / h from the reducing gas introduction pipe (2). The drainage was collected from the drainage pipe (9) while maintaining the temperature of the water inlet pipe at 130 ° C. The treated gas was discharged to a gas discharge pipe (7) through a discharge port (6) having a double pipe structure. 24 hours and 48 hours after the start of the supply, the exhaust gas at the outlet from the gas discharge tube (7) was analyzed by gas chromatography, and NF 3 was not detected. Also, there was no blockage by NH 4 F · HF.

【0026】実施例2 実施例1と同じ装置を用い、使用する触媒が0.5〜1
mmφの粒径のパラジウム3wt%、アルミナ97wt
%からなる触媒1.0gを充填した。受器に予め水を溜
め、水導入管より5cc/hの市水を通液し、加熱器に
て触媒充填層を150℃に加熱し、排ガス導入管より実
施例と同一組成の排ガスを300cc/h還元ガス導入
部よりアンモニアを15cc/hで反応管本体に供給し
処理した。排ガスの供給開始から24時間後と96時間
後に出口の排ガスをガスクロマトグラフで分析したとこ
ろ、NFは検出されなかった。また、NHF・HF
による閉塞もなかった。
Example 2 Using the same apparatus as in Example 1, the catalyst used was 0.5 to 1
3 wt% of palladium with particle diameter of mmφ, 97 wt% of alumina
% Of the catalyst. Water was previously stored in a receiver, 5 cc / h of city water was passed through a water inlet tube, the catalyst packed layer was heated to 150 ° C. by a heater, and 300 cc of an exhaust gas having the same composition as that of the example was discharged from the exhaust gas inlet tube. / H Ammonia was supplied to the reaction tube body at a rate of 15 cc / h from the reducing gas introduction section for treatment. When the exhaust gas at the outlet was analyzed by gas chromatography 24 hours and 96 hours after the start of the supply of the exhaust gas, NF 3 was not detected. In addition, NH 4 F ・ HF
There was no occlusion due to.

【0027】実施例3 使用する触媒が線径0.05mmφ、長さ40mの金属
ニッケル(純度97wt%)を1cmの充填層に充填
した以外は実施例1と同様の方法で処理した。排ガスの
供給開始から24時間後と96時間後に出口の排ガスを
ガスクロマトグラフで分析したが、NFは検出されな
かった。
Example 3 A treatment was carried out in the same manner as in Example 1, except that the catalyst used was a nickel layer having a wire diameter of 0.05 mmφ and a length of 40 m (purity: 97 wt%) filled in a 1 cm 3 packed bed. The exhaust gas at the outlet was analyzed by gas chromatography 24 hours and 96 hours after the start of the supply of the exhaust gas, but NF 3 was not detected.

【0028】実施例4 水導入管からの市水の通液量を1cc/hとした以外は
実施例1と同様の方法で処理した。排ガスの供給開始か
ら24時間後と48時間後に出口の排ガスをガスクロマ
トグラフで分析したが、NFは検出されなかった。ま
た、NHF・HFによる閉塞もなかった。
Example 4 A treatment was performed in the same manner as in Example 1 except that the flow rate of city water from the water inlet pipe was 1 cc / h. After 24 hours and 48 hours from the start of the supply of the exhaust gas, the exhaust gas at the outlet was analyzed by gas chromatography, but NF 3 was not detected. Also, there was no blockage by NH 4 F · HF.

【0029】比較例1 水導入管からの市水の通液をやめた以外は実施例1と同
様の方法で処理した。排ガスの供給開始から20時間後
に排ガス供給側の圧力が上昇し始め、24時間後に完全
に閉塞したため、処理を中止した。状態を観察したとこ
ろ、触媒層の下部より下方約4cm当たりに白い結晶が
詰まっていた。この結晶を分析したところNHF・H
Fであることが判明した。
Comparative Example 1 A treatment was performed in the same manner as in Example 1 except that the flow of city water from the water introduction pipe was stopped. The pressure on the exhaust gas supply side began to rise 20 hours after the start of the supply of the exhaust gas, and was completely blocked 24 hours later, so the treatment was stopped. When the state was observed, white crystals were clogged about 4 cm below the lower part of the catalyst layer. When this crystal was analyzed, NH 4 F · H
It turned out to be F.

