JPH1171501A - Epoxy resin composition and cured material using the same - Google Patents

Epoxy resin composition and cured material using the same

Info

Publication number
JPH1171501A
JPH1171501A JP23342197A JP23342197A JPH1171501A JP H1171501 A JPH1171501 A JP H1171501A JP 23342197 A JP23342197 A JP 23342197A JP 23342197 A JP23342197 A JP 23342197A JP H1171501 A JPH1171501 A JP H1171501A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
phenol
composition according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23342197A
Other languages
Japanese (ja)
Inventor
Kenichi Tomioka
健一 富岡
Shigeo Sase
茂雄 佐瀬
Mare Takano
希 高野
Tomio Fukuda
富男 福田
Michitoshi Arata
道俊 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23342197A priority Critical patent/JPH1171501A/en
Publication of JPH1171501A publication Critical patent/JPH1171501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition useful for a laminate, an adhesive, etc., capable of maintaining heat resistance and mechanical characteristics of resin, reducing a dielectric constant at a low cost and retaining high insulation reliability, by using each a specific epoxy resin, a curing agent and an antioxidant. SOLUTION: This composition comprises (A) a methine bond type alkyl- substituted polyfunctional epoxy resin of formula I (R2 is a 1-4C alkyl; R1 is H or R2 ; (n) is 0-10), (B) a curing agent which is a compound of formula II (R1 and R2 are each H or a 1-4C alkyl; X is a 1-4C alkyl, phenyl or tolyl; (m) and (n) are each 1-10), (C) a curing promoter such as 1-methylimidazole and (D) an antioxidant such as phenol-based antioxidant. Preferably, the composition comprises 50-150 pts.wt. of the component B and 50-150 pts.wt. of the component D based on 100 pts.wt. of the component A and 0.1-5 pts.wt. of the component C based on 100 pts.wt. of the total of the components A and B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層板用樹脂、電
気絶縁用注型樹脂、各種接着剤用樹脂として有用な誘電
特性、耐水性、耐熱性に優れたエポキシ樹脂組成物及び
それを用いた硬化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition having excellent dielectric properties, water resistance and heat resistance, which is useful as a resin for a laminated board, a casting resin for electrical insulation, and a resin for various adhesives. The cured product.

【0002】[0002]

【従来の技術】従来より積層板用樹脂には、接着性、機
械特性、耐熱性、耐薬品性及び電気特性等に優れるエポ
キシ樹脂組成物が広く用いられている。近年、プリント
配線板の高密度、高多層化が進むに伴い、実装生産性や
信頼性の向上を目的に積層板の耐熱性向上が強く望まれ
るようになった。また、コンピューター等の電子機器で
は、信号の高速化や高周波数化に伴いプリント配線板で
の信号の伝搬遅延やクロストークの発生等の伝送特性が
問題になっており、エポキシ積層板用樹脂に誘電率の低
い材料が求められている。しかし、従来のガラス布を基
材とするエポキシ樹脂積層板の誘電率は4.7〜5.0
と高く、十分な伝送特性を得ることができなかった。
2. Description of the Related Art Conventionally, epoxy resins having excellent adhesiveness, mechanical properties, heat resistance, chemical resistance, electrical properties, etc. have been widely used as resins for laminates. In recent years, as the density of printed wiring boards has increased and the number of layers has increased, there has been a strong demand for improved heat resistance of laminated boards for the purpose of improving mounting productivity and reliability. Also, in electronic equipment such as computers, transmission characteristics such as signal propagation delay and occurrence of crosstalk on printed wiring boards have become a problem due to higher speed and higher frequency of signals. Materials having a low dielectric constant are required. However, the dielectric constant of the conventional epoxy resin laminate based on glass cloth is 4.7 to 5.0.
High transmission characteristics could not be obtained.

【0003】そこでエポキシ樹脂積層板には耐熱性向上
の手法として多官能エポキシ樹脂をジシアンジアミドで
硬化させる方法や,多官能フェノール樹脂で硬化させる
方法等が行われている。
Therefore, a method of curing a polyfunctional epoxy resin with dicyandiamide, a method of curing with a polyfunctional phenol resin, and the like have been used to improve the heat resistance of the epoxy resin laminate.

【0004】また耐熱性に優れるエポキシ樹脂積層板の
誘電特性を改善することを目的として以下に示す提案が
なされている。例えば、エポキシ樹脂を特開昭60−1
35425号公報に示されているポリ4−メチル−1−
ペンテン、特開昭61−126162号公報に示されて
いるフェノール類付加ブタジエン重合体、特開昭62−
187736号公報に示されている末端カルボキシ基変
性ポリブタジエン、特開平4−13717号公報に示さ
れているプロパルギルエーテル化芳香族炭化水素などと
反応させる方法がある。また、特開昭57−83090
号公報に示されているように樹脂層に中空粒子を混在さ
せる、特開平2−203594号公報に示されているフ
ッ素樹脂粉末を配合する、特開平3−84040号公報
に示されている基材に芳香族ポリアミド繊維を用いる、
特開平4−24986号公報に示されているようにガラ
ス布基材フッ素樹脂プリプレグとガラス布基材エポキシ
樹脂プリプレグを重ねて用いる方法等がある。
The following proposals have been made for the purpose of improving the dielectric properties of an epoxy resin laminate having excellent heat resistance. For example, epoxy resin is disclosed in
No. 35425, poly 4-methyl-1-
Pentene, a phenol-added butadiene polymer disclosed in JP-A-61-126162;
There is a method of reacting with a polybutadiene modified with a terminal carboxy group described in JP-A-187736, a propargyl etherified aromatic hydrocarbon described in JP-A-4-13717, and the like. Further, Japanese Patent Application Laid-Open No. 57-83090
Japanese Patent Application Laid-Open No. 3-84040 discloses a method in which hollow particles are mixed in a resin layer as shown in Japanese Patent Application Laid-Open No. 3-84040. Using aromatic polyamide fiber for the material,
As disclosed in JP-A-4-24986, there is a method in which a glass cloth base fluororesin prepreg and a glass cloth base epoxy resin prepreg are stacked and used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
60−135425号公報、特開昭61−126162
号公報及び特開昭62−187736号公報に示されて
いるようなポリ−4−メチル−1−ペンテン、フェノー
ル類付加ブタジエン重合体、末端カルボキシ基変性ポリ
ブタジエン等の炭化水素系重合体とエポキシ樹脂を反応
させる方法は、誘電率は低くなるもののエポキシ樹脂本
来の耐熱性を損なうという問題点があった。また、特開
平4−13717号公報に示されているプロパルギルエ
ーテル化芳香族炭化水素等と反応させる方法は、耐熱性
は高いものの特殊な樹脂を使うためコストが非常に高く
なるという問題点があった。
However, Japanese Patent Application Laid-Open Nos. 60-135425 and 61-126162 disclose the method.
Polymers such as poly-4-methyl-1-pentene, phenol-added butadiene polymer, polybutadiene modified with a terminal carboxy group, and epoxy resins as disclosed in JP-A-62-187736 and JP-A-62-187736. Has a problem that the inherent heat resistance of the epoxy resin is impaired, although the dielectric constant is lowered. Also, the method of reacting with propargyl etherified aromatic hydrocarbons disclosed in Japanese Patent Application Laid-Open No. Hei 4-13717 has a problem that the heat resistance is high but the cost is extremely high because a special resin is used. Was.

【0006】また、特開昭57−83090号公報や特
開平2−203594号公報に示されているような樹脂
層に中空粒子を混在させる方法やフッ素樹脂粉末を配合
する方法、特開平3−84040号公報や特開平4−2
4986号公報に示されているような基材に芳香族ポリ
アミド繊維を用いる方法や、ガラス布基材フッ素樹脂プ
リプレグを重ねて用いる方法では、積層板としての誘電
率は低くなるものの従来のガラス布基材エポキシ樹脂積
層板と比べ機械特性が低下するという問題点があった。
Further, a method of mixing hollow particles in a resin layer, a method of blending a fluororesin powder, a method of blending a fluororesin powder, and a method disclosed in JP-A-57-83090 and JP-A-2-203594. No. 84040 and JP-A-4-24-2
In the method using an aromatic polyamide fiber on a substrate as described in JP-A-4986 or the method using a glass cloth substrate with a fluororesin prepreg laminated thereon, the dielectric constant of the laminated plate is low, but the conventional glass cloth is used. There was a problem that the mechanical properties were lower than that of the base epoxy resin laminate.

【0007】さらに、ジシアンジアミド硬化系は吸湿性
が高くなる欠点があり、半導体パッケージ用途での高い
絶縁信頼性を満足することは困難となっている。特に絶
縁材料上または絶縁材料内に配線や回路パターンあるい
は電極などを構成する金属が、高湿環境下、電位差の作
用によって絶縁材料上または絶縁材料内を移行する金属
マイグレーション(電食)の発生は非常に大きな問題と
なってきている。また、多官能フェノール硬化系は樹脂
硬化物が剛直となり、スルーホールのドリル加工時など
に微少なクラックが発生しやすく、この微少クラックか
ら金属マイグレーションが発生することが懸念されてお
り、高い絶縁信頼性を満足できない。
Further, the dicyandiamide curing system has a drawback that the hygroscopicity becomes high, and it is difficult to satisfy the high insulation reliability for semiconductor package applications. In particular, the occurrence of metal migration (electrolytic corrosion) in which a metal constituting wiring, a circuit pattern, or an electrode moves on or in an insulating material due to the action of a potential difference in a high-humidity environment on or in the insulating material. It has become a very big problem. In addition, in the case of the polyfunctional phenol-cured resin, the cured resin becomes rigid, and minute cracks are likely to occur during drilling of through holes, and there is concern that metal migration may occur from these minute cracks. I can't satisfy her.

