JPH1160901A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH1160901A
JPH1160901A JP22128397A JP22128397A JPH1160901A JP H1160901 A JPH1160901 A JP H1160901A JP 22128397 A JP22128397 A JP 22128397A JP 22128397 A JP22128397 A JP 22128397A JP H1160901 A JPH1160901 A JP H1160901A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
resin composition
molding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22128397A
Other languages
Japanese (ja)
Inventor
Hiromoto Nikaido
広基 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP22128397A priority Critical patent/JPH1160901A/en
Publication of JPH1160901A publication Critical patent/JPH1160901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition that shows reduced warpage after molding or on the soldering treatment of the area-mounting package with excellent reliability by allowing the composition to include a specific epoxy resin, a specific curing agent, a curing accelerator and a specific powder. SOLUTION: (A) A crystalline epoxy resin melting at 50-150 deg.C, selected from a biphenyl type epoxy resin, a hydroquinone type epoxy resin of formula II, a stilbene type epoxy resin of formula III, and a bisphenol F type epoxy resin, (B) a phenolic resin type curing agent containing >=20 wt.% of a phenolic resin of formula V (m, n are each 1-10), (C) a curing accelerator as triphenyl phosphine, and (D) molten silica powder are used to give the objective composition that has preferably <=0.15% shrinkage out molding and curing, the coefficient of linear expansion α1 of 8-16 ppm/ deg.C after curing, the glass transition point of >=140 deg.C and the melt viscosity of <=150 poise at 175 deg.C before molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた樹脂封止型半導体装置に関し、更に詳述す
ればプリント配線板や金属リードフレームの片面に半導
体素子を搭載し、その搭載面側の実質的に片面のみが樹
脂封止されたいわゆるエリア実装型半導体装置におい
て、樹脂封止後の反りや基板実装時の半田付け工程での
反りが小さく、また温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ成形性に優れる半導体封止用エ
ポキシ樹脂組成物及び該半導体封止用エポキシ樹脂組成
物で封止された半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one side of the mounting surface is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. Epoxy resin composition for semiconductor encapsulation which has excellent package crack resistance and package crack resistance and exfoliation resistance in a soldering process, and is excellent in moldability, and a semiconductor encapsulated with the epoxy resin composition for semiconductor encapsulation It concerns the device.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップサイズパッケー
ジ)が代表的であるが、これらは従来QFP、SOPに
代表される表面実装パッケージでは限界に近づいている
多ピン化・高速化への要求に対応するために開発された
ものである。構造としては、BT樹脂/銅箔回路基板
(ビスマレイミド・トリアジン/ガラスクロス基板)に
代表される硬質回路基板、あるいはポリイミド樹脂フィ
ルム/銅箔回路基板に代表されるフレキシブル回路基板
の片面上に半導体素子を搭載し、その素子搭載面、即ち
基板の片面のみがエポキシ樹脂組成物などで成形・封止
されている。また、基板の素子搭載面の反対面には半田
ボールを2次元的に並列して形成し、パッケージを実装
する回路基板との接合を行う特徴を有している。更に、
素子を搭載する基板としては、上記有機回路基板以外に
もリードフレーム等の金属基板を用いる構造も考案され
ている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. Typical area mounting packages are BGA (ball grid array) or CSP (chip size package) pursuing further miniaturization, but these are approaching the limit in conventional surface mounting packages such as QFP and SOP. It has been developed to meet the demand for higher pin counts and higher speeds. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Furthermore,
As a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.

【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。また、これらのパッケージを実装す
る回路基板上に半田接合を行う場合、200℃以上の加
熱工程を経るが、この際にパッケージの反りが発生し、
多数の半田ボールが平坦とならず、パッケージを実装す
る回路基板から浮き上がってしまい、電気的接合信頼性
が低下する問題も起こる。
[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, package warpage occurs.
A large number of solder balls are not flattened and rise from the circuit board on which the package is mounted, which causes a problem that electrical connection reliability is reduced.

