JPH1144541A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH1144541A
JPH1144541A JP9203560A JP20356097A JPH1144541A JP H1144541 A JPH1144541 A JP H1144541A JP 9203560 A JP9203560 A JP 9203560A JP 20356097 A JP20356097 A JP 20356097A JP H1144541 A JPH1144541 A JP H1144541A
Authority
JP
Japan
Prior art keywords
movable body
angular velocity
floating
movable
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9203560A
Other languages
Japanese (ja)
Inventor
Manabu Kato
藤 学 加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP9203560A priority Critical patent/JPH1144541A/en
Priority to DE19827688A priority patent/DE19827688A1/en
Priority to US09/100,888 priority patent/US6044707A/en
Publication of JPH1144541A publication Critical patent/JPH1144541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy in angular velocity detection by converting a displacement signal generated by a detection means for detecting y-direction displacement of a second movable body into an angular velocity signal. SOLUTION: In order to make a float react with angular velocity around a Z-axis, a first float 2 is excited only in an x-direction, a second float 3 is made to be able to vibrate only in a y-direction to obtain an angular velocity corresponding signal, and the first float 2 and the second float 3 are coupled via a third float I. The third float I is movable in x- and y-directions with respect to a substrate 1, only in the y-direction with respect to the first float 2, and only in the x-direction with respect to the second float 3. Since the first float 2 is substantially immobile in the y-direction, it may not be displaced substantially in the y-direction even if driving force in the y-direction for example is applied due to x-direction excitation driving, while the third float I and the second float 3 are not driven in the y-direction by the x-direction excitation driving and may not shift a displacement signal when no angular velocity is applied. Thus accuracy in angular velocity detection is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板に対して浮動
支持された振動体を備える角速度センサに関し、特に、
これに限定する意図ではないが、半導体微細加工技術を
用いて形成される浮動半導体薄膜を櫛歯電極にて電気的
に吸引/解放してx方向に励振する角速度センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor having a vibrating body floatingly supported on a substrate.
Although not intended to be limited to this, the present invention relates to an angular velocity sensor that electrically attracts / releases a floating semiconductor thin film formed by using a semiconductor microfabrication technique with a comb-shaped electrode and excites the x-direction.

【0002】[0002]

【従来の技術】この種の角速度センサの代表的なもの
は、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛
歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備
え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触
で噛み合いかつ平行な左側固定櫛歯電極および右側固定
櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電
極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に
電圧を印加することにより、浮動薄膜がx方向に振動す
る。浮動薄膜に、z軸を中心とする回転の角速度が加わ
ると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、
y方向にも振動する楕円振動となる。浮動薄膜を導体と
しもしくは電極が接合したものとし、浮動薄膜のxz平
面に平行な検出電極を基板上に備えておくと、この検出
電極と浮動薄膜との間の静電容量が、楕円振動のy成分
(角速度成分)に対応して振動する。この静電容量の変
化(振幅)を測定することにより、角速度を求めること
が出来る(例えば特開平9−127148号公報,特開
平9−42973号公報,特開平8−152327号公
報,特開平5−248872号公報,特願平8−249
822号,特願平9−121989号,特願平9−16
3851号)。
2. Description of the Related Art A typical type of angular velocity sensor has a pair of floating comb electrodes (a left floating comb electrode and a right floating comb electrode) on the left side and one set on the right side of a floating thin film. And two sets of fixed comb electrodes (a left fixed comb electrode and a right fixed comb electrode that mesh with and are parallel to each set of floating comb electrodes in a non-contact manner) as left floating comb electrodes / left fixed comb electrodes. By alternately applying a voltage between the space and the right floating comb electrode / the right fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z-axis is applied to the floating thin film, Coriolis force is applied to the floating thin film, and the floating thin film becomes
An elliptical vibration that vibrates also in the y direction. If the floating thin film is used as a conductor or an electrode is bonded, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the capacitance between the detection electrode and the floating thin film becomes elliptical oscillation. Vibrates according to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be determined (for example, Japanese Patent Application Laid-Open Nos. 9-127148, 9-42973, 8-152327, and 5). -248882, Japanese Patent Application No. 8-249.
No. 822, Japanese Patent Application No. 9-121989, Japanese Patent Application No. 9-16
No. 3851).