【0008】本発明は、従来のエポキシ樹脂積層板の耐
熱性や機械特性を損ねることなく、比較的低コストで積
層板等の誘電率を低下することができ、かつ金属マイグ
レーションの発生を抑え、高い絶縁信頼性を保つエポキ
シ樹脂組成物及びそれを用いた硬化物を提供するもので
ある。ここでは、エポキシ樹脂積層板を例にして示した
が、電気絶縁用注型樹脂、各種接着剤用樹脂においても
同様であるので以下積層板を代表として示す。
The present invention can reduce the dielectric constant of a laminate or the like at a relatively low cost without impairing the heat resistance and mechanical properties of a conventional epoxy resin laminate, and suppress the occurrence of metal migration. An object of the present invention is to provide an epoxy resin composition which maintains high insulation reliability and a cured product using the same. Here, an epoxy resin laminate is shown as an example, but the same applies to a cast resin for electrical insulation and a resin for various adhesives.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、特開平6−172988号公報等に示さ
れているエポキシ樹脂の硬化剤として1分子中に1個以
上の活性エステル基を持つ化合物を用いて誘電率を低下
させる方法に着目して、高い耐熱性と誘電特性の向上
(低減)、さらに耐電食性の向上を目的に鋭意検討し
た。その結果、エポキシ樹脂の主成分に式1に示したメ
チン結合型アルキル置換多官能エポキシ樹脂、硬化剤の
主成分に1分子中に1個以上の活性エステル基を有する
化合物、添加剤として酸化防止剤を用いることで耐熱
性、誘電特性および耐電食性を向上できることを見出
し、本発明を完成するに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have disclosed, as a curing agent for an epoxy resin disclosed in JP-A-6-172988 or the like, one or more active esters in one molecule. Focusing on a method of lowering the dielectric constant using a compound having a group, the inventors have made intensive studies with the aim of improving heat resistance, improving (reducing) dielectric properties, and further improving electrolytic corrosion resistance. As a result, a methine-bonded alkyl-substituted polyfunctional epoxy resin represented by the formula 1 as a main component of the epoxy resin, a compound having one or more active ester groups in one molecule as a main component of the curing agent, and an antioxidant as an additive It has been found that heat resistance, dielectric properties, and corrosion resistance can be improved by using an agent, and the present invention has been completed.

【0010】すなわち、本発明は、(A)1分子中に2
個以上のエポキシ基を持つエポキシ樹脂、(B)硬化
剤、(C)硬化促進剤および(D)酸化防止剤を含むエ
ポキシ樹脂組成物において、(A)1分子中に2個以上
のエポキシ基を持つエポキシ樹脂が式1で表されるメチ
ン結合型アルキル置換多官能エポキシ樹脂であり、
(B)硬化剤が式2で表される1分子中に1個以上の活
性エステル基を有する化合物であるエポキシ樹脂組成物
である。
[0010] That is, the present invention relates to (A) two molecules per molecule.
In an epoxy resin composition containing an epoxy resin having two or more epoxy groups, (B) a curing agent, (C) a curing accelerator, and (D) an antioxidant, (A) two or more epoxy groups in one molecule Is a methine-bonded alkyl-substituted polyfunctional epoxy resin represented by Formula 1,
(B) An epoxy resin composition in which the curing agent is a compound represented by Formula 2 and having one or more active ester groups in one molecule.

【0011】[0011]

【化3】 Embedded image

【0012】[0012]

【化4】 Embedded image

【0013】また、本発明は、(A)1分子中に2個以
上のエポキシ基を持つエポキシ樹脂100重量部に対
し、(B)硬化剤50〜150重量部、(A)と(B)
の合計100重量部に対し(C)硬化促進剤0.1〜5
重量部及び(D)酸化防止剤をエポキシ樹脂100重量
部に対し0.1〜20重量部を含むと好ましいエポキシ
樹脂組成物である。
Further, the present invention relates to (A) 100 to 100 parts by weight of an epoxy resin having two or more epoxy groups per molecule, (B) 50 to 150 parts by weight of a curing agent, (A) and (B)
(C) 0.1 to 5
It is a preferable epoxy resin composition to contain 0.1 to 20 parts by weight of the antioxidant (D) and 100 to 100 parts by weight of the epoxy resin.

【0014】[0014]

【発明の実施の形態】本発明のエポキシ樹脂組成物に用
いられる(A)1分子中に2個以上のエポキシ基を持つ
エポキシ樹脂は、式1に示したメチン結合型アルキル置
換多官能エポキシ樹脂を主成分とする。式1に示したメ
チン結合型アルキル置換多官能エポキシ樹脂は一つの製
法として、アルキル置換フェノールと芳香族アルデヒド
の縮合物をグリシジルエーテル化することで得ることが
できる。また1分子中に2個以上のエポキシ基を持つエ
ポキシ樹脂として、上記式1で表されるエポキシ樹脂と
その他のビスフェノールA型エポキシ樹脂、臭素化ビス
フェノールA型エポキシ樹脂、フェノールノボラック型
エポキシ樹脂、臭素化フェノールノボラック型エポキシ
樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニ
ル型エポキシ樹脂及びフェノールサリチルアルデヒドノ
ボラック型エポキシ樹脂から選ばれる少なくとも1種以
上の混合物を使用することができる。メチン結合型アル
キル置換多官能エポキシ樹脂とその他のエポキシ樹脂と
の混合割合は、メチン結合型アルキル置換多官能エポキ
シ樹脂100重量部に対して、その他のエポキシ樹脂を
1〜70重量部配合することが好ましい。1重量部未満
では配合効果に乏しく、70重量部を超えると誘電特性
やTg(ガラス転移温度)が低下するため好ましくな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin (A) having two or more epoxy groups in one molecule used in the epoxy resin composition of the present invention is a methine-bonded alkyl-substituted polyfunctional epoxy resin represented by the formula 1. As a main component. The methine bond type alkyl-substituted polyfunctional epoxy resin represented by the formula 1 can be obtained by one method of glycidyl etherification of a condensate of an alkyl-substituted phenol and an aromatic aldehyde. Further, as an epoxy resin having two or more epoxy groups in one molecule, epoxy resin represented by the above formula 1 and other bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, phenol novolak type epoxy resin, bromine A mixture of at least one selected from a phenolized novolak type epoxy resin, a cresol novolak type epoxy resin, a biphenyl type epoxy resin and a phenol salicylaldehyde novolak type epoxy resin can be used. The mixing ratio of the methine-bonded alkyl-substituted polyfunctional epoxy resin and the other epoxy resin may be 1 to 70 parts by weight of the other epoxy resin per 100 parts by weight of the methine-bonded alkyl-substituted polyfunctional epoxy resin. preferable. If it is less than 1 part by weight, the compounding effect is poor, and if it exceeds 70 parts by weight, the dielectric properties and Tg (glass transition temperature) are undesirably reduced.

【0015】本発明に用いるメチン結合型アルキル置換
多官能エポキシ樹脂は、アルキル置換フェノールと芳香
族アルデヒドの縮合物をグリシジルエーテル化すること
で得ることができる。この合成に用いられるアルキル置
換フェノールとしてクレゾール類、t−ブチルフェノー
ル、2,5−キシレノール、3−メチル−6−t−ブチ
ルフェノールから選ばれる少なくとも1種以上を用いる
ことが好ましい。一方、芳香族アルデヒドは、サリチル
アルデヒドまたはp−ヒドロキシベンズアルデヒドから
選ばれる少なくとも1種以上を用いることが好ましい。
The methine-bonded alkyl-substituted polyfunctional epoxy resin used in the present invention can be obtained by subjecting a condensate of an alkyl-substituted phenol and an aromatic aldehyde to glycidyl etherification. As the alkyl-substituted phenol used in this synthesis, it is preferable to use at least one selected from cresols, t-butylphenol, 2,5-xylenol, and 3-methyl-6-t-butylphenol. On the other hand, it is preferable to use at least one kind of aromatic aldehyde selected from salicylaldehyde and p-hydroxybenzaldehyde.

【0016】アルキル置換フェノールと芳香族アルデヒ
ドとの縮合は、アルキル置換フェノール類1モルに対
し、芳香族アルデヒド化合物0.8〜2.0モルの割合
で、180℃の温度で、公知のフェノールノボラック樹
脂合成用の酸性触媒、例えば塩酸、硫酸、リン酸等の鉱
酸、シュウ酸、トルエンスルフォン酸等の有機酸、酢酸
亜鉛等の塩の存在下に行う。その後、縮合物にエピクロ
ルヒドリンを使用してグリシジルエーテル化反応を行
い、アルキル置換フェノールと芳香族アルデヒドの縮合
物をグリシジルエーテル化したメチン結合型アルキル置
換多官能エポキシ樹脂を得る。
The condensation of an alkyl-substituted phenol with an aromatic aldehyde is carried out at a ratio of 0.8 to 2.0 mol of the aromatic aldehyde compound per mol of the alkyl-substituted phenol at a temperature of 180 ° C. using a known phenol novolak. The reaction is carried out in the presence of an acidic catalyst for resin synthesis, for example, a mineral acid such as hydrochloric acid, sulfuric acid or phosphoric acid, an organic acid such as oxalic acid or toluenesulfonic acid, or a salt such as zinc acetate. Thereafter, a glycidyl etherification reaction is performed on the condensate using epichlorohydrin to obtain a methine-bonded alkyl-substituted polyfunctional epoxy resin in which a condensate of an alkyl-substituted phenol and an aromatic aldehyde is glycidyl-etherified.