【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、硬化物並びに有機基板からの吸湿
によりパッケージ内部に存在する水分が高温で急激に気
化することによる応力でパッケージにクラックが発生し
たり、基板の素子搭載面と硬化物との界面で剥離が発生
することもあり、硬化物の低応力化・低吸湿化ととも
に、基板との密着性も求められる。さらに、基板と硬化
物の線膨張係数の不整合により、信頼性テストの代表例
である温度サイクル試験でも、基板/硬化物の界面の剥
離やパッケージクラックが発生する。従来のQFPやS
OPなどの表面実装パッケージでは、半田実装時のクラ
ックや各素材界面での剥離の防止のために、ビフェニル
型エポキシ樹脂に代表されるような結晶性エポキシ樹脂
とパラキシリレン変性フェノール樹脂硬化剤に代表され
る可撓性硬化剤もしくはフェノール樹脂及びその併用に
より、成形時の低粘度化を図り、かつ無機質充填材の配
合量を増加することが対策としてとられてきた。しか
し、この手法では、片面封止パッケージにおける反りの
問題は解決できないのが現状であった。
Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture existing inside the package is rapidly vaporized at high temperature due to moisture absorption from the cured product and the organic substrate. Cracks may occur in the package due to the stress caused by this, and peeling may occur at the interface between the element mounting surface of the substrate and the cured product. Is also required. Further, due to the mismatch between the coefficient of linear expansion of the substrate and the cured product, peeling of the interface between the substrate and the cured product and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. Conventional QFP and S
For surface mount packages such as OP, to prevent cracks at the time of solder mounting and peeling at the interface between each material, crystalline epoxy resin such as biphenyl type epoxy resin and paraxylylene-modified phenol resin curing agent are typical. As a countermeasure, it has been attempted to reduce the viscosity during molding and increase the amount of the inorganic filler by using a flexible curing agent or a phenol resin and a combination thereof. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.

【0005】基板上の実質的に片面のみを樹脂組成物で
封止したパッケージにおいて、反りを低減するには、基
板の線膨張係数と樹脂組成物硬化物の線膨張係数を近付
けること、及び樹脂組成物の硬化収縮を小さくする二つ
の方法が重要である。基板としては有機基板ではBT樹
脂やポリイミド樹脂のような高ガラス転移温度の樹脂が
広く用いられており、これらはエポキシ樹脂組成物の成
形温度である170℃近辺よりも高いガラス転移温度を
有する。従って、成形温度から室温までの冷却過程では
有機基板のα1 の領域のみで収縮する。従って、樹脂組
成物もガラス転移温度が高くかつα1 が回路基板と同じ
であり、さらに硬化収縮がゼロであれば反りはほぼゼロ
であると考えられる。このため、多官能型エポキシ樹脂
と多官能型フェノール樹脂との組み合わせによりガラス
転移温度を高くし、無機質充填材の配合量でα1 を合わ
せる手法が既に提案されている。
In a package in which substantially only one surface of a substrate is sealed with a resin composition, to reduce the warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition must be close to each other. Two methods of reducing the cure shrinkage of the composition are important. As the substrate, in the case of an organic substrate, a resin having a high glass transition temperature such as a BT resin or a polyimide resin is widely used, and these have a glass transition temperature higher than around 170 ° C. which is a molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.

【0006】ところが、一分子中に3個以上のエポキシ
基を有する多官能型エポキシ樹脂と一分子中に3個以上
のフェノール性水酸基を有する多官能型フェノール樹脂
との組み合わせ系は吸湿率が大きいこと、各々の樹脂粘
度が高いため無機質充填材を高充填することができず低
吸湿化が困難なこと、半田処理温度でも高弾性を示し、
発生応力が高いことなどから、半田処理時のパッケージ
クラック発生や界面剥離の発生が解決されていない。ま
た、素子と基板との電気的接続に用いられる金線は数十
μmと細いうえに、エリア実装パッケージではその長さ
も従来構造パッケージに比較して長く、更に多ピン化に
より金線の配線が高密度化しているため、成形時に低粘
度の樹脂組成物で封止しないと金線が変形し、金線同士
が接触して電気的不良を生じることになる。特にCSP
のような薄型のパッケージでは充填性が良好で、金線変
形の少ない樹脂組成物による封止が必須の条件であっ
た。
However, a combination system of a polyfunctional epoxy resin having three or more epoxy groups in one molecule and a polyfunctional phenol resin having three or more phenolic hydroxyl groups in one molecule has a large moisture absorption. That, because each resin viscosity is high, it is not possible to highly fill the inorganic filler and it is difficult to reduce moisture absorption, showing high elasticity even at solder processing temperature,
Due to the high generated stress and the like, the occurrence of package cracks and the occurrence of interface peeling during the soldering process has not been solved. In addition, the gold wire used for electrical connection between the element and the substrate is as thin as tens of μm, and the length of the area mount package is longer than that of the conventional structure package. Due to the high density, the gold wires are deformed unless sealed with a low-viscosity resin composition at the time of molding, and the gold wires come into contact with each other to cause electrical failure. Especially CSP
In such a thin package as described above, it is an essential condition to seal with a resin composition having good filling properties and little deformation of the gold wire.