【0003】従来、半導体薄膜を浮動体(浮動薄膜)と
して用いたこの種の角速度センサにおいて、基板に対し
て平行なx方向の静電駆動による浮動体の駆動または静
電容量による変位検出には、交互にかみ合う櫛歯状の電
極や平行平板電極を用いており、それらの電極は、半導
体薄膜をエッチングした面(xz面)を用いている。
Conventionally, in an angular velocity sensor of this type using a semiconductor thin film as a floating body (floating thin film), the floating body is driven by electrostatic drive in the x direction parallel to the substrate or displacement is detected by capacitance. , A comb-toothed electrode or a parallel plate electrode that meshes alternately is used, and these electrodes use a surface (xz surface) obtained by etching a semiconductor thin film.

【0004】[0004]

【発明が解決しようとする課題】浮動体は、角速度検出
原理からx方向およびy方向に可動である必要があり、
したがって従来は、浮動体をx方向およびy方向に共に
可動にして、基板で支持している。ところで、浮動体の
x方向の励振駆動は、x方向に延びる平行平板電極(浮
動櫛歯電極/固定櫛歯電極)で行なわれ、この平行平板
電極は、浮動体にy方向の吸引力を与え易い。すなわ
ち、x方向に延びる一本(一歯)の浮動櫛歯電極を、x
方向に延びる二本(2歯)の固定櫛歯電極が空隙を置い
て挟んでいるので、該一本の浮動櫛歯電極が正しく該二
本の固定櫛歯電極の中間点に位置するときには、該二本
の固定櫛歯電極がそれぞれ該一本の浮動櫛歯電極に、絶
対値が同一で方向が逆向きのy方向静電吸引力を及ぼす
ので、固定櫛歯電極から浮動櫛歯電極にy方向の駆動力
は加わらない。しかし、該一本の浮動櫛歯電極が、該二
本の固定櫛歯電極の中間点よりわずかでも一方の固定櫛
歯電極側にずれていると、浮動体にz軸廻りの角速度が
加わっていなくても、固定櫛歯電極から浮動櫛歯電極に
y方向の駆動力が加わり、浮動体がy方向に偏位する。
The floating body needs to be movable in the x-direction and the y-direction from the principle of angular velocity detection.
Therefore, conventionally, the floating body is movable in both the x and y directions and is supported by the substrate. By the way, the driving of the floating body in the x direction is performed by a parallel plate electrode (floating comb electrode / fixed comb tooth electrode) extending in the x direction, and this parallel plate electrode gives a suction force to the floating body in the y direction. easy. That is, one (one tooth) floating comb-teeth electrode extending in the x direction is defined as x
Since the two (two-tooth) fixed comb-teeth electrodes extending in the direction are sandwiched with a gap therebetween, when the one floating comb-teeth electrode is correctly positioned at the intermediate point between the two fixed comb-teeth electrodes, Since the two fixed comb-teeth electrodes exert an electrostatic attraction force in the y-direction having the same absolute value and opposite directions to the one floating comb-teeth electrode, the fixed comb-teeth electrode is applied to the floating comb-teeth electrode. No driving force is applied in the y direction. However, if the one floating comb electrode is slightly displaced toward one of the fixed comb electrodes from the midpoint of the two fixed comb electrodes, the floating body is subjected to an angular velocity about the z-axis. Even if it is not, a driving force in the y direction is applied from the fixed comb electrode to the floating comb electrode, and the floating body is displaced in the y direction.

【0005】これは角速度が加わったときの浮動体の変
位と同一周期で変位するので、角速度が加わっていない
ときにも角速度があるのと同様な検出信号を発生させる
オフセットの原因となる。また、温度によるオフセット
の変動(温度ドリフト)の原因となり、角速度検出精度
の低下を招き易い。
Since the floating body is displaced in the same cycle as the displacement of the floating body when the angular velocity is applied, it causes an offset that generates a detection signal similar to the presence of the angular velocity even when the angular velocity is not applied. In addition, it causes offset fluctuation (temperature drift) due to temperature, and tends to cause a decrease in angular velocity detection accuracy.

【0006】また、浮動体をx,y平面で可動にするた
めに、基板に対する浮動体の支持構造のz方向のバネ定
数が小さくなり易く、z方向の加速度に対する浮動体の
z方向の変位によって固定櫛歯電極に対する浮動櫛歯電
極のz方向相対位置がずれて両電極間の静電容量が変化
する。この静電容量の変化は、z軸廻りの角速度検出に
対しては外乱となる。したがってz方向の加速度が加わ
ることによる浮動体のz方向変位を抑制するのが好まし
い。
Further, since the floating body is movable in the x and y planes, the spring constant in the z direction of the supporting structure of the floating body with respect to the substrate is likely to be small, and the floating body is displaced in the z direction with respect to the acceleration in the z direction. The relative position of the floating comb-teeth electrode relative to the fixed comb-teeth electrode in the z direction shifts, and the capacitance between the two electrodes changes. This change in capacitance becomes a disturbance to the detection of angular velocity around the z-axis. Therefore, it is preferable to suppress the displacement of the floating body in the z direction due to the application of the acceleration in the z direction.