【0017】本発明で用いる(B)硬化剤は、式2で表
される1分子中に1個以上の活性エステル基を有する化
合物を主成分として用いる。
As the curing agent (B) used in the present invention, a compound represented by the formula (2) having one or more active ester groups in one molecule is used as a main component.

【0018】1分子中に1個以上の活性エステル基を有
する化合物は、多官能フェノール類化合物のフェノール
性水酸基が芳香族酸あるいは脂肪酸エステル化されてい
る化合物である。活性エステル化フェノール類化合物の
具体的な例としては、式2で表される芳香族あるいは脂
肪酸エステル化フェノール類ノボラック樹脂等が挙げら
れる。具体的には、アセチル化フェノールノボラック樹
脂、ベンゾイル化フェノールノボラック樹脂、プロピオ
ニル化フェノールノボラック樹脂、ブチリル化フェノー
ルノボラック樹脂、アルキルベンゾイル化フェノールノ
ボラック樹脂、アセチル化クレゾールノボラック樹脂、
ベンゾイル化クレゾールノボラック樹脂、プロピオニル
化クレゾールノボラック樹脂、ブチリル化クレゾールノ
ボラック樹脂、アルキルベンゾイル化クレゾールノボラ
ック樹脂等が挙げられる。式2で表されるように、フェ
ノール性水酸基の全部をエステル化せずに残存させても
良く、エステル化しない多官能フェノール類化合物が残
存していても良い。これらの1分子中に1個以上の活性
エステル基を持つ化合物は、多官能フェノール類化合物
を芳香族または脂肪族カルボン酸の酸無水物または酸塩
化物でエステル化することで得ることができる。
The compound having one or more active ester groups in one molecule is a compound in which a phenolic hydroxyl group of a polyfunctional phenol compound is esterified with an aromatic acid or a fatty acid. Specific examples of the active esterified phenol compound include an aromatic or fatty acid esterified phenol novolak resin represented by Formula 2. Specifically, acetylated phenol novolak resin, benzoylated phenol novolak resin, propionylated phenol novolak resin, butyrylated phenol novolak resin, alkylbenzoylated phenol novolak resin, acetylated cresol novolak resin,
Examples include benzoylated cresol novolak resin, propionylated cresol novolak resin, butyrylated cresol novolak resin, and alkylbenzoylated cresol novolak resin. As represented by Formula 2, all of the phenolic hydroxyl groups may be left without being esterified, or a non-esterified polyfunctional phenol compound may remain. The compound having one or more active ester groups in one molecule can be obtained by esterifying a polyfunctional phenol compound with an acid anhydride or an acid chloride of an aromatic or aliphatic carboxylic acid.

【0019】また(B)硬化剤には、式2で表される1
分子中に1個以上の活性エステル基を有する化合物と共
にフェノールノボラック、ビスフェノールAノボラッ
ク、クレゾールノボラック、テトラブロモビスフェノー
ルAから選ばれる少なくとも1種以上の混合物としても
良い。式2で表される1分子中に1個以上の活性エステ
ル基を有する化合物と上記多官能フェノールの混合比
は、1分子中に1個以上の活性エステル基を有する化合
物100重量部に対し、多官能フェノール5〜150重
量部とすることが好ましい。5重量部未満では配合効果
に乏しく、150重量部を超えると誘電特性が悪化する
ので好ましくない。
The (B) curing agent includes 1 represented by the formula 2
A mixture of at least one compound selected from phenol novolak, bisphenol A novolak, cresol novolak, and tetrabromobisphenol A may be used together with a compound having one or more active ester groups in the molecule. The mixing ratio of the compound having one or more active ester groups in one molecule represented by the formula 2 and the polyfunctional phenol is based on 100 parts by weight of the compound having one or more active ester groups in one molecule. It is preferable to use 5 to 150 parts by weight of the polyfunctional phenol. If the amount is less than 5 parts by weight, the compounding effect is poor, and if it exceeds 150 parts by weight, the dielectric properties deteriorate, which is not preferable.

【0020】本発明の式2で表される1分子中に1個以
上の活性エステル基を有する化合物の配合量は、芳香族
酸あるいは脂肪酸エステル基の含有量及びエステル化さ
れずに残存するフェノール性水酸基の含有量によって異
なるが、芳香族酸あるいは脂肪酸エステル基と残存する
フェノール性水酸基の両者においてエポキシ樹脂のエポ
キシ基と反応すると考えられ、両者の含有量から導かれ
る当量が硬化剤としての当量に相当する。従って、芳香
族酸あるいは脂肪酸エステル化フェノール類化合物の配
合量はエステル化しない通常の多価フェノール類化合物
と同様に、エポキシ樹脂のエポキシ当量に対して、0.
6〜1.4当量比が望ましい。通常はエポキシ樹脂10
0重量部に対して1分子中に1個以上の活性エステル基
を持つ化合物とその他の硬化剤50〜150重量部の範
囲で配合するのが望ましい。1分子中に1個以上の活性
エステル基を有する化合物とその他の硬化剤の配合量が
50重量部未満又は150重量部を超えると耐熱性や誘
電特性の向上効果が小さくなる。
The compounding amount of the compound having one or more active ester groups in one molecule represented by the formula (2) of the present invention depends on the content of the aromatic acid or fatty acid ester group and the phenol remaining without being esterified. Although it depends on the content of the acidic hydroxyl group, it is considered that both the aromatic acid or fatty acid ester group and the remaining phenolic hydroxyl group react with the epoxy group of the epoxy resin, and the equivalent derived from the content of both is equivalent to the equivalent as a curing agent. Is equivalent to Therefore, the compounding amount of the aromatic acid or fatty acid esterified phenol compound is, like the ordinary non-esterified polyhydric phenol compound, 0.1 to the epoxy equivalent of the epoxy resin.
A 6-1.4 equivalent ratio is desirable. Usually epoxy resin 10
It is desirable to mix the compound having one or more active ester groups in one molecule with the other curing agent in an amount of 50 to 150 parts by weight per 0 parts by weight. If the compounding amount of the compound having one or more active ester groups in one molecule and the other curing agent is less than 50 parts by weight or more than 150 parts by weight, the effect of improving the heat resistance and the dielectric properties is reduced.

【0021】本発明のエポキシ樹脂組成物では、エポキ
シ樹脂と硬化剤との硬化反応を促進し樹脂の耐熱性、吸
水性、誘電特性を向上させるため(C)硬化促進剤が用
いられる。従来からエポキシ樹脂と各種硬化剤との硬化
反応に用いられている硬化促進剤は、そのほとんどの化
合物が本発明のエポキシ樹脂組成物のエポキシ樹脂と硬
化剤との硬化反応を促進することが確認されている。本
発明のエポキシ樹脂組成物に用いられる硬化促進剤の具
体例としては、ジメチルベンジルアミンやトリス(ジメ
チルアミノメチル)フェノール等の三級アミン、1−メ
チルイミダゾール、2−メチルイミダゾール、2−エチ
ル−4−メチルイミダゾール等のイミダゾール類、N−
ジメチルアミノピリジン等のピリジン類、三フッ化ホウ
素モノエチルアミン錯体等のルイス酸、1,8−ジアザ
ビシクロ[5,4,0]−7−ウンデセン、1,5ジアザ
ビシクロ[4,3,0]−5−ノネン等の塩基類が挙げら
れる。この中でも、1−メチルイミダゾール、2−メチ
ルイミダゾール、2−エチル−4−メチルイミダゾール
及びN−ジメチルアミノピリジンから選ばれる少なくと
も1種以上が硬化促進作用が強く、Tgや誘電特性等が
良好となるため、特に好ましい。硬化促進剤の配合量は
(A)エポキシ樹脂と(B)硬化剤の合計100重量部
に対して、0.1〜5.0重量部用いることが好まし
い。0.1重量部未満では、硬化反応が遅く、5.0重
量部を超えると保存安定性が悪化するため好ましくな
い。
In the epoxy resin composition of the present invention, (C) a curing accelerator is used for accelerating the curing reaction between the epoxy resin and the curing agent and improving the heat resistance, water absorption and dielectric properties of the resin. It has been confirmed that most of the curing accelerators conventionally used for the curing reaction between an epoxy resin and various curing agents accelerate the curing reaction between the epoxy resin and the curing agent of the epoxy resin composition of the present invention. Have been. Specific examples of the curing accelerator used in the epoxy resin composition of the present invention include tertiary amines such as dimethylbenzylamine and tris (dimethylaminomethyl) phenol, 1-methylimidazole, 2-methylimidazole, and 2-ethyl- Imidazoles such as 4-methylimidazole, N-
Pyridines such as dimethylaminopyridine, Lewis acids such as boron trifluoride monoethylamine complex, 1,8-diazabicyclo [5,4,0] -7-undecene, 1,5 diazabicyclo [4,3,0] -5 And bases such as nonene. Among them, at least one or more selected from 1-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole and N-dimethylaminopyridine has a strong curing accelerating action, and has good Tg and dielectric properties. Therefore, it is particularly preferable. It is preferable to use 0.1 to 5.0 parts by weight of the curing accelerator based on 100 parts by weight of the total of the epoxy resin (A) and the curing agent (B). If the amount is less than 0.1 part by weight, the curing reaction is slow, and if the amount exceeds 5.0 parts by weight, the storage stability deteriorates, which is not preferable.