【0007】[0007]

【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た温度サイクル試験や半田処理時などの信頼性に優れ、
かつ充填性が良好で金線変形の少ない、即ち、成形時に
高流動性の特徴を有する半導体封止用エポキシ樹脂組成
物及びそれにより封止された半導体装置の開発を目的と
してなされたものである。
SUMMARY OF THE INVENTION The present invention has a small warpage after molding in an area mounting package or during soldering, and has excellent reliability in a temperature cycle test or soldering.
The object of the present invention is to develop an epoxy resin composition for semiconductor encapsulation having a good filling property and a small deformation of a gold wire, that is, a high fluidity characteristic at the time of molding, and a semiconductor device sealed thereby. .

【0008】[0008]

【課題を解決するための手段】本発明者は鋭意検討した
結果、特殊な結晶性エポキシ樹脂と多官能型フェノール
樹脂硬化剤との組み合わせで、ガラス転移温度の低下を
少なくしたまま低吸湿化が図れること、低粘度化が達成
できるため無機質充填材の充填量の増量が可能となり、
低吸湿化やα1 の調整が可能となること、また、成形時
の充填性向上やワイヤー変形量の低減ができること、半
田処理温度での熱時弾性率が低減できるため発生応力が
減少し、回路基板との密着性が向上することなどを明ら
かにしたものである。
Means for Solving the Problems As a result of intensive studies, the present inventor has found that a combination of a special crystalline epoxy resin and a polyfunctional phenol resin curing agent can reduce the moisture absorption while keeping the glass transition temperature from decreasing. It is possible to increase the filling amount of the inorganic filler because it is possible to achieve a low viscosity,
It is possible to lower moisture absorption and alpha 1 adjustment, also be possible to reduce the filling improvement and wire deformation amount at the time of molding, the generated stress because it thermal time elastic modulus reduction at soldering temperature decreases, It is clarified that the adhesion to a circuit board is improved.

【0009】即ち本発明は、(A)一般式(1)〜
(4)で示される融点50〜150℃の結晶性エポキシ
樹脂、(B)一般式(5)で示されるフェノール樹脂を
総フェノール樹脂中に20重量%以上含むフェノール樹
脂硬化剤、(C)硬化促進剤、(D)溶融シリカ粉末か
らなることを特徴とする半導体封止用エポキシ樹脂組成
物であり、更に好ましくは、成形硬化時の硬化収縮率が
0.15%以下、硬化後の線膨張係数α1 が8〜16p
pm/℃で、かつガラス転移温度が140℃以上、成形
前の175℃における樹脂粘度が150poise以下
であることを特徴とした半導体封止用エポキシ樹脂組成
物、及びこの半導体封止用エポキシ樹脂組成物によって
封止された半導体装置である。
That is, the present invention relates to (A) a compound represented by the general formula (1):
(B) a crystalline epoxy resin having a melting point of 50 to 150 ° C. represented by (4), (B) a phenol resin curing agent containing at least 20% by weight of the total phenol resin represented by the general formula (5), and (C) curing An epoxy resin composition for semiconductor encapsulation, comprising an accelerator and (D) fused silica powder. More preferably, the curing shrinkage during molding and curing is 0.15% or less, and the linear expansion after curing. coefficient α 1 is 8~16p
An epoxy resin composition for semiconductor encapsulation, wherein the resin viscosity at pm / ° C., the glass transition temperature is 140 ° C. or more, and the resin viscosity at 175 ° C. before molding is 150 poise or less, and the epoxy resin composition for semiconductor encapsulation It is a semiconductor device sealed with an object.

【0010】[0010]

【化3】 [式(1)〜(4)中のRは水素原子、ハロゲン原子又
は炭素数1〜12のアルキル基を示し、互いに同一であ
っても、異なっていてもよい。]
Embedded image [R in the formulas (1) to (4) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different. ]

【0011】[0011]

【化4】 [式(5)中のRは水素原子、ハロゲン原子、炭素数1
〜12のアルキル基又は水酸基を示し、互いに同一であ
っても、異なっていてもよい。m及びnは1〜10の正
の整数である。]
Embedded image [R in the formula (5) is a hydrogen atom, a halogen atom,
And 12 to 12 alkyl groups or hydroxyl groups, which may be the same or different. m and n are positive integers of 1 to 10. ]