【0007】本発明は、角速度検出精度を高くすること
を目的とし、より具体的には、角速度が加わっていない
ときの角速度信号の偏倚と、z方向の加速度が加わるこ
とによる角速度信号のレベル変化を、共に抑制すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to increase the angular velocity detection accuracy. More specifically, the angular velocity signal deviation when the angular velocity is not applied and the level change of the angular velocity signal due to the addition of the acceleration in the z direction Are to be suppressed together.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明の角速度センサは、基板(1);基板(1)にx
方向には可動に、y方向には実質上不動に支持された第
1可動体(2);前記基板(1)にy方向には可動に、x方向
には実質上不動に支持された第2可動体(3);x,y方
向に可動であって、第1可動体(2)に対してはy方向に
可動にx方向には実質上不動に連結され、第2可動体
(3)に対してはx方向に可動にy方向には実質上不動に
連結された、第3可動体(I);第1可動体(2)をx方向に
振動駆動する励振手段(4,5,15);第2可動体(3)のy方
向変位を検出する変位検出手段(6a,6b,7a,7b,12,13,1
7);および、該変位検出手段が発生する変位信号を角速
度信号に変換する変換手段(18);を備える。
(1) The angular velocity sensor according to the present invention comprises a substrate (1);
A first movable body (2) supported movably in the direction and substantially immovable in the y direction; a first movable body (2) supported in the substrate (1) in the y direction and substantially immovable in the x direction. 2 movable body (3); movable in the x and y directions, coupled to the first movable body (2) in the y direction and substantially immovably in the x direction,
Exciting means (4) for oscillatingly driving the third movable body (I) and the first movable body (2) in the x direction, which is connected to (3) movably in the x direction and substantially immovable in the y direction. , 5,15); Displacement detecting means (6a, 6b, 7a, 7b, 12,13,1) for detecting the y-direction displacement of the second movable body (3)
7); and conversion means (18) for converting a displacement signal generated by the displacement detection means into an angular velocity signal.

【0009】なお、理解を容易にするためにカッコ内に
は、図面に示し後述する実施例の対応要素又は相当部材
に付した記号を、参考までに付記した。
To facilitate understanding, symbols in parentheses are given to the reference numerals corresponding to the corresponding elements or corresponding members of the embodiment shown in the drawings and described later for reference.

【0010】励振手段(4,5,15)が第1可動体(2)をx方
向に振動駆動すると、第1可動体(2)と共に第3可動体
(I)がx方向に振動する。z軸廻りの角速度が加わる
と、第1可動体(2)は実質上y方向に振動しないが、第
3可動体(I)がy方向にも振動する。これにより第2可
動体(3)がy方向に振動し、変位検出手段(6a,6b,7a,7b,
12,13,17)が、第2可動体(3)のy方向変位を表わす変位
信号を発生し、これを変換手段(18)が角速度信号に変換
する。
When the excitation means (4, 5, 15) drives the first movable body (2) to vibrate in the x direction, the third movable body is moved together with the first movable body (2).
(I) vibrates in the x direction. When an angular velocity about the z axis is applied, the first movable body (2) does not substantially vibrate in the y direction, but the third movable body (I) also vibrates in the y direction. As a result, the second movable body (3) vibrates in the y direction, and the displacement detecting means (6a, 6b, 7a, 7b,
12, 13, 17) generate a displacement signal representing the y-direction displacement of the second movable body (3), and the converting means (18) converts the signal into an angular velocity signal.

【0011】z軸廻りの角速度に浮動体を反応させるた
めに、第1可動体(2)をx方向のみに励振し、角速度対
応信号を得るための第2可動体(3)はy方向のみに振動
可とし、第1可動体(2)と第2可動体(3)とを第3可動体
(I)で連結して、この第3可動体(I)を、基板(1)に対し
てはx,y方向に可動に、第1可動体(2)に対してはy
方向のみに、第2可動体(3)に対してはx方向のみに可
動にしており、第1可動体(2)がy方向には実質上不動
であるので、x方向励振駆動により仮にy方向の駆動力
が加わってもy方向には実質上変位せず、第3可動体
(I)および第2可動体(3)は、したがって、x方向励振駆
動によってはy方向に駆動されず、角速度が加わってい
ないときに変位信号を偏倚させることがない。これによ
り角速度検出精度が高くなる。
In order to make the floating body react to the angular velocity around the z-axis, the first movable body (2) is excited only in the x direction, and the second movable body (3) for obtaining an angular velocity corresponding signal is provided only in the y direction. The first movable body (2) and the second movable body (3) are connected to a third movable body.
(I), the third movable body (I) is movable in the x and y directions with respect to the substrate (1), and y is movable with respect to the first movable body (2).
The second movable body (3) is movable only in the x direction only in the direction, and the first movable body (2) is substantially immovable in the y direction. The third movable body is not substantially displaced in the y direction even if a driving force in the
(I) and the second movable body (3) are therefore not driven in the y-direction by the x-direction excitation drive, and do not bias the displacement signal when no angular velocity is applied. This increases the angular velocity detection accuracy.