【0022】本発明のエポキシ樹脂組成物に用いられる
(D)酸化防止剤には、フェノール系酸化防止剤、硫黄
有機化合物系酸化防止剤などが用いられる。フェノール
性酸化防止剤としては1,2,3−トリヒドロキシベン
ゼン、ブチル化ヒドロキシアニソール、2,6−ジ−t
−ブチル−4−エチルフェノールなどのモノフェノール
系や2,2’−メチレン−ビス−(4−メチル−6−t
−ブチルフェノール)、4,4’−チオビス−(3−メ
チル−6−t−ブチルフェノール)などのビスフェノー
ル系及び1,3,5−トリメチル−2,4,6トリス
(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)
ベンゼン、テトラキス−〔メチレン−3−(3’−5’
−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピ
オネート〕メタンなどの高分子型フェノール系がある。
硫黄有機系酸化防止剤としては、ジウラリルチオプロピ
オネート、ジステアリルチオジプロピオネートなどがあ
る。これらの酸化防止剤は何種類かを併用してもよく、
配合量はエポキシ樹脂100重量部に対して0.1〜2
0重量部が好ましい。0.1重量部未満では絶縁特性の
向上は見られず、20重量部を超えると逆に絶縁特性は
低下する傾向を示す。
As the (D) antioxidant used in the epoxy resin composition of the present invention, a phenolic antioxidant, a sulfur organic compound antioxidant and the like are used. Phenolic antioxidants include 1,2,3-trihydroxybenzene, butylated hydroxyanisole, 2,6-di-t
Monobutyl-based compounds such as -butyl-4-ethylphenol and 2,2'-methylene-bis- (4-methyl-6-t
-Butylphenol), bisphenols such as 4,4'-thiobis- (3-methyl-6-t-butylphenol) and 1,3,5-trimethyl-2,4,6 tris (3,5-di-t- Butyl-4-hydroxybenzyl)
Benzene, tetrakis- [methylene-3- (3'-5 '
-Di-t-butyl-4'-hydroxyphenyl) propionate] methane.
Examples of the sulfur organic antioxidant include diuralyl thiopropionate and distearyl thiodipropionate. These antioxidants may be used in combination of several types,
The compounding amount is 0.1 to 2 with respect to 100 parts by weight of the epoxy resin.
0 parts by weight is preferred. If the amount is less than 0.1 part by weight, no improvement in insulating properties is observed, and if it exceeds 20 parts by weight, the insulating properties tend to decrease.

【0023】本発明のエポキシ樹脂組成物では、必要に
応じて臭素系難燃剤、充填剤及びその他の添加剤を配合
することができる。必要に応じて配合される充填剤とし
ては、通常、無機充填剤が好適に用いられ、溶融シリ
カ、ガラス、アルミナ、ジルコン、珪酸カルシウム、炭
酸カルシウム、窒化珪素、窒化ホウ素、ベリリア、ジル
コニア、チタン酸カリウム、珪酸アルミニウム、珪酸マ
グネシウムなどが、粉末又は球形化したビーズとして用
いられる。また、ウィスカ−、単結晶繊維、ガラス繊
維、無機系及び有機系の中空フィラ−なども配合するこ
とができる。本発明のエポキシ樹脂組成物に配合する場
合、充填剤の配合量はエポキシ樹脂、硬化剤、硬化促進
剤の合計100重量部に対し10〜300重量部配合す
ることが好ましい。10重量部未満であると配合効果に
乏しく、300重量部を超えると接着性が低下してくる
おそれがある。
In the epoxy resin composition of the present invention, a bromine-based flame retardant, a filler and other additives can be blended as required. As the filler to be blended as required, usually, an inorganic filler is suitably used, and fused silica, glass, alumina, zircon, calcium silicate, calcium carbonate, silicon nitride, boron nitride, beryllia, zirconia, titanate Potassium, aluminum silicate, magnesium silicate and the like are used as powders or spherical beads. Also, whiskers, single crystal fibers, glass fibers, inorganic and organic hollow fillers and the like can be blended. When compounded in the epoxy resin composition of the present invention, the compounding amount of the filler is preferably 10 to 300 parts by weight based on 100 parts by weight of the total of the epoxy resin, the curing agent and the curing accelerator. If the amount is less than 10 parts by weight, the compounding effect is poor, and if it exceeds 300 parts by weight, the adhesiveness may be reduced.

【0024】本発明のエポキシ樹脂組成物は加熱硬化さ
せることにより低誘電率の硬化物を得ることができる。
すなわち、本発明のエポキシ樹脂組成物を溶剤に溶解し
ていったんワニスとし、ガラス布基材に含浸し乾燥する
ことによってまずプリプレグを作製する。次いで、この
プリプレグ数枚とその上下、若しくは片面に金属箔を重
ねて加熱加圧成形することにより金属箔張り積層板とす
ることができる。
The epoxy resin composition of the present invention can be cured by heating to obtain a cured product having a low dielectric constant.
That is, the epoxy resin composition of the present invention is dissolved in a solvent to form a varnish, impregnated into a glass cloth substrate, and dried to prepare a prepreg. Next, a metal foil-clad laminate can be obtained by laminating several prepregs and metal foil on the upper, lower, or one surface thereof and then heating and pressing them.

【0025】本発明のエポキシ樹脂組成物を溶解させる
溶剤としては、グリコール系、モノエーテルグリコール
系、ケトン系、アミド系、芳香族炭化水素系、エステル
系、ニトリル系等が挙げられる。具体的には、グリコー
ル系溶剤として、ジエチレングリコール、トリエチレン
グリコール等が、モノエーテルグリコール系溶剤とし
て、エチレングリコールモノメチルエーテル等が、ケト
ン系溶剤としてアセトン、メチルエチルケトン、メチル
イソブチルケトン、シクロヘキサノン等が、アミド系溶
剤としてN−メチルピロリドン、ホルムアルデヒド、N
−メチルホルムアルデヒド、N,N−ジメチルホルムア
ミド等が、芳香族炭化水素系溶剤としてトルエン、キシ
レン等が、エステル系溶剤としてメトキシエチルアセテ
ート、エトキシエチルアセテート、酢酸エチル等が挙げ
られる。これらの溶剤は1種または2種以上を混合して
用いてもよい。
Examples of the solvent for dissolving the epoxy resin composition of the present invention include glycols, monoether glycols, ketones, amides, aromatic hydrocarbons, esters, and nitriles. Specifically, diethylene glycol, triethylene glycol and the like as glycol solvents, ethylene glycol monomethyl ether and the like as monoether glycol solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like as ketone solvents are amide solvents. N-methylpyrrolidone, formaldehyde, N
-Methylformaldehyde, N, N-dimethylformamide and the like; aromatic hydrocarbon solvents such as toluene and xylene; and ester solvents such as methoxyethyl acetate, ethoxyethyl acetate and ethyl acetate. These solvents may be used alone or in combination of two or more.

【0026】通常のエポキシ樹脂ではエポキシ基の開環
に伴って極性の高い水酸基が副生するが、1分子中に1
個以上の活性エステル基を有する化合物がエポキシ樹脂
と反応する場合には、エポキシ樹脂の開環とともに活性
エステル基を持つ化合物が反応して極性の低いエステル
が生成すると考えられる。したがって、この化合物を硬
化剤として用いることで誘電率が低下する理由として、
通常のエポキシ樹脂の硬化反応と異なり、極性の高い水
酸基を生成しないことや極性の高い水酸基が生成しても
その量が少なく硬化樹脂の分極率を低く抑えることがで
きるためと推定される。
In a normal epoxy resin, a highly polar hydroxyl group is by-produced with the ring opening of the epoxy group.
When a compound having two or more active ester groups reacts with the epoxy resin, it is considered that the compound having the active ester group reacts with the ring opening of the epoxy resin to form an ester having low polarity. Therefore, as a reason that the dielectric constant is lowered by using this compound as a curing agent,
It is presumed that unlike the ordinary epoxy resin curing reaction, a highly polar hydroxyl group is not generated, and even if a highly polar hydroxyl group is generated, the amount thereof is small and the polarizability of the cured resin can be suppressed low.

【0027】また、エポキシ樹脂に本発明のメチン結合
型アルキル置換多官能エポキシ樹脂を主成分として用い
ることにより、2官能エポキシ樹脂のみを用いた場合と
比べ架橋密度が増しガラス転移温度(Tg)を向上させ
ることができる。さらに、このエポキシ樹脂は、式1で
表されるように嵩高い骨格を有している。嵩高い骨格は
誘電率の低減に効果があるといわれており、この骨格を
硬化物中に導入することで誘電率の低減が可能と考えら
れる。さらに,フェノール系酸化防止剤または硫黄有機
化合物系酸化防止剤を配合することで、金属マイグレー
ションの発生を抑え、高い電気絶縁性を与えるエポキシ
樹脂組成物を得ることができる。
Further, by using the methine-bonded alkyl-substituted polyfunctional epoxy resin of the present invention as the main component in the epoxy resin, the crosslinking density is increased and the glass transition temperature (Tg) is increased as compared with the case where only the bifunctional epoxy resin is used. Can be improved. Further, this epoxy resin has a bulky skeleton as represented by Formula 1. It is said that a bulky skeleton is effective in reducing the dielectric constant, and it is considered that the dielectric constant can be reduced by introducing this skeleton into the cured product. Furthermore, by mixing a phenolic antioxidant or a sulfur organic compound antioxidant, an epoxy resin composition that suppresses the occurrence of metal migration and provides high electrical insulation can be obtained.