【0030】比較例2 水導入管部の温度を110℃に保った以外は実施例1と
同様の方法で処理した。排ガスの供給開始から30時間
後に排ガス供給側の圧力が上昇し始め、32時間後に完
全に閉塞したため、処理を中止した。状態を観察したと
ころ、水導入管部の上部白い結晶が詰まっていた。この
結晶を分析したところNHF・HFであることが判明
した。
Comparative Example 2 A treatment was performed in the same manner as in Example 1 except that the temperature of the water inlet tube was maintained at 110 ° C. The pressure on the exhaust gas supply side started to rise 30 hours after the start of the supply of the exhaust gas, and was completely blocked 32 hours later, so the treatment was stopped. Observation of the state revealed that white crystals at the top of the water inlet tube were clogged. Analysis of this crystal revealed that it was NH 4 F.HF.

【0031】比較例3 触媒層の温度を100℃とした以外は実施例1と同様の
方法で処理した。排ガスの供給開始から1時間後と24
時間後に出口の排ガスをガスクロマトグラフで分析した
が、NFは殆ど分解されていなかった。
Comparative Example 3 A treatment was performed in the same manner as in Example 1 except that the temperature of the catalyst layer was changed to 100 ° C. One hour after the start of exhaust gas supply and 24 hours
After an hour, the exhaust gas at the outlet was analyzed by gas chromatography, and it was found that NF 3 was hardly decomposed.

【0032】[0032]

【発明の効果】本発明のNF除害方法および装置を用
いることにより、CVD装置内でのNF消費割合の変
化やCVD装置出口での希釈用窒素の変動に関わらず、
NFを還元性ガスと安全に反応させ、除害することが
できる。また、還元反応で発生した弗素化合物による閉
塞に対し、水を加えることにより防止し、同時にガス相
への弗素化合物の混入を防止することができるので、除
害装置のランニングコストを低減することができる。
By using the method and apparatus for removing NF 3 according to the present invention, regardless of the change in the NF 3 consumption rate in the CVD apparatus or the change in the dilution nitrogen at the exit of the CVD apparatus.
NF 3 can safely react with the reducing gas and be harmed. In addition, it is possible to prevent blockage due to the fluorine compound generated by the reduction reaction by adding water and at the same time prevent the fluorine compound from being mixed into the gas phase, thereby reducing the running cost of the abatement apparatus. it can.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の除害装置の一例を示す構成図FIG. 1 is a configuration diagram showing an example of an abatement apparatus of the present invention.

【図2】本発明の除害装置の一例を示す構成図FIG. 2 is a configuration diagram showing an example of the abatement apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 排ガス導入管 2 還元性ガス導入管 3 触媒充填層 4 水導入管 5 反応管本体 6 二重管構造の排出口 7 ガス放出管 8 受器 9 排液管 10 加熱器 DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction pipe 2 Reducing gas introduction pipe 3 Catalyst packing layer 4 Water introduction pipe 5 Reaction tube main body 6 Double pipe structure outlet 7 Gas discharge pipe 8 Receiver 9 Drain pipe 10 Heater