【0012】第3可動体(I)は、第1可動体(3)に加わる
x方向駆動力が確実に伝播してx方向に振動し、z軸廻
りの角速度が加わるとy方向にも振動し、このy方向振
動が第2可動体(3)に確実に伝幡する。第2可動体(3)
が、y方向には可動ではあるがx方向には実質上不動
に、基板(1)に支持されているので、この支持構造によ
って第2可動体(3)のバネ定数が大きく、第2振動体(3)
のz方向の加速度によるz方向変位は小さくなり、した
がってS/N比が向上する。
The third movable body (I) vibrates in the x direction by reliably transmitting the driving force in the x direction applied to the first movable body (3), and also vibrates in the y direction when an angular velocity about the z axis is applied. Then, the y-direction vibration is reliably transmitted to the second movable body (3). Second movable body (3)
However, since it is movable in the y-direction but substantially immovable in the x-direction, it is supported by the substrate (1), so that the spring constant of the second movable body (3) is increased by this support structure, and the second vibration Body (3)
, The displacement in the z direction due to the acceleration in the z direction is reduced, and the S / N ratio is improved.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(2)第1可動体(2)および第3可動体(I)はx,y平面
上で矩形リング状であり、第1可動体(2)の内空間に第
3可動体(I)が、第3可動体(I)の内空間に第2可動体
(3)があり、第1,第2および第3可動体の重心が実質
上同一位置である(図1)。 第1可動体(2)の内空間に第
3可動体(I)があって重心が同一位置であるので、第3
可動体(1)が第1可動体(2)のx方向の振動のバランスを
くずすことがない。同様に、第3可動体(I)の内空間に
第2可動体(3)があって重心が同一位置であるので、第
3可動体(I)が第2可動体(3)のy方向の振動のバランス
をくずすことがなく、各可動体の運動のバランスが良
く、角速度をy方向振動に変換する効率が良い。
(2) The first movable body (2) and the third movable body (I) have a rectangular ring shape on the x, y plane, and the third movable body (I) is provided in the inner space of the first movable body (2). , The second movable body in the inner space of the third movable body (I)
(3), and the centers of gravity of the first, second and third movable bodies are substantially at the same position (FIG. 1). Since the third movable body (I) is in the inner space of the first movable body (2) and the center of gravity is at the same position,
The movable body (1) does not break the balance of the vibration of the first movable body (2) in the x direction. Similarly, since the second movable body (3) is located in the inner space of the third movable body (I) and the center of gravity is at the same position, the third movable body (I) is moved in the y direction of the second movable body (3). The balance of the motion of each movable body is good without breaking the balance of the vibration, and the efficiency of converting the angular velocity into the vibration in the y direction is good.

【0014】(3)第2可動体(3)および第3可動体(I)
はx,y平面上で矩形リング状であり、第2可動体(3)
の内空間に第3可動体(I)が、第3可動体(I)の内空間に
第1可動体(2)があり、第1,第2および第3可動体の
重心が実質上同一位置である(図4)。 上記(2)の態
様(図1)が、重心位置から第1可動体(2),第3可動体
(I)および第2可動体(2)の順の配列となっているのに対
し、本実施態様(図3)では、重心位置から第2可動体
(3),第3可動体(I)および第1可動体(2)の順の配列で
あって、第1可動体(2)と第2可動体(3)の位置が入れ替
わっているが、上記(2)の態様と同様に、各可動体の
運動のバランスが良く、角速度をy方向振動に変換する
効率が良い。
(3) Second movable body (3) and third movable body (I)
Is a rectangular ring on the x, y plane, and the second movable body (3)
There is a third movable body (I) in the inner space of the first movable body (I) and a first movable body (2) in the inner space of the third movable body (I), and the centers of gravity of the first, second and third movable bodies are substantially the same. Position (FIG. 4). The mode (FIG. 1) of the above (2) is the first movable body (2) and the third movable body from the position of the center of gravity.
In contrast to the arrangement of (I) and the second movable body (2), in this embodiment (FIG. 3), the second movable body
(3), the third movable body (I) and the first movable body (2) are arranged in this order, and the positions of the first movable body (2) and the second movable body (3) are interchanged. As in the above mode (2), the movement of each movable body is well balanced, and the efficiency of converting the angular velocity into the y-direction vibration is high.