【0028】[0028]

【実施例】以下、具体例を挙げて本発明を具体的に説明
するが、本発明はこれらに限られるものではない。
EXAMPLES The present invention will now be described specifically with reference to specific examples, but the present invention is not limited to these examples.

【0029】(合成例1:芳香族アルデヒド縮合体(C
SA)の合成)温度計、冷却管、攪拌棒を備えた4つ口
セパラブルフラスコ中に、o−クレゾール865gと、
サリチルアルデヒド1465g及びp−トルエンスルホ
ン酸(一水塩)0.87gを180℃で攪拌下、6時間
反応させた。その後、10重量%水酸化ナトリウム溶液
で中和した後、トルエン3リットルに溶解し、2回水洗
した後、トルエン及び未反応モノマーを蒸留により除去
し、アルキル置換フェノールの芳香族アルデヒド縮合体
(CSA)1571gを得た。
(Synthesis Example 1: Condensation product of aromatic aldehyde (C
Synthesis of SA) 865 g of o-cresol was placed in a four-neck separable flask equipped with a thermometer, a cooling tube, and a stir bar.
1465 g of salicylaldehyde and 0.87 g of p-toluenesulfonic acid (monohydrate) were reacted at 180 ° C. with stirring for 6 hours. Then, after neutralizing with a 10% by weight sodium hydroxide solution, dissolving in 3 liters of toluene, washing twice with water, removing toluene and unreacted monomers by distillation, and aromatic condensate of alkyl-substituted phenol (CSA) ) 1571 g was obtained.

【0030】(合成例2:芳香族アルデヒド縮合体(T
BHA)の合成)合成例1のo−クレゾールの代わりに
t−ブチルフェノール1202g、サリチルアルデヒド
の代わりにp−ヒドロキシベンズアルデヒド1465
g、p−トルエンスルホン酸1.20gとした他は合成
例1と同様にしてアルキル置換フェノールの芳香族アル
デヒド縮合体(TBHA)1840gを得た。
(Synthesis Example 2: Condensation product of aromatic aldehyde (T
Synthesis of BHA) 1202 g of t-butylphenol in place of o-cresol of Synthesis Example 1 and 1465 of p-hydroxybenzaldehyde in place of salicylaldehyde
g, p-toluenesulfonic acid 1.20 g, except that 1,840 g of an aromatic aldehyde condensate (TBHA) of an alkyl-substituted phenol was obtained in the same manner as in Synthesis Example 1.

【0031】(合成例3:芳香族アルデヒド縮合体(X
SA)の合成)合成例1のo−クレゾールの代わりに
2,5キシレノール977g、p−トルエンスルホン酸
0.98gとした他は合成例1と同様にしてアルキル置
換フェノールの芳香族アルデヒド縮合体(XSA)16
61gを得た。
Synthesis Example 3: Condensation product of aromatic aldehyde (X
Synthesis of SA) In the same manner as in Synthesis Example 1 except that 977 g of 2,5-xylenol and 0.98 g of p-toluenesulfonic acid were used instead of o-cresol of Synthesis Example 1, an aromatic aldehyde condensate of an alkyl-substituted phenol ( XSA) 16
61 g were obtained.

【0032】(合成例4:芳香族アルデヒド縮合体(M
TB)の合成)合成例1のo−クレゾールの代わりに3
−メチル−6−t−ブチルフェノール1320g、p−
トルエンスルホン酸1.32gとした他は合成例1と同
様にしてアルキル置換フェノールの芳香族アルデヒド縮
合体(MTB)1935gを得た。
(Synthesis Example 4: Aromatic aldehyde condensate (M
Synthesis of TB) 3) Instead of o-cresol of Synthesis Example 1
-Methyl-6-t-butylphenol 1320 g, p-
Except that 1.32 g of toluenesulfonic acid was used, 1935 g of an aromatic aldehyde condensate (MTB) of an alkyl-substituted phenol was obtained in the same manner as in Synthesis Example 1.

【0033】(合成例5:メチン結合型アルキル置換多
官能エポキシ樹脂(CSAE)の合成)温度計、滴下ロ
ート、攪拌棒、エピクロルヒドリンと水との共沸混合物
を凝縮分離して下層のエピクロルヒドリン層を反応器内
に戻す器具をつけたフラスコに合成例1で得たアルキル
置換フェノールの芳香族アルデヒド縮合体(CSA)1
62gをエピクロルヒドリン833gに攪拌溶解させ、
反応系内を約200mmHgに減圧した後、エピクロル
ヒドリンと水を共沸するまで加熱し、反応系内の水は反
応系外へ連続的に除去しながら4時間反応した。次いで
冷却管を取り外してフラスコを110℃の温度に昇温し
て水を完全に除去し、過剰のエピクロルヒドリンを常圧
下で蒸発除去し、さらに減圧下で濃縮した。 生成した
樹脂および塩化ナトリウムの混合物にメチルイソブチル
ケトン1リットルおよび10重量%の水酸化ナトリウム
水溶液51.6gを加え80〜85℃の温度で2時間反
応を行った。反応終了後メチルイソブチルケトン1リッ
トルおよび水0.5リットルを加え、下層の塩化ナトリ
ウム水溶液を分液除去した。次いで、メチルイソブチル
ケトン溶液層に水0.15リットルを加えて洗浄し、リ
ン酸で中和し、水層を分離した後さらに水0.15リッ
トルで洗浄し水層を分離した。メチルイソブチルケトン
樹脂溶液は常圧下で大半のメチルイソブチルケトンを蒸
発して除去した後、5mmHgの減圧下に140℃の温
度で蒸発乾燥を行い、メチン結合型アルキル置換多官能
エポキシ樹脂(CSAE)240gを得た。
(Synthesis Example 5: Synthesis of Methine-Binding Alkyl-Substituted Polyfunctional Epoxy Resin (CSAE)) A thermometer, a dropping funnel, a stirring rod, and an azeotropic mixture of epichlorohydrin and water are condensed and separated to form a lower epichlorohydrin layer. Aromatic aldehyde condensate (CSA) 1 of alkyl-substituted phenol obtained in Synthesis Example 1 was placed in a flask equipped with a device to be returned to the reactor.
62 g was dissolved in 833 g of epichlorohydrin with stirring.
After the pressure in the reaction system was reduced to about 200 mmHg, epichlorohydrin and water were heated until azeotropic, and the reaction was carried out for 4 hours while water in the reaction system was continuously removed outside the reaction system. Then, the cooling tube was removed and the flask was heated to a temperature of 110 ° C. to completely remove water, excess epichlorohydrin was removed by evaporation under normal pressure, and further concentrated under reduced pressure. 1 liter of methyl isobutyl ketone and 51.6 g of a 10% by weight aqueous sodium hydroxide solution were added to the resulting mixture of the resin and sodium chloride, and the mixture was reacted at a temperature of 80 to 85 ° C. for 2 hours. After completion of the reaction, 1 liter of methyl isobutyl ketone and 0.5 liter of water were added, and the lower layer aqueous solution of sodium chloride was separated and removed. Next, 0.15 liter of water was added to the methyl isobutyl ketone solution layer for washing and neutralization with phosphoric acid. After separating the aqueous layer, the aqueous layer was further washed with 0.15 liter of water and separated. After removing most of the methyl isobutyl ketone by evaporation under normal pressure, the methyl isobutyl ketone resin solution is evaporated to dryness at a temperature of 140 ° C. under a reduced pressure of 5 mmHg, and 240 g of a methine bond type alkyl-substituted polyfunctional epoxy resin (CSAE) 240 g I got

【0034】(合成例6:メチン結合型アルキル置換多
官能エポキシ樹脂(TBHAE)の合成)合成例5のア
ルキル置換フェノールの芳香族アルデヒド縮合体(CS
A)の代わりに、合成例2から得たアルキル置換フェノ
ールの芳香族アルデヒド縮合体(TBHA)192gと
した他は合成例5と同様にして、メチン結合型アルキル
置換多官能エポキシ樹脂(TBHAE)265gを得
た。
(Synthesis Example 6: Synthesis of methine-bonded alkyl-substituted polyfunctional epoxy resin (TBHAE)) The aromatic aldehyde condensate of the alkyl-substituted phenol of Synthesis Example 5 (CS
265 g of methine-bonded alkyl-substituted polyfunctional epoxy resin (TBHAE) in the same manner as in Synthesis Example 5 except that A) was replaced with 192 g of an aromatic aldehyde condensate (TBHA) of an alkyl-substituted phenol obtained from Synthesis Example 2. I got

【0035】(合成例7:メチン結合型アルキル置換多
官能エポキシ樹脂(XSAE)の合成)合成例5のアル
キル置換フェノールの芳香族アルデヒド縮合体(CS
A)の代わりに、合成例3から得たアルキル置換フェノ
ールの芳香族アルデヒド縮合体(XSA)172gとし
た他は合成例5と同様に行い,メチン結合型アルキル置
換多官能エポキシ樹脂(XSAE)249gを得た。
(Synthesis Example 7: Synthesis of methine-bonded alkyl-substituted polyfunctional epoxy resin (XSAE)) Aromatic aldehyde condensate of alkyl-substituted phenol of Synthesis Example 5 (CS
249 g of methine-bonded alkyl-substituted polyfunctional epoxy resin (XSAE) except that A) was replaced with 172 g of an aromatic aldehyde condensate (XSA) of an alkyl-substituted phenol obtained from Synthesis Example 3. I got