【0012】[0012]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる(A)融点が50〜150℃の結晶
性エポキシ樹脂としては、一分子中にエポキシ基を2個
有するジエポキシ樹脂である。これらのエポキシ樹脂は
いずれも結晶性を示すため、融点未満の温度では固体で
あるが、融点以上の温度で低粘度の液状物質となる。こ
のため50℃未満の融点の結晶性エポキシ樹脂では、エ
ポキシ樹脂組成物の製造工程において融着を起こしやす
く、作業性が著しく低下する。また、150℃を越える
融点を示す結晶性エポキシ樹脂では、エポキシ樹脂組成
物を加熱混練する製造工程で充分に溶融しないため、材
料の均一性に劣るといった問題点を有する。融点の測定
方法としては示差走査熱量計[セイコー電子(株)製 SSC
/5200]による吸熱ピーク温度(昇温速度5℃/分)か
ら求められる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The (A) crystalline epoxy resin having a melting point of 50 to 150 ° C. used in the present invention is a diepoxy resin having two epoxy groups in one molecule. Since all of these epoxy resins show crystallinity, they are solid at a temperature lower than the melting point, but become a low-viscosity liquid material at a temperature higher than the melting point. For this reason, in the case of a crystalline epoxy resin having a melting point of less than 50 ° C., fusion tends to occur in the production process of the epoxy resin composition, and workability is significantly reduced. In addition, a crystalline epoxy resin having a melting point exceeding 150 ° C. has a problem that the uniformity of the material is poor because the epoxy resin composition is not sufficiently melted in a manufacturing process of kneading under heating. As a method for measuring the melting point, a differential scanning calorimeter [SSC manufactured by Seiko Denshi Co., Ltd.
/ 5200] (heat-up rate of 5 ° C / min).

【0013】融点50〜150℃の結晶性エポキシ樹脂
としては、式(1)のビフェニル型エポキシ樹脂、式
(2)のハイドロキノン型エポキシ樹脂、式(3)のス
チルベン型エポキシ樹脂、式(4)のビスフェノールF
型エポキシ樹脂が特に好ましい。以下にこれら結晶性エ
ポキシ樹脂の具体例を示すがこれらに限定されるもので
はない。
Examples of the crystalline epoxy resin having a melting point of 50 to 150 ° C. include a biphenyl epoxy resin of the formula (1), a hydroquinone epoxy resin of the formula (2), a stilbene epoxy resin of the formula (3), and a formula (4) Bisphenol F
Type epoxy resins are particularly preferred. Specific examples of these crystalline epoxy resins are shown below, but the invention is not limited thereto.

【0014】[0014]

【化5】 Embedded image

【0015】これらの結晶性エポキシ樹脂は1分子中の
エポキシ基の数は2個と少なく、単独では架橋密度が低
く、耐熱性の低い硬化物しか得られない。しかし構造と
して剛直な平面ないし棒状骨格を有しており、かつ結晶
化する性質、即ち分子同士が配向しやすいという特徴を
有する。溶融状態では低粘度を示すため成形時に樹脂組
成物の流動性が高く、薄型パッケージへの充填性に特に
優れる。また、構造上剛直で配向しやすいという特徴の
ため、多官能型フェノール樹脂と硬化せさた場合、架橋
構造の架橋密度は低下させても、ガラス転移温度などの
耐熱性を低下させ難い。一方、通常の2官能非結晶性エ
ポキシ樹脂を多官能型フェノール樹脂と併用した場合で
は単に架橋密度が低下するだけであり、ガラス転移温度
の大幅な低下がみられる。さらに、結晶性エポキシ樹脂
の場合、一旦ガラス転移温度を越えた温度領域では低官
能基数化合物の特徴である低弾性率を示すため、半田処
理温度での低応力化に効果的である。このため、半田処
理工程でのパッケージクラック発生や基板と樹脂組成物
界面の剥離発生を防止する効果がある。
[0015] These crystalline epoxy resins have a small number of epoxy groups in one molecule of two, and can be used alone to obtain a cured product having a low crosslinking density and low heat resistance. However, it has a rigid planar or rod-like skeleton as a structure, and has the property of being crystallized, that is, the molecules are easily oriented. Since the resin composition has a low viscosity in a molten state, the fluidity of the resin composition during molding is high, and the filling property into a thin package is particularly excellent. In addition, due to the feature of being structurally rigid and easy to be oriented, when cured with a polyfunctional phenol resin, it is difficult to lower the heat resistance such as the glass transition temperature even if the crosslink density of the crosslinked structure is reduced. On the other hand, when a normal bifunctional non-crystalline epoxy resin is used in combination with a polyfunctional phenol resin, only the crosslinking density is reduced, and the glass transition temperature is significantly reduced. Furthermore, in the case of a crystalline epoxy resin, a low elastic modulus characteristic of a compound having a low number of functional groups is exhibited in a temperature region once exceeding the glass transition temperature, so that it is effective in reducing stress at a soldering temperature. This has the effect of preventing the occurrence of package cracks in the soldering process and the occurrence of peeling at the interface between the substrate and the resin composition.