【0015】(4)第1可動体(2)は、一端が基板(1)に
固定されたy方向に延びる梁(22a〜d)で基板(1)に対し
て浮動支持した。y方向に延びる梁(22a〜d)は、y方向
には撓まずx方向に撓むので、これにより、第1可動体
(2)は基板(1)に対して、y方向には不動、x方向には可
動の浮動支持である。第1可動体(2)の浮動支持とx方
向のみの変位が確実である。
(4) The first movable body (2) is floatingly supported with respect to the substrate (1) by beams (22a-d) extending in the y direction and having one end fixed to the substrate (1). Since the beams (22a to 22d) extending in the y direction do not bend in the y direction but in the x direction, the first movable body
(2) is a floating support that is immovable in the y direction and movable in the x direction with respect to the substrate (1). The floating support of the first movable body (2) and the displacement only in the x direction are reliable.

【0016】(5)第2可動体(3)は、一端が基板(1)に
固定されたx方向に延びる梁(32a〜32d)で基板(1)に対
して浮動支持した。x方向に延びる梁(32a〜32d)は、x
方向には撓まずy方向に撓むので、これにより、第2可
動体(3)は基板(1)に対して、x方向には不動、y方向に
は可動の浮動支持である。第2可動体(3)の、基板(1)に
対する浮動支持とy方向のみの変位が確実である。
(5) The second movable body (3) is floatingly supported on the substrate (1) by beams (32a to 32d) fixed at one end to the substrate (1) and extending in the x direction. The beams (32a to 32d) extending in the x direction are x
Since the second movable body (3) bends in the y direction without bending in the direction, the second movable body (3) is a floating support that is immovable in the x direction and movable in the y direction with respect to the substrate (1). The floating support of the second movable body (3) with respect to the substrate (1) and the displacement only in the y direction are reliable.

【0017】(6)第3可動体(I)は、x方向に延びる
梁(IX1〜4)で第1可動体(2)に、y方向に延びる梁(Iy1
〜4)で第2可動体(3)に連結した。x方向に延びる梁(IX
1〜4)で連結されているので、第3可動体(I)は第1可動
体(2)と同じくx方向に振動し、しかも、第1可動体(2)
が振動し得ないy方向にも振動可であり、z軸廻りの角
速度が加わると、y方向にも振動する。このy振動がy
方向に延びる梁(Iy1〜4)で第2可動体(3)に伝播する
が、第3可動体(I)から第2可動体(3)へのx方向の振動
は該梁(Iy1〜4)で遮断される。第3可動体(I)のy振動
のみが第2可動体(I)に確実に伝播する。
(6) The third movable body (I) is connected to the first movable body (2) by beams (IX1 to IX4) extending in the x direction and to the beam (Iy1) extending in the y direction.
4) to the second movable body (3). Beam extending in x direction (IX
1 to 4), the third movable body (I) vibrates in the x-direction similarly to the first movable body (2), and furthermore, the first movable body (2)
Can also vibrate in the y direction where it cannot vibrate, and also vibrates in the y direction when an angular velocity about the z axis is applied. This y vibration is y
Propagation to the second movable body (3) by beams (Iy1 to 4) extending in the direction, but vibration in the x direction from the third movable body (I) to the second movable body (3) is caused by the beams (Iy1 to 4). ). Only the y vibration of the third movable body (I) reliably propagates to the second movable body (I).

【0018】(7)第1可動体(2),第2可動体(3)およ
び第3可動体(I)は、それらの重心が実質上同一位置で
あって該重心を通るxz面およびyz面に対して実質上
対称である。
(7) The first movable body (2), the second movable body (3) and the third movable body (I) have their centers of gravity substantially at the same position, and have an xz plane and a yz plane passing through the centers of gravity. It is substantially symmetric with respect to the plane.

【0019】これによれば、各可動体(2,3,I)に加わる
駆動力およびコリオリ力の力点は実質上重心を通り、可
動体間で重心位置が異なることによる回転モ−メントの
発生が実質上無くなりしたがって不要振動あるいは振動
方向ずれが実質上無くなり、角速度検出のS/Nが向上
する。
According to this, the power points of the driving force and the Coriolis force applied to each movable body (2, 3, I) substantially pass through the center of gravity, and the generation of the rotational moment due to the difference in the position of the center of gravity between the movable bodies. Is substantially eliminated, so that unnecessary vibration or deviation in the vibration direction is substantially eliminated, and the S / N of the angular velocity detection is improved.