【0036】(合成例8:メチン結合型アルキル置換多
官能エポキシ樹脂(MTBE)の合成)合成例5のアル
キル置換フェノールの芳香族アルデヒド縮合体(CS
A)の代わりに、合成例4から得たアルキル置換フェノ
ールの芳香族アルデヒド縮合体(MTB)203gとし
た他は合成例5と同様に行い、メチン結合型アルキル置
換多官能エポキシ樹脂(MTBE)273gを得た。
(Synthesis Example 8: Synthesis of methine-bonded alkyl-substituted polyfunctional epoxy resin (MTBE)) The aromatic aldehyde condensate of the alkyl-substituted phenol of Synthesis Example 5 (CS
273 g of methine-bonded alkyl-substituted polyfunctional epoxy resin (MTBE) was prepared in the same manner as in Synthesis Example 5 except that A) was replaced with 203 g of an aromatic aldehyde condensate (MTB) of an alkyl-substituted phenol obtained from Synthesis Example 4. I got

【0037】(合成例9:アセチル化フェノールノボラ
ック樹脂(NAc)の合成)温度計、冷却管、窒素導入
管、攪拌棒を備えた5リットルの4つ口フラスコにHP
−850N(日立化成工業株式会社商品名、フェノール
ノボラック樹脂、水酸基当量:106)371gを投入
し、メチルイソブチルケトン2リットルを加え窒素気流
下で攪拌して溶解させた後、無水酢酸429gと無水酢
酸ナトリウム5.7gを加え溶解させた。その後オイル
バスにて昇温し、還流温度で4時間反応させた。冷却
後、5重量%炭酸水素ナトリウム水溶液1リットルを投
入し、更に炭酸水素ナトリウム370gを投入して中和
した。蒸留水で十分に水洗し、減圧下で濃縮してアセチ
ル化フェノールノボラック樹脂(NAc)470gを得
た。
(Synthesis Example 9: Synthesis of acetylated phenol novolak resin (NAc)) HP was placed in a 5-liter four-necked flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring rod.
After adding 371 g of -850N (trade name of Hitachi Chemical Co., Ltd., phenol novolak resin, hydroxyl equivalent: 106), adding 2 liters of methyl isobutyl ketone, and stirring and dissolving under a nitrogen stream, 429 g of acetic anhydride and acetic anhydride were added. 5.7 g of sodium was added and dissolved. Thereafter, the temperature was raised in an oil bath, and the reaction was carried out at a reflux temperature for 4 hours. After cooling, 1 liter of a 5% by weight aqueous sodium hydrogen carbonate solution was added, and 370 g of sodium hydrogen carbonate was further added to neutralize the mixture. After sufficiently washing with distilled water and concentrating under reduced pressure, 470 g of acetylated phenol novolak resin (NAc) was obtained.

【0038】(合成例10:アリールエステル化クレゾ
ールノボラック樹脂(NAR)の合成)温度計、冷却
管、窒素導入管、攪拌棒を備えた5リットルの4つ口フ
ラスコにo−クレゾールノボラック樹脂(水酸基当量:
119)238gを投入し、メチルエチルケトン1リッ
トルを加え窒素気流下で攪拌して溶解させた後、トリエ
チルアミン240gを加え氷浴により内温10℃まで冷
却した。内温が10℃を超えないように注意しながらメ
チル安息香酸272gを2時間かけて滴下し、滴下終了
後更に常温で2時間攪拌して反応させた。反応終了後、
吸引ろ過によりトリエチルアミン塩酸塩を除去しメチル
エチルケトンを減圧下、50℃で除去して粗生成物を得
た。得られた粗生成物を3リットルのトルエンに溶解さ
せ、分液ロートを用いて十分に水洗後、無水硫酸マグネ
シウムで乾燥させた。トルエンを減圧下、50℃で除去
し、100℃で6時間減圧乾燥をして目的生成物である
アリールエステル化クレゾールノボラック樹脂(NA
R)357gを得た。
(Synthesis Example 10: Synthesis of arylesterified cresol novolak resin (NAR)) An o-cresol novolak resin (hydroxyl group) was placed in a 5-liter four-necked flask equipped with a thermometer, a cooling tube, a nitrogen inlet tube, and a stirring rod. Equivalent:
119) 238 g were added, 1 liter of methyl ethyl ketone was added, and the mixture was dissolved by stirring under a nitrogen stream, and then 240 g of triethylamine was added, and the mixture was cooled to an internal temperature of 10 ° C by an ice bath. 272 g of methyl benzoic acid was added dropwise over 2 hours while paying attention so that the internal temperature did not exceed 10 ° C. After completion of the addition, the mixture was further reacted at room temperature with stirring for 2 hours. After the reaction,
Triethylamine hydrochloride was removed by suction filtration, and methyl ethyl ketone was removed at 50 ° C. under reduced pressure to obtain a crude product. The obtained crude product was dissolved in 3 liters of toluene, washed sufficiently with a separating funnel, and dried over anhydrous magnesium sulfate. Toluene was removed at 50 ° C. under reduced pressure, and dried under reduced pressure at 100 ° C. for 6 hours to obtain an arylesterified cresol novolak resin (NA) as a target product.
R) 357 g were obtained.

【0039】(合成例11:アリールエステル化フェノ
ールノボラック樹脂(MNAR)の合成)合成例10の
o−クレゾールノボラック樹脂の代わりにHP−850
N(日立化成工業株式会社商品名、フェノールノボラッ
ク樹脂、水酸基当量:106)212g、メチル安息香
酸の代わりに安息香酸244gとした他は合成例10と
同様にしてアリールエステル化フェノールノボラック樹
脂(MNAR)319gを得た。
(Synthesis Example 11: Synthesis of arylesterified phenol novolak resin (MNAR)) Instead of the o-cresol novolak resin of Synthesis Example 10, HP-850 was used.
Aryl esterified phenol novolak resin (MNAR) in the same manner as in Synthesis Example 10 except that 212 g of N (Hitachi Chemical Industries, Ltd., phenol novolak resin, hydroxyl equivalent: 106) was used, and 244 g of benzoic acid was used instead of methylbenzoic acid. 319 g were obtained.

【0040】(合成例12:プロピオニル化クレゾール
ノボラック樹脂(PCN)の合成)合成例9のHP−8
50Nをo−クレゾールノボラック樹脂(水酸基当量:
119)416g、無水酢酸を無水プロピオン酸296
gとした他は合成例9と同様にして、プロピオニル化ク
レゾールノボラック樹脂(PCN)498gを得た。
(Synthesis Example 12: Synthesis of propionylated cresol novolak resin (PCN)) HP-8 of Synthesis Example 9
50N is converted to o-cresol novolak resin (hydroxyl equivalent:
119) 416 g, acetic anhydride was converted to propionic anhydride 296
498 g of propionylated cresol novolak resin (PCN) was obtained in the same manner as in Synthesis Example 9 except that the amount was changed to g.

【0041】(実施例1〜8)エポキシ樹脂、硬化剤を
表1に示す配合量で配合し、メチルエチルケトンとメチ
ルイソブチルケトン1:1重量比の混合溶剤に溶解し
た。次いで、酸化防止剤を表1に示した配合量で均一に
分散させた後、硬化促進剤をエポキシ樹脂成分と硬化剤
成分を合計した樹脂100重量部に対して0.5重量部
を加え濃度60重量%のワニスを作製した。
Examples 1 to 8 Epoxy resins and curing agents were mixed in the amounts shown in Table 1 and dissolved in a mixed solvent of methyl ethyl ketone and methyl isobutyl ketone at a weight ratio of 1: 1. Next, the antioxidant was uniformly dispersed in the amounts shown in Table 1, and then a curing accelerator was added in an amount of 0.5 part by weight to 100 parts by weight of the total of the epoxy resin component and the curing agent component. A varnish of 60% by weight was prepared.

【0042】(比較例1〜3)エポキシ樹脂、硬化剤を
表1に示す配合量で配合し、メチルエチルケトンとメチ
ルイソブチルケトン1:1重量比の混合溶剤に溶解後、
硬化促進剤をエポキシ樹脂成分と硬化剤成分を合計した
100重量部に対して0.5重量部を加え濃度60重量
%のワニスを作製した。
(Comparative Examples 1 to 3) Epoxy resins and curing agents were blended in the amounts shown in Table 1, and dissolved in a mixed solvent of methyl ethyl ketone and methyl isobutyl ketone at a weight ratio of 1: 1.
0.5 parts by weight of a curing accelerator was added to 100 parts by weight of the total of the epoxy resin component and the curing agent component to prepare a varnish having a concentration of 60% by weight.