【0016】本発明のエポキシ樹脂は更に他のエポキシ
樹脂と併用しても差し支えない。併用可能なエポキシ樹
脂としては、エポキシ基を有するモノマー、オリゴマ
ー、ポリマー全般を指し、例えば、ビスフェノールA型
エポキシ樹脂、オルソクレゾールノボラック型エポキシ
樹脂、ナフトール型エポキシ樹脂等が挙げられる。又、
これらのエポキシ樹脂は、単独もしくは混合して用いて
も差し支えない。
The epoxy resin of the present invention may be used in combination with another epoxy resin. Epoxy resins that can be used in combination include all monomers, oligomers, and polymers having an epoxy group, such as bisphenol A epoxy resin, orthocresol novolac epoxy resin, and naphthol epoxy resin. or,
These epoxy resins may be used alone or in combination.

【0017】本発明で用いられる式(5)で示されるフ
ェノール樹脂硬化剤の具体例を以下に示す。
Specific examples of the phenol resin curing agent represented by the formula (5) used in the present invention are shown below.

【化6】 Embedded image

【0018】これらフェノール樹脂を使用すると硬化物
の架橋密度が高くなり、高いガラス転移温度の硬化物が
得られ、使用量としては、ガラス転移温度のバランスか
ら総フェノール樹脂中の20重量%以上配合することが
必要である。20重量%未満ではガラス転移温度が低下
し、また硬化収縮率も大きくなり、成形後のパッケージ
の反り量が大きくなる。尚、これらのフェノール樹脂は
他のフェノール樹脂と適宜併用可能であり、特に限定さ
れるものではないが、フェノールノボラック樹脂、クレ
ゾールノボラック樹脂、ナフトールノボラック樹脂等が
挙げられる。
When these phenolic resins are used, the crosslink density of the cured product is increased, and a cured product having a high glass transition temperature is obtained. The amount of the phenolic resin used is at least 20% by weight based on the balance of the glass transition temperature. It is necessary to. If it is less than 20% by weight, the glass transition temperature decreases, the curing shrinkage increases, and the amount of warpage of the molded package increases. These phenolic resins can be appropriately used in combination with other phenolic resins, and are not particularly limited. Examples thereof include phenol novolak resins, cresol novolak resins, and naphthol novolak resins.

【0019】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。
The curing accelerator of the component (C) used in the present invention refers to those which can be a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically, an amine compound such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0020】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。
The fused silica powder (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0021】本発明の樹脂組成物は、(A)〜(E)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹
脂、三酸化アンチモン等の難燃剤、カップリング剤、カ
ーボンブラックに代表される着色剤、天然ワックス及び
合成ワックス等の離型剤等が適宜配合可能である。樹脂
組成物とするには各成分を混合後、加熱ニーダや熱ロー
ルにより加熱混練し、続いて冷却、粉砕することで目的
とする樹脂組成物が得られる。また、本発明のエポキシ
樹脂組成物を用いて、半導体等の電子部品を封止し、半
導体装置を製造するには、トランスファーモールド、コ
ンプレッションモールド、インジェクションモールド等
の従来からの成形方法で硬化成形をすればよい。
The resin composition of the present invention may be, if necessary, a brominated epoxy resin, a flame retardant such as antimony trioxide, a coupling agent, or carbon black, in addition to the essential components (A) to (E). Coloring agents, release agents such as natural waxes and synthetic waxes, etc., can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. In addition, using the epoxy resin composition of the present invention to encapsulate electronic components such as semiconductors and manufacture semiconductor devices, curing molding is performed by a conventional molding method such as transfer molding, compression molding, or injection molding. do it.