【0020】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0021】[0021]

【実施例】【Example】

−第1実施例− 図1に本発明の第1実施例を示す。この実施例は、第2
浮動体3および第3浮動体Iに加わるz軸廻りの角速度
を検出する角速度センサである。図2の(a)に、図1
に示す第2浮動体3の一辺部を拡大して示し、図2の
(b)に(a)上の2B−2B線断面を示す。
-First Embodiment- FIG. 1 shows a first embodiment of the present invention. In this embodiment, the second
This is an angular velocity sensor that detects an angular velocity about the z-axis applied to the floating body 3 and the third floating body I. FIG.
2B is an enlarged view of one side of the second floating body 3 shown in FIG. 2, and FIG. 2B shows a cross section taken along line 2B-2B on FIG.

【0022】図1および図2を参照されたい。絶縁層を
形成したシリコン基板1には、導電性とするための不純
物を含むポリシリコン(以下導電性ポリシリコン)の、
浮動体アンカ8a〜8f,固定電極の電極パッド10,
11および励振検出電極の電極パッドが接合しており、
シリコン基板1上の絶縁層の上に形成された配線(1
2,13等)により、導電性ポリシリコンでなる半導体
薄膜の、第1浮動体2,第2浮動体3,第3浮動体I,
固定電極4,5,6a〜6c,7a〜7cは、接続電極
に接続されている。なお、シリコン基板1に上記ポリシ
リコンの導電形(p)と反対の導電性(n)の基板を用
い、シリコン基板1にpn接合により配線を形成し、上
記配線と浮動体アンカ8a〜8dおよび固定電極の電極
パッド10,11と接続電極の電極パッド部とを接合し
てもよい。
Please refer to FIG. 1 and FIG. The silicon substrate 1 on which the insulating layer is formed is made of polysilicon (hereinafter referred to as conductive polysilicon) containing impurities for making it conductive.
Floating body anchors 8a-8f, fixed electrode pad 10,
11 and the electrode pad of the excitation detection electrode are joined,
Wiring (1) formed on an insulating layer on silicon substrate 1
2, 13 etc.), the first floating body 2, the second floating body 3, the third floating body I, of the semiconductor thin film made of conductive polysilicon.
The fixed electrodes 4, 5, 6a to 6c, 7a to 7c are connected to connection electrodes. Note that a silicon substrate 1 having a conductivity (n) opposite to the conductivity type (p) of polysilicon is used, wiring is formed on the silicon substrate 1 by pn junction, and the wiring and floating anchors 8a to 8d and The electrode pads 10 and 11 of the fixed electrode may be joined to the electrode pads of the connection electrodes.

【0023】浮動体アンカ8a〜8dに、y方向に延び
る第1組の浮動支持梁22a〜22dが連続しており、
これらの支持梁22a〜22dに、基板1の表面に実質
上平行な、矩形リング状の第1浮動体2が連続してい
る。
A first set of floating support beams 22a to 22d extending in the y direction are continuous with the floating body anchors 8a to 8d,
A rectangular ring-shaped first floating body 2 substantially parallel to the surface of the substrate 1 is continuous with these support beams 22a to 22d.

【0024】第1浮動体2から左右(x方向)に、櫛歯
状にy方向に等ピッチで分布する複数個の、x駆動用の
可動側櫛歯電極23a,23bが突出している。1つの
固定電極の電極パッド10には、固定電極4の基幹が連
続しており、該基幹には可動側櫛歯電極23aの歯間ス
ロットに進入した、x駆動用の櫛歯状の固定櫛歯電極4
2があり、もう1つの固定電極の電極パッド11には、
固定電極5の基幹が連続しており、該基幹には可動側櫛
歯電極23bの歯間スロットに進入した、x駆動用の櫛
歯状の固定櫛歯電極52がある。これらのx駆動用の可
動側櫛歯電極23a,23bとx駆動用の固定櫛歯電極
42,52との間には、微小ギャップがある。
A plurality of movable comb electrodes 23a and 23b for x driving protrude from the first floating body 2 to the left and right (x direction) in a comb shape at a constant pitch in the y direction. The base of the fixed electrode 4 is continuous with the electrode pad 10 of one fixed electrode, and the base of the fixed electrode 4 is inserted into the inter-tooth slot of the movable comb-shaped electrode 23a. Tooth electrode 4
2 and the other fixed electrode electrode pad 11 has:
The base of the fixed electrode 5 is continuous, and the base includes a comb-shaped fixed comb-shaped electrode 52 for x-drive, which has entered the interdental slot of the movable comb-shaped electrode 23b. There is a minute gap between the movable comb electrodes 23a and 23b for x driving and the fixed comb electrodes 42 and 52 for x driving.