【0043】実施例1〜8及び比較例1〜3のワニスを
0.2mm厚のガラス布(坪量210g/m2)に含浸
し160℃で5分間乾燥してプリプレグを得た。このプ
リプレグ4枚と上下に厚み18μmの銅箔を積層し、1
70℃、2.45MPaの条件で1時間プレス成形し銅
張積層板を製造した。 次いで、積層板のガラス転移温
度(Tg)、誘電率、はんだ耐熱性を評価した。なお、
評価方法は、下記のようにして行った。 ガラス転移温度(Tg):TMA(熱機械分析)法によ
り測定した。 誘電特性:ジャパン・イー・エム社製広帯域誘電特性測
定装置(間隙変化法)により評価した。 はんだ耐熱性:試験片をプレッシャークッカーにより1
21℃、0.22MPaの条件で3h吸湿処理した後、
260℃のはんだ浴に20秒間浸漬し試験片の状態を目
視により評価した。目視によりふくれ、ミーズリングの
ないものを○で、ミーズリングの発生したものを△で、
フクレの発生したものを×とした。 耐電食性:スルーホール穴壁間隔を350μmとしたテ
ストパターンを用いて、各試料について400穴の絶縁
抵抗を経時的に測定した。試験条件は、85℃、90%
RH雰囲気中100V印加して行い、導通破壊が発生す
るまでの時間を測定した。 評価結果を表1に示した。
The varnishes of Examples 1 to 8 and Comparative Examples 1 to 3 were impregnated into a 0.2 mm thick glass cloth (basis weight: 210 g / m 2 ) and dried at 160 ° C. for 5 minutes to obtain prepreg. Four prepregs and 18 μm thick copper foil are laminated on top and bottom,
Press molding was performed for 1 hour at 70 ° C. and 2.45 MPa to produce a copper-clad laminate. Next, the glass transition temperature (Tg), dielectric constant, and solder heat resistance of the laminate were evaluated. In addition,
The evaluation was performed as follows. Glass transition temperature (Tg): measured by TMA (thermomechanical analysis) method. Dielectric properties: evaluated by a broadband dielectric property measuring device (gap change method) manufactured by Japan E.M. Solder heat resistance: The test piece is 1 with a pressure cooker
After the moisture absorption treatment for 3 h at 21 ° C. and 0.22 MPa,
It was immersed in a 260 ° C. solder bath for 20 seconds, and the state of the test piece was visually evaluated. Bulging by visual observation, those without measling are marked with ○, those with measling are marked with △,
Those with blisters were evaluated as x. Electrolytic corrosion resistance: The insulation resistance of 400 holes was measured with time for each sample using a test pattern in which the wall spacing between through holes was 350 μm. Test conditions are 85 ° C, 90%
The measurement was performed by applying a voltage of 100 V in an RH atmosphere, and the time until the occurrence of conduction breakdown was measured. Table 1 shows the evaluation results.

【0044】[0044]

【表1】 [Table 1]

【0045】表1から、本発明のメチン結合型多官能エ
ポキシ樹脂、1分子中に活性エステル基を持つ化合物と
酸化防止剤を所定の配合量で用いたエポキシ樹脂組成物
は表1から明らかなように、ガラス転移温度(Tg)、
誘電率及び耐電食性に優れていることが分かる。
From Table 1, it is apparent from Table 1 that the methine-bonded polyfunctional epoxy resin of the present invention, the epoxy resin composition using the compound having an active ester group in one molecule and the antioxidant in a prescribed amount are included. Thus, the glass transition temperature (Tg),
It turns out that it is excellent in dielectric constant and electric corrosion resistance.

【0046】[0046]

【発明の効果】本発明のエポキシ樹脂組成物及びそれを
用いた硬化物は、従来の一般的なエポキシ樹脂積層板で
は困難とされていた高いガラス転移温度と低い誘電率を
両立することができ、また、耐電食性に優れることか
ら、コンピュータなどの高速処理と高い耐熱性を必要と
する電子機器のプリント配線用基板樹脂として好適であ
る。
The epoxy resin composition of the present invention and the cured product using the same can achieve both a high glass transition temperature and a low dielectric constant, which have been difficult with conventional epoxy resin laminates. Further, since it is excellent in electric corrosion resistance, it is suitable as a printed wiring board resin for electronic devices requiring high-speed processing such as a computer and high heat resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 5/13 C08K 5/13 5/36 5/36 (72)発明者 福田 富男 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 荒田 道俊 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 5/13 C08K 5/13 5/36 5/36 (72) Inventor Tomio Fukuda 1500 Ogawa Oji, Shimodate-shi, Ibaraki Prefecture Hitachi Chemical Inside Shimodate Research Institute Co., Ltd. (72) Inventor Michitoshi Arata 1500 Ogawa, Oaza, Shimodate City, Ibaraki Pref.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 (A)1分子中に2個以上のエポキシ基
を持つエポキシ樹脂、(B)硬化剤、(C)硬化促進剤
及び(D)酸化防止剤を含むエポキシ樹脂組成物におい
て、(A)1分子中に2個以上のエポキシ基を持つエポ
キシ樹脂が式1で表されるメチン結合型アルキル置換多
官能エポキシ樹脂であり、(B)硬化剤が式2で表され
る1分子中に1個以上の活性エステル基を有する化合物
であるエポキシ樹脂組成物。 【化1】 【化2】
1. An epoxy resin composition comprising (A) an epoxy resin having two or more epoxy groups in one molecule, (B) a curing agent, (C) a curing accelerator, and (D) an antioxidant. (A) an epoxy resin having two or more epoxy groups in one molecule is a methine-bonded alkyl-substituted polyfunctional epoxy resin represented by the formula 1, and (B) a curing agent is a one molecule represented by the formula 2. An epoxy resin composition which is a compound having at least one active ester group therein. Embedded image Embedded image
【請求項2】 (A)1分子中に2個以上のエポキシ基
を持つエポキシ樹脂100重量部に対し、(B)硬化剤
50〜150重量部、(A)と(B)の合計100重量
部に対し(C)硬化促進剤0.1〜5重量部及び(D)
酸化防止剤をエポキシ樹脂100重量部に対し0.1〜
20重量部を含む請求項1に記載のエポキシ樹脂組成
物。
2. (A) 100 to 100 parts by weight of an epoxy resin having two or more epoxy groups per molecule, (B) 50 to 150 parts by weight of a curing agent, and (A) and (B) a total of 100 parts by weight Parts (C) 0.1 to 5 parts by weight of a curing accelerator and (D)
0.1 to 100 parts by weight of the epoxy resin
The epoxy resin composition according to claim 1, comprising 20 parts by weight.
【請求項3】 (A)1分子中に2個以上のエポキシ基
を持つエポキシ樹脂が式1で表されるメチン結合型アル
キル置換多官能エポキシ樹脂とビスフェノールA型エポ
キシ樹脂、フェノールノボラック型エポキシ樹脂、臭素
化フェノールノボラック型エポキシ樹脂、クレゾールノ
ボラック型エポキシ樹脂、臭素化クレゾールノボラック
型エポキシ樹脂、ビフェニル型エポキシ樹脂及びフェノ
ールサリチルアルデヒドノボラック型エポキシ樹脂から
選ばれる少なくとも1種以上との混合物である請求項1
または請求項2に記載のエポキシ樹脂組成物。
3. (A) A methine-bonded alkyl-substituted polyfunctional epoxy resin represented by the formula 1, an epoxy resin having two or more epoxy groups in one molecule, a bisphenol A epoxy resin, and a phenol novolak epoxy resin A mixture of at least one selected from a brominated phenol novolak epoxy resin, a cresol novolak epoxy resin, a brominated cresol novolak epoxy resin, a biphenyl epoxy resin and a phenol salicylaldehyde novolak epoxy resin.
Or the epoxy resin composition according to claim 2.
【請求項4】 式1で表されるメチン結合型アルキル置
換多官能エポキシ樹脂が、アルキル置換フェノールと芳
香族アルデヒドとの縮合物をグリシジルエーテル化した
エポキシ樹脂である請求項1ないし請求項3のいずれか
に記載のエポキシ樹脂組成物。
4. The method according to claim 1, wherein the methine-bonded alkyl-substituted polyfunctional epoxy resin represented by the formula 1 is an epoxy resin obtained by glycidyl etherification of a condensate of an alkyl-substituted phenol and an aromatic aldehyde. The epoxy resin composition according to any one of the above.
【請求項5】 アルキル置換フェノールがクレゾール
類、t−ブチルフェノール、2,5−キシレノール、3
−メチル−6−t−ブチルフェノールから選ばれる少な
くとも1種以上である請求項4に記載のエポキシ樹脂組
成物。
5. The method according to claim 1, wherein the alkyl-substituted phenol is cresols, t-butylphenol, 2,5-xylenol,
The epoxy resin composition according to claim 4, which is at least one or more selected from -methyl-6-t-butylphenol.
【請求項6】 芳香族アルデヒドがサリチルアルデヒ
ド、p−ヒドロキシベンズアルデヒドから選ばれる少な
くとも1種以上である請求項4に記載のエポキシ樹脂組
成物。
6. The epoxy resin composition according to claim 4, wherein the aromatic aldehyde is at least one selected from salicylaldehyde and p-hydroxybenzaldehyde.
【請求項7】 (B)硬化剤が式2で表される1分子中
に1個以上の活性エステル基を有する硬化剤とフェノー
ルノボラック、ビスフェノールAノボラック、クレゾー
ルノボラック、テトラブロモビスフェノールAから選ば
れる少なくとも1種以上の混合物である請求項1ないし
請求項6のいずれかに記載のエポキシ樹脂組成物。
7. The curing agent (B) is selected from a curing agent having one or more active ester groups in one molecule represented by the formula 2 and phenol novolak, bisphenol A novolak, cresol novolac, and tetrabromobisphenol A. The epoxy resin composition according to any one of claims 1 to 6, which is a mixture of at least one kind.
【請求項8】 式2で表される1分子中に1個以上の活
性エステル基を有する化合物が、多官能フェノール類化
合物を芳香族または脂肪族カルボン酸の酸無水物または
酸塩化物でエステル化した1分子中に1個以上の活性エ
ステル基を有する化合物である請求項1ないし請求項7
のいずれかに記載のエポキシ樹脂組成物。
8. A compound having one or more active ester groups in one molecule represented by the formula 2 is obtained by esterifying a polyfunctional phenol compound with an acid anhydride or acid chloride of an aromatic or aliphatic carboxylic acid. 8. A compound having one or more active ester groups in one molecule.
The epoxy resin composition according to any one of the above.
【請求項9】 多官能フェノール類化合物が、フェノー
ルノボラックまたはクレゾールノボラックである請求項
8に記載のエポキシ樹脂組成物。
9. The epoxy resin composition according to claim 8, wherein the polyfunctional phenol compound is phenol novolak or cresol novolak.
【請求項10】 芳香族または脂肪族カルボン酸の酸無
水物または酸塩化物が、無水酢酸、無水プロピオン酸、
安息香酸塩化物及びメチル安息香酸塩化物から選ばれる
少なくとも1種類以上である請求項8に記載のエポキシ
樹脂組成物。
10. An aromatic or aliphatic carboxylic acid anhydride or acid chloride, wherein the acid anhydride or acid chloride is acetic anhydride, propionic anhydride,
The epoxy resin composition according to claim 8, wherein the epoxy resin composition is at least one selected from benzoic acid chlorides and methyl benzoic acid chlorides.
【請求項11】 多官能フェノール類化合物が、フェノ
ールノボラックであり、芳香族または脂肪族カルボン酸
の酸無水物または酸塩化物が無水酢酸若しくは安息香酸
塩化物である請求項8に記載のエポキシ樹脂組成物。
11. The epoxy resin according to claim 8, wherein the polyfunctional phenol compound is phenol novolak, and the acid anhydride or acid chloride of an aromatic or aliphatic carboxylic acid is acetic anhydride or benzoic acid chloride. Composition.
【請求項12】 (C)硬化促進剤が、1−メチルイミ
ダゾール、2−メチルイミダゾール、2−エチル−4−
メチルイミダゾール、N−ジメチルアミノピリジンから
選ばれる少なくとも1種以上である請求項1ないし請求
項11のいずれかに記載のエポキシ樹脂組成物。
12. (C) The curing accelerator is 1-methylimidazole, 2-methylimidazole, 2-ethyl-4-
The epoxy resin composition according to any one of claims 1 to 11, which is at least one or more selected from methylimidazole and N-dimethylaminopyridine.
【請求項13】請求項1ないし請求項12のいずれかに
記載のエポキシ樹脂組成物を硬化してなる硬化物。
13. A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 12.
JP23342197A 1997-08-29 1997-08-29 Epoxy resin composition and cured material using the same Pending JPH1171501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23342197A JPH1171501A (en) 1997-08-29 1997-08-29 Epoxy resin composition and cured material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23342197A JPH1171501A (en) 1997-08-29 1997-08-29 Epoxy resin composition and cured material using the same