【0022】本発明の半導体装置は有機基板としてBT
樹脂基板を用いる場合は、エポキシ樹脂組成物の硬化後
の線膨張係数(α1)が8〜16ppm/℃、熱機械分析
装置で測定されるガラス転移温度が140℃以上、硬化
収縮率が0.15%以下、かつ175℃における溶融粘
度が150poise以下であることが特に好ましい。
BT樹脂基板の線膨張係数は14ppm/℃程度である
が、これにシリコンチップ、銅箔回路などの金属とが組
合される複合基板では、チップの面積比率、銅箔回路の
面積比率により線膨張係数が変化する。この基板の線膨
張係数と合わせて樹脂組成物の硬化物の線膨張係数と硬
化収縮率を上記範囲とすることで、BT樹脂基板の成形
温度から室温までの熱収縮量に合わせて樹脂組成物の硬
化物の熱収縮量がほぼ同じとなり、成形後の反りを小さ
くできる。なお、ここでいう硬化収縮率とは、成形温度
における金型の寸法と成形温度での成形品寸法との比率
を指す。
The semiconductor device of the present invention uses BT as an organic substrate.
When a resin substrate is used, the epoxy resin composition has a cured linear expansion coefficient (α 1 ) of 8 to 16 ppm / ° C., a glass transition temperature of 140 ° C. or higher measured by a thermomechanical analyzer, and a curing shrinkage of 0. It is particularly preferable that the melt viscosity at 175 ° C. is 150 poise or less.
The linear expansion coefficient of the BT resin substrate is about 14 ppm / ° C., but in a composite substrate in which a metal such as a silicon chip or a copper foil circuit is combined, the linear expansion coefficient is determined by the area ratio of the chip and the area ratio of the copper foil circuit. The coefficient changes. By setting the linear expansion coefficient and the curing shrinkage ratio of the cured product of the resin composition in the above ranges together with the linear expansion coefficient of the substrate, the resin composition can be adjusted according to the heat shrinkage from the molding temperature of the BT resin substrate to room temperature. The heat shrinkage of the cured product becomes almost the same, and the warpage after molding can be reduced. Here, the curing shrinkage ratio refers to the ratio between the size of the mold at the molding temperature and the size of the molded product at the molding temperature.

【0023】本発明でのガラス転移温度、線膨張係数、
硬化収縮率は以下の方法で測定する。 ・ガラス転移温度(Tg)及び線膨張係数(α1):17
5℃、2分間トランスファー成形したテストピースを更
に175℃、8時間後硬化し、熱機械分析装置[セイコ
ー電子(株)製TMA−120、昇温速度5℃/分]で測
定した。 ・硬化収縮率:テストピースを180℃の金型温度、7
5kg/cm2 の射出圧力で2分間トランスファー成形
し、更に175℃で8時間、後硬化した。180℃に加
熱された状態の金型のキャビティ寸法と180℃に加熱
された成形品の寸法をノギスにより測定し、成形品寸法
/金型キャビティ寸法の比率で硬化収縮率を表した。 ・溶融粘度 島津製作所製高化式フローテスターにより、175℃荷
重10kgで測定した。
In the present invention, the glass transition temperature, the coefficient of linear expansion,
The cure shrinkage is measured by the following method. Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): 17
The test piece obtained by transfer molding at 5 ° C. for 2 minutes was further cured at 175 ° C. for 8 hours, and measured with a thermomechanical analyzer [TMA-120, manufactured by Seiko Denshi Co., Ltd., heating rate 5 ° C./min]. Curing shrinkage: 180 ° C mold temperature of test piece, 7
Transfer molding was performed at an injection pressure of 5 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. The cavity dimensions of the mold heated to 180 ° C. and the dimensions of the molded article heated to 180 ° C. were measured with calipers, and the curing shrinkage was represented by the ratio of molded article dimension / mold cavity dimension. -Melt viscosity The melt viscosity was measured at 175 ° C under a load of 10 kg with a high-grade flow tester manufactured by Shimadzu Corporation.

【0024】[0024]

【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・前記式(6)の構造を主成分とするビフェニル型エポキシ樹脂 [油化シェルエポキシ(株)製、YX−4000H、融点105℃、エポキシ当 量195] 8.2重量部 ・前記式(11)で示されるフェノール樹脂 [明和化成(株)製、MEH−750、軟化点72℃、水酸基当量138] 5.8重量部 ・トリフェニルホスフィン 0.2重量部 ・球状溶融シリカ 85.0重量部 ・カルナバワックス 0.5重量部 ・カーボンブラック 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples. << Example 1 >> Biphenyl type epoxy resin having a structure of the above formula (6) as a main component [YX-4000H, melting point 105 ° C, epoxy equivalent 195, manufactured by Yuka Shell Epoxy Co., Ltd.] 8.2 parts by weight Phenolic resin represented by the formula (11) [MEH-750, manufactured by Meiwa Kasei Co., Ltd., softening point 72 ° C, hydroxyl equivalent 138] 5.8 parts by weight Triphenylphosphine 0.2 parts by weight Spherical fused silica 85.0 parts by weight ・ Carnauba wax 0.5 parts by weight ・ Carbon black 0.3 parts by weight After all the above components were mixed by a mixer, the mixture was kneaded 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C. The obtained kneaded material sheet was cooled and pulverized to obtain a resin composition. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.