【0025】第1浮動体2に、x方向に延びる第3組の
浮動支持梁Ix1〜Ix4が連続しており、これらの支
持梁Ix1〜Ix4に、基板1の表面に実質上平行な、
矩形リング状の第3浮動体Iが連続している。
A third set of floating support beams Ix1 to Ix4 extending in the x direction are continuous with the first floating body 2, and these support beams Ix1 to Ix4 are substantially parallel to the surface of the substrate 1.
The rectangular ring-shaped third floating body I is continuous.

【0026】第3浮動体Iに、その矩形リングの内空間
にy方向に延びる第4組の浮動支持梁Iy1〜Iy4が
連続しており、これらの支持梁Iy1〜Iy4に、基板
1の表面に実質上平行な、矩形リング状の第2浮動体3
が連続している。
On the third floating body I, a fourth set of floating support beams Iy1 to Iy4 extending in the y direction in the inner space of the rectangular ring are continuous, and these support beams Iy1 to Iy4 are connected to the surface of the substrate 1 Ring-shaped second floating body 3 substantially parallel to
Is continuous.

【0027】第2組の、x方向に延びる浮動支持梁32
a〜32dの一端が、第2浮動体3の基幹31に、一体
で連なっており、これらの支持梁の他端が、アンカ8
e,8fに連続し、基板1で支持されている。
A second set of floating support beams 32 extending in the x-direction
a to 32d are integrally connected to the base 31 of the second floating body 3, and the other ends of these support beams are connected to the anchor 8
e, 8f and supported by the substrate 1.

【0028】第2浮動体3の基幹31には、第2組の支
持梁32a〜32dと平行な、x方向に延びるy変位検
出用の櫛歯電極33aがy方向に分布し、基幹31から
x方向に延びている。櫛歯電極33aは、所定ピッチで
y方向に分布している。この分布の1ピッチ内のギャッ
プに、y方向変位検出用の第1組の多数の固定櫛歯電極
6aの1つと、y方向変位検出用の第2組の多数の固定
櫛歯電極7aの1つがある。第1組の固定櫛歯電極6a
は、シリコン基板1上の絶縁層の上に形成された、配線
13の分岐線(図2)上にあり、電気的に配線13と同
電位となる。第2組の固定櫛歯電極7aは、シリコン基
板1上の絶縁層の上に形成された、配線12の分岐線
(図2)上にあり、電気的に配線12と同電位となる。
On the main body 31 of the second floating body 3, comb-shaped electrodes 33a for detecting y displacement, which extend in the x direction and are parallel to the second set of support beams 32a to 32d, are distributed in the y direction. It extends in the x direction. The comb electrodes 33a are distributed at a predetermined pitch in the y direction. In the gap within one pitch of this distribution, one of the first set of many fixed comb-teeth electrodes 6a for detecting the y-direction displacement and one of the second set of many fixed comb-teeth electrodes 7a for the y-direction displacement detection are provided. There is one. First set of fixed comb-teeth electrodes 6a
Is on the branch line (FIG. 2) of the wiring 13 formed on the insulating layer on the silicon substrate 1 and is electrically at the same potential as the wiring 13. The second set of fixed comb-teeth electrodes 7 a is on a branch line (FIG. 2) of the wiring 12 formed on the insulating layer on the silicon substrate 1, and is electrically at the same potential as the wiring 12.

【0029】第1浮動体2のx軸平行辺(1対)の一方
から、x移動検出用の可動櫛歯電極24aがy方向に突
出し、これらの電極間ギャップに、x移動検出用の第1
組の櫛歯電極6cおよびx移動検出用の第2組の櫛歯電
極7cがあり、それぞれ別個の配線上にある。これらの
可動櫛歯電極24a,第1組の櫛歯電極6cおよび第2
組の櫛歯電極7cと同様なものが、第1浮動体2のx軸
平行辺(1対)の他方側にもある。
From one of the x-axis parallel sides (one pair) of the first floating body 2, a movable comb electrode 24a for x-movement detection protrudes in the y-direction. 1
There is a set of comb electrodes 6c and a second set of comb electrodes 7c for x-movement detection, each on a separate line. The movable comb electrode 24a, the first set of comb electrodes 6c and the second
The same thing as the set of comb-tooth electrodes 7c is also on the other side of the x-axis parallel side (one pair) of the first floating body 2.