Publications (1)

Publication Number Publication Date
JPH1171501A true JPH1171501A (en) 1999-03-16

Family

ID=16954801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23342197A Pending JPH1171501A (en) 1997-08-29 1997-08-29 Epoxy resin composition and cured material using the same

Country Status (1)

Country Link
JP (1) JPH1171501A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012650A (en) * 2000-06-30 2002-01-15 Dainippon Ink & Chem Inc Epoxy resin composition for low-dielectric material
JP2002293887A (en) * 2001-03-30 2002-10-09 Hitachi Chem Co Ltd Insulative resin composition for print wiring board and usage thereof
WO2004003086A1 (en) * 2002-06-27 2004-01-08 Ppg Industries Ohio, Inc. Electrodepositable dielectric coating compositions to coat a substrate and methods to form dielectric coating
WO2004067631A1 (en) * 2002-12-27 2004-08-12 Tdk Corporation Resin composition, cured resin, cured resin sheet, laminate, prepreg, electronic part, and multilayer substrate
US6824959B2 (en) 2002-06-27 2004-11-30 Ppg Industries Ohio, Inc. Process for creating holes in polymeric substrates
JP2005325312A (en) * 2004-05-17 2005-11-24 Hitachi Chem Co Ltd Adhesive composition, film-type adhesive agent and circuit connecting material using the same and connection structure of circuit material and its preparation method
US7002081B2 (en) 2002-06-27 2006-02-21 Ppg Industries Ohio, Inc. Single or multi-layer printed circuit board with recessed or extended breakaway tabs and method of manufacture thereof
US7000313B2 (en) 2001-03-08 2006-02-21 Ppg Industries Ohio, Inc. Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions
CN100348661C (en) * 2002-12-27 2007-11-14 Tdk株式会社 Resin composition, cured resin, sheet-like cured resin, laminated body, prepreg, electronic parts and multilayer boards
JP2011021205A (en) * 2010-10-22 2011-02-03 Hitachi Chem Co Ltd Insulating resin composition for printed wiring board and application thereof
JP2013077795A (en) * 2011-09-16 2013-04-25 Sekisui Chem Co Ltd Optical semiconductor device
JP2014005464A (en) * 2012-05-31 2014-01-16 Ajinomoto Co Inc Resin composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012650A (en) * 2000-06-30 2002-01-15 Dainippon Ink & Chem Inc Epoxy resin composition for low-dielectric material
US7000313B2 (en) 2001-03-08 2006-02-21 Ppg Industries Ohio, Inc. Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions
JP2002293887A (en) * 2001-03-30 2002-10-09 Hitachi Chem Co Ltd Insulative resin composition for print wiring board and usage thereof
US7159308B2 (en) 2002-06-27 2007-01-09 Ppg Industries Ohio, Inc. Method of making a circuit board
CN1325583C (en) * 2002-06-27 2007-07-11 Ppg工业俄亥俄公司 Electrodepositable dielectric coating compositions to coat a substrate and methods to form dielectric coating
KR100745876B1 (en) * 2002-06-27 2007-08-02 피피지 인더스트리즈 오하이오 인코포레이티드 A coated substrate comprising an electrodepositable dielectric coating composition
US7002081B2 (en) 2002-06-27 2006-02-21 Ppg Industries Ohio, Inc. Single or multi-layer printed circuit board with recessed or extended breakaway tabs and method of manufacture thereof
US6824959B2 (en) 2002-06-27 2004-11-30 Ppg Industries Ohio, Inc. Process for creating holes in polymeric substrates
WO2004003086A1 (en) * 2002-06-27 2004-01-08 Ppg Industries Ohio, Inc. Electrodepositable dielectric coating compositions to coat a substrate and methods to form dielectric coating
KR100720209B1 (en) * 2002-06-27 2007-05-21 피피지 인더스트리즈 오하이오 인코포레이티드 Electrodepositable dielectric coating compositions to coat a substrate and methods to form dielectric coating
WO2004067631A1 (en) * 2002-12-27 2004-08-12 Tdk Corporation Resin composition, cured resin, cured resin sheet, laminate, prepreg, electronic part, and multilayer substrate
CN100348661C (en) * 2002-12-27 2007-11-14 Tdk株式会社 Resin composition, cured resin, sheet-like cured resin, laminated body, prepreg, electronic parts and multilayer boards
JP2005325312A (en) * 2004-05-17 2005-11-24 Hitachi Chem Co Ltd Adhesive composition, film-type adhesive agent and circuit connecting material using the same and connection structure of circuit material and its preparation method
JP2011021205A (en) * 2010-10-22 2011-02-03 Hitachi Chem Co Ltd Insulating resin composition for printed wiring board and application thereof
JP2013077795A (en) * 2011-09-16 2013-04-25 Sekisui Chem Co Ltd Optical semiconductor device
JP2014005464A (en) * 2012-05-31 2014-01-16 Ajinomoto Co Inc Resin composition
TWI620781B (en) * 2012-05-31 2018-04-11 Ajinomoto Co., Inc. Resin composition

Similar Documents

Publication Publication Date Title
JP2001064340A (en) 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JPH11130939A (en) Epoxy resin composition and cured product thereof
JPH1171501A (en) Epoxy resin composition and cured material using the same
JP2001261789A (en) High-molecular weight epoxy resin and resin composition for printed wiring board
JPH0782348A (en) Epoxy resin composition and cured product thereof
JP4658070B2 (en) Modified phenolic resin, epoxy resin composition containing the same, and prepreg using the same
US6544652B2 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP5570380B2 (en) Epoxy resin composition and cured product
JPH1171499A (en) Epoxy resin composition and cured article prepared therefrom
JP7185383B2 (en) Curable resin composition and its cured product
JPH09296026A (en) Curable epoxy resin composition
JP7268256B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2001240723A (en) Thermosetting resin composition and prepreg, metal-clad laminate, and printed wiring board using the same
WO2013157061A1 (en) Epoxy resin composition and cured product
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
JP2000239496A (en) Cyanate/epoxy resin composition, and prepreg, metal-clad laminate and printed wiring board made by using it
EP0811619B1 (en) Novel ester compound and thermosetting resin composition using the same
JP7240989B2 (en) Curable resin composition and its cured product
JPH1171500A (en) Epoxy resin composition and cured article prepared therefrom
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JP7256160B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP3017562B2 (en) Epoxy resin composition for wiring boards
JPH11106613A (en) Resin composition for printed wiring board and printed wiring board using the same
JP2823455B2 (en) New epoxy resin and method for producing the same
KR20150033608A (en) Epoxy resin, method for producing same, epoxy resin composition, and cured product