【0025】なお、実施例及び比較例で使用した前記式
(7)〜(10)のエポキシ樹脂の性状を以下に示す。 ・式(7)の構造を主成分とするエポキシ樹脂:[融点
144℃、エポキシ当量175] ・式(8)の構造を主成分とするエポキシ樹脂:[融点
52℃、エポキシ当量225] ・式(9)の構造を主成分とするエポキシ樹脂:[融点
82℃、エポキシ当量190] ・式(10)の構造を主成分とするエポキシ樹脂:[液
状、粘度(25℃)55Poise、エポキシ当量168] ・オルソクレゾールノボラックエポキシ樹脂:[日本化
薬(株)製、EOCN−1020、軟化点62℃、エポキ
シ当量200] ・パラキシリレン変性フェノール樹脂:[明和化成(株)
製、MEH−7800、軟化点78℃、エポキシ当量1
75] ・フェノールノボラック樹脂:[群栄化学工業(株)製、
PSM−4261、軟化点81℃、当量104]
The properties of the epoxy resins of the formulas (7) to (10) used in the examples and comparative examples are shown below.・ Epoxy resin having a structure of formula (7) as a main component: [melting point 144 ° C., epoxy equivalent 175] ・ Epoxy resin having a structure of formula (8) as a main component: [melting point 52 ° C., epoxy equivalent 225] ・ Formula Epoxy resin having a structure of (9) as a main component: [melting point 82 ° C., epoxy equivalent 190] ・ Epoxy resin having a structure of the formula (10) as a main component: [liquid, viscosity (25 ° C.) 55 Poise, epoxy equivalent 168] Orthocresol novolak epoxy resin: [EOCN-1020 manufactured by Nippon Kayaku Co., Ltd., softening point 62 ° C, epoxy equivalent 200] Paraxylylene-modified phenolic resin: [Meiwa Kasei Co., Ltd.]
MEH-7800, softening point 78 ° C, epoxy equivalent 1
75] ・ Phenol novolak resin: [Gunei Chemical Industry Co., Ltd.
PSM-4261, softening point 81 ° C, equivalent 104

【0026】《評価方法》 ・スパイラルフロー:EMMI−I−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温175℃、
注入圧力70kg/cm2 、硬化時間2分で測定した。 ・ガラス転移温度(Tg)及び線膨張係数(α1):前記
した方法による。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・硬化収縮率:前記した方法による。 ・溶融粘度:前記した方法による。 ・パッケージ反り量:225ピンBGAパッケージ(基
板は0.36mm厚のBT樹脂基板、パッケージサイズ
は24×24mm、厚み1.17mm、シリコンチップ
はサイズ9×9mm、厚み0.35mm、チップと回路
基板のボンディングパッドとを25μm径の金線でボン
ディングしている)を180℃の金型温度、75kg/
cm2 の射出圧力で2分間トランスファー成形を行い、
更に175℃で8時間、後硬化した。室温に冷却後パッ
ケージのゲートから対角線方向に、表面粗さ計を用いて
高さ方向の変位を測定し、変異差の最も大きい値を反り
量とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数及び基板/樹脂組成物界面の剥離数を(発生パッケ
ージ数)/(全パッケージ数)の%表示で表した。 ・金線変形率:パッケージ反り量評価で成形した225
ピンBGAパッケージを軟X線透視装置で観察し、金線
の変形率を(流れ量)/(金線長)で%表示した。
<< Evaluation Method >> Spiral flow: Using a mold for measuring spiral flow according to EMMI-I-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): According to the method described above.・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Curing shrinkage: According to the method described above. Melt viscosity: According to the method described above. Package warpage: 225-pin BGA package (substrate is a 0.36 mm thick BT resin substrate, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is 9 × 9 mm, thickness 0.35 mm, chip and circuit board Is bonded with a gold wire having a diameter of 25 μm) at a mold temperature of 180 ° C. and 75 kg /
perform transfer molding for 2 minutes at an injection pressure of cm 2,
Further post-curing was performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
The package was observed using an ultrasonic flaw detector, and the number of internal cracks and the number of peels at the interface between the substrate and the resin composition were represented by% of (number of generated packages) / (total number of packages). Gold wire deformation rate: 225 molded by evaluating package warpage
The pin BGA package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) in%.