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 三弗化窒素を含む排ガスと還元性ガス
をダウンフローで150〜800℃に加熱した触媒層に
通気したのち、120℃以上に保たれた触媒層より下部
の位置に水を供給することを特徴とする三弗化窒素の除
害方法。
An exhaust gas containing nitrogen trifluoride and a reducing gas are passed downflow through a catalyst layer heated to 150 to 800 ° C., and then water is dropped to a position below the catalyst layer maintained at 120 ° C. or higher. A method for removing nitrogen trifluoride, comprising supplying nitrogen trifluoride.
【請求項2】 触媒がFe、Co、Ni、Cu、Z
n、Ru、Rh、Pd、Ag、Ir、Pt、Auよりな
る単体金属、またはこれらの金属元素の群から選ばれる
元素を含有する固体触媒であることを特徴とする請求項
1記載の三弗化窒素の除害方法。
2. The catalyst according to claim 1, wherein the catalyst is Fe, Co, Ni, Cu, Z.
3. The trifluoride according to claim 1, wherein the catalyst is a single metal comprising n, Ru, Rh, Pd, Ag, Ir, Pt, and Au, or a solid catalyst containing an element selected from the group consisting of these metal elements. How to remove nitrogen iodide.
【請求項3】 還元性ガスに水素、アンモニアを用い
ることを特徴とする請求項1記載の三弗化窒素の除害方
法。
3. The method for removing nitrogen trifluoride according to claim 1, wherein hydrogen or ammonia is used as the reducing gas.
【請求項4】 水の供給量が、NFのガス容量の
0.1〜10倍であることを特徴とする請求項1記載の
三弗化窒素の除害方法。
4. The method for removing nitrogen trifluoride according to claim 1, wherein the supply amount of water is 0.1 to 10 times the gas capacity of NF 3 .
【請求項5】 触媒の充填層と充填層より下部の位置
に水の導入口を備えた反応管本体と、該反応管本体の上
流側に三弗化窒素を含む排ガスの導入管と還元性ガスの
導入管、下流側に排液の受器と排液の出口管を設け、更
に触媒加熱用ヒータを備えた装置からなる三弗化窒素の
除害装置。
5. A reaction tube main body having a catalyst packed bed and a water inlet at a position below the packed bed, an exhaust gas introduction tube containing nitrogen trifluoride upstream of the reaction tube main body, and a reducing agent. A nitrogen trifluoride detoxification device comprising a gas inlet pipe, a drain receiver and a drain outlet pipe on the downstream side, and a catalyst heating heater.
【請求項6】 反応管本体の出口が、二重管構造とな
っていることを特徴とする請求項5記載の三弗化窒素の
除害方法。
6. The method for removing nitrogen trifluoride according to claim 5, wherein the outlet of the reaction tube main body has a double tube structure.
【請求項7】 反応管本体の出口管が、受器中の液に
侵液されていることを特徴とする請求項5記載の三弗化
窒素の除害方法。
7. The method for removing nitrogen trifluoride according to claim 5, wherein the outlet pipe of the reaction tube main body is immersed in the liquid in the receiver.
【請求項8】 反応管本体の材質に、ステンレス、ニ
ッケル、ハステロイを用いることを特徴とする請求項5
記載の三弗化窒素の除害装置。
8. The reaction tube body is made of stainless steel, nickel, or Hastelloy.
An apparatus for removing nitrogen trifluoride according to claim 1.
【請求項9】 受器の材質に、ステンレス、ニッケ
ル、ハステロイまたは、軟質塩ビ、ナイロンを除く樹脂
を用いることを特徴とする請求項5記載の三弗化窒素の
除害装置。
9. The nitrogen trifluoride abatement apparatus according to claim 5, wherein a material other than stainless steel, nickel, Hastelloy, or soft vinyl chloride or nylon is used as a material of the receiver.
JP9258966A 1997-09-24 1997-09-24 Method for detoxifying nitrogen trifluoride and apparatus therefor Pending JPH1190179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9258966A JPH1190179A (en) 1997-09-24 1997-09-24 Method for detoxifying nitrogen trifluoride and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9258966A JPH1190179A (en) 1997-09-24 1997-09-24 Method for detoxifying nitrogen trifluoride and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH1190179A true JPH1190179A (en) 1999-04-06

Family

ID=17327502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9258966A Pending JPH1190179A (en) 1997-09-24 1997-09-24 Method for detoxifying nitrogen trifluoride and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH1190179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921519B2 (en) 2001-01-24 2005-07-26 Ineos Fluor Holdings Limited Decomposition of fluorine containing compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921519B2 (en) 2001-01-24 2005-07-26 Ineos Fluor Holdings Limited Decomposition of fluorine containing compounds

Similar Documents

Publication Publication Date Title
JP4237942B2 (en) Method and apparatus for treating exhaust gas containing fluorine-containing compound
JPH0280310A (en) Purifying method for gaseous nf3
EP1029580B1 (en) Method for removing nitrogen oxides in exhaust gas
JPH1190179A (en) Method for detoxifying nitrogen trifluoride and apparatus therefor
JPH0716583B2 (en) Method for dry treatment of exhaust gas containing chlorine fluoride
JP2004249285A (en) Method of decomposing fluoride compound
JP3260825B2 (en) How to purify harmful gases
JP3216868B2 (en) Decomposition method of halide gas
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP3650588B2 (en) Perfluoro compound recycling method
JP2000093740A (en) Method for denitrating exhaust gas showing fluctuation of concentration of nitrogen oxide
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JP3263968B2 (en) Treatment of wastewater containing nitrate
JPH1119472A (en) Method and device of removing nitrogen trifluoride
JPH1190180A (en) Method for detoxifying nitrogen trifluoride
JPS62213822A (en) Treatment of gas containing arsine
JP3228459B2 (en) Decomposition method of halide gas
JPH1157409A (en) Method for eliminating harmful effects of nitrogen trifluoride and harmful effects elimination device
JPH0857255A (en) Fluorocarbon decomposing apparatus
JPH11128675A (en) Removal of chlorine or chlorine compound and apparatus therefor
JP3457143B2 (en) Method of treating water containing imidazolidinone compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JPS63209736A (en) Process for removing arsine and phosphine
JPH1119471A (en) Method and device of removing nitrogen trifluoride
JP3265629B2 (en) Treatment of wastewater containing ammonia and fluorine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808