【0027】《実施例2〜5及び比較例1〜4》表1及
び表2の処方に従い配合し、実施例1と同様に成形材料
を得た。この成形材料で実施例1と同様に上記評価を行
った。評価結果を表1に示す。
<< Examples 2 to 5 and Comparative Examples 1 to 4 >> Compounded according to the formulations shown in Tables 1 and 2, a molding material was obtained in the same manner as in Example 1. This molding material was evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は金線変形など成形性においても優れおり、該半導体
封止用エポキシ樹脂組成物により封止されたエリア実装
型半導体装置は、室温及び半田付け工程での反りが小さ
く、耐半田性や耐温度サイクル性などの信頼性が高いも
のである。
The epoxy resin composition for semiconductor encapsulation of the present invention is also excellent in moldability such as gold wire deformation, and the area mounting type semiconductor device sealed with the epoxy resin composition for semiconductor encapsulation can be used at room temperature. Also, the warpage in the soldering process is small, and the reliability such as solder resistance and temperature cycle resistance is high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/36 C08K 3/36 H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/36 C08K 3/36 H01L 23/29 H01L 23/30 R 23/31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)〜(4)で示される
融点が50〜150℃の結晶性エポキシ樹脂、(B)一
般式(5)で示されるフェノール樹脂を総フェノール樹
脂中に20重量%以上含むフェノール樹脂硬化剤、
(C)硬化促進剤、(D)溶融シリカ粉末からなること
を特徴とする半導体封止用エポキシ樹脂組成物。 【化1】 [式(1)〜(4)中のRは水素原子、ハロゲン原子又
は炭素数1〜12のアルキル基を示し、互いに同一であ
っても、異なっていてもよい。] 【化2】 [式(5)中のRは水素原子、ハロゲン原子、炭素数1
〜12のアルキル基又は水酸基を示し、互いに同一であ
っても、異なっていてもよい。m及びnは1〜10の正
の整数である。]
1. A crystalline epoxy resin having a melting point of 50 to 150 ° C. represented by the general formulas (1) to (4), and (B) a phenolic resin represented by the general formula (5) in the total phenolic resin. A phenolic resin curing agent containing at least 20% by weight of
An epoxy resin composition for semiconductor encapsulation comprising (C) a curing accelerator and (D) a fused silica powder. Embedded image [R in the formulas (1) to (4) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different. ] [R in the formula (5) is a hydrogen atom, a halogen atom,
And 12 to 12 alkyl groups or hydroxyl groups, which may be the same or different. m and n are positive integers of 1 to 10. ]
【請求項2】 成形硬化時の硬化収縮率が0.15%以
下、硬化後の線膨張係数α1 が8〜16ppm/℃で、
かつガラス転移温度が140℃以上である請求項1記載
の半導体封止用エポキシ樹脂組成物。
2. The composition has a curing shrinkage of 0.15% or less during molding and curing, a linear expansion coefficient α1 after curing of 8 to 16 ppm / ° C.,
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the glass transition temperature is 140 ° C or higher.
【請求項3】 成形前の175℃における溶融粘度が1
50poise以下である請求項1又は2記載の半導体
封止用エポキシ樹脂組成物。
3. The melt viscosity at 175 ° C. before molding is 1
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the epoxy resin composition is 50 poise or less.
【請求項4】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1、2又は3記載のエポキシ樹脂組成物によっ
て封止されていることを特徴とする半導体装置。
4. A semiconductor device is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor device is mounted is sealed with the epoxy resin composition according to claim 1, 2 or 3. A semiconductor device.
JP22128397A 1997-08-18 1997-08-18 Epoxy resin composition and semiconductor device Pending JPH1160901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22128397A JPH1160901A (en) 1997-08-18 1997-08-18 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22128397A JPH1160901A (en) 1997-08-18 1997-08-18 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH1160901A true JPH1160901A (en) 1999-03-05

Family

ID=16764363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22128397A Pending JPH1160901A (en) 1997-08-18 1997-08-18 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH1160901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284961A (en) * 2001-03-22 2002-10-03 Toray Ind Inc Epoxy-based resin composition and semiconductor device using the same
KR100739363B1 (en) 2005-08-02 2007-07-16 제일모직주식회사 Epoxy resin for packaging semiconductor device
JP4639460B2 (en) * 2000-11-08 2011-02-23 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
CN102408679A (en) * 2011-08-29 2012-04-11 天威新能源控股有限公司 Epoxy resin composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639460B2 (en) * 2000-11-08 2011-02-23 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2002284961A (en) * 2001-03-22 2002-10-03 Toray Ind Inc Epoxy-based resin composition and semiconductor device using the same
KR100739363B1 (en) 2005-08-02 2007-07-16 제일모직주식회사 Epoxy resin for packaging semiconductor device
CN102408679A (en) * 2011-08-29 2012-04-11 天威新能源控股有限公司 Epoxy resin composite material

Similar Documents

Publication Publication Date Title
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
KR100663680B1 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JPH1192629A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JP3390335B2 (en) Semiconductor device
JP4370666B2 (en) Semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP3292456B2 (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2002020460A (en) Epoxy resin composition and semiconductor device
JP2001146511A (en) Epoxy resin composition and semiconductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device