【0030】上述の、第1組の浮動支持梁22a〜22
d,第1浮動体2,第2組の浮動支持梁32a〜32
d,第2浮動体3,第3組および第4組の浮動支持梁I
x1〜Ix4,Iy1〜Iy4,固定電極4,5の櫛歯
42,52、および、x移動検出用の櫛歯電極24a,
6c,7cは、基板1の表面からz方向に離れている。
すなわち基板1の表面に、ギャップを置いて対向してい
る。これらは、マイクロ加工技術により、浮動体アンカ
および固定電極の電極パッドをシリコン基板1の表面上
に形成した後に、浮動体アンカおよび固定電極の電極パ
ッドに、一体連続で形成される。上述のように、基板1
の表面からz方向に離れ、しかも基板1に対してx方向
および又はy方向に変位又は撓み得る支持態様を本書に
おいて「浮動」又は「可動」と称す。
The first set of floating support beams 22a-22 described above
d, first floating body 2, second set of floating support beams 32a to 32
d, second floating body 3, third and fourth sets of floating support beams I
x1 to Ix4, Iy1 to Iy4, the comb teeth 42, 52 of the fixed electrodes 4, 5, and the comb tooth electrodes 24a for x movement detection.
6c and 7c are separated from the surface of the substrate 1 in the z direction.
That is, it faces the surface of the substrate 1 with a gap. These are formed integrally and continuously on the floating body anchor and the fixed electrode electrode pad after forming the floating body anchor and the fixed electrode pad on the surface of the silicon substrate 1 by the micro-machining technology. As described above, the substrate 1
In this specification, a support mode that can be displaced or bent in the x direction and / or the y direction with respect to the substrate 1 away from the surface of the substrate 1 is referred to as “floating” or “movable”.

【0031】上述の第1,第2および第3浮動体2,
3,Iの形状はロ形リングであり、それぞれの2つの対
角線の交点に関して上下および左右対称であって、重心
は該交点にあり、第1,第2および第3浮動体2,3,
Iの静止時の重心は同一位置である。第1〜3浮動体
2,3,Iの形状、ならびに、支持梁22a〜d,32
a〜32d,IX1〜4,Iy1〜4の分布は、前記重
心を通るxz面およびyz面に対して実質上対称であ
る。
The first, second and third floating bodies 2,
The shape of 3, I is a ro-shaped ring, which is vertically and symmetrically with respect to the intersection of each two diagonals, the center of gravity is at the intersection, and the first, second and third floating bodies 2,3,
The center of gravity of I at rest is at the same position. The shapes of the first to third floating bodies 2, 3, I, and the support beams 22a to 22d, 32
The distributions of a to 32d, IX1 to 4, and Iy1 to 4 are substantially symmetric with respect to the xz plane and the yz plane passing through the center of gravity.

【0032】第1浮動体2を支持する第1組の浮動支持
梁22a〜dが基体1から浮いておりしかもy方向に延
びるので、それらはy方向には撓まないが、x方向には
撓み易く、第1浮動体2は、y方向には振動しにくく、
x方向に振動し易い。第2浮動体3は、x方向に延びる
第2組の浮動支持梁32a〜32dを介して基板1で支
持されているので、x方向には振動しにくく、y方向に
振動し易い。第3浮動体Iは、x方向に延びる第3組の
浮動支持梁Ix1〜Ix4を介して第1浮動体2に連続
しているので、第1浮動体2のx方向の振動により同じ
くx方向に振動しかつy方向にも振動しうるので、z軸
廻りの角速度が加わるとy方向にも振動する。この第3
浮動体Iに、y方向に延びる第4組の浮動支持梁Iy1
〜Iy4を介して第2浮動体3が連続しているので、第
3浮動体Iがy方向に振動すると第2浮動体3が同じく
y方向に振動する。
Since the first set of floating support beams 22a to 22d supporting the first floating body 2 are floating from the base 1 and extend in the y direction, they do not bend in the y direction, but in the x direction. Easy to bend, the first floating body 2 hardly vibrates in the y direction,
Vibration easily in the x direction. Since the second floating body 3 is supported by the substrate 1 via the second set of floating support beams 32a to 32d extending in the x direction, the second floating body 3 hardly vibrates in the x direction and easily vibrates in the y direction. Since the third floating body I is continuous with the first floating body 2 via the third set of floating support beams Ix1 to Ix4 extending in the x direction, the vibration of the first floating body 2 in the x direction also causes the third floating body I to move in the x direction. And can also vibrate in the y-direction, so that when an angular velocity about the z-axis is applied, it also vibrates in the y-direction. This third
A fourth body of floating support beams Iy1 extending in the y direction is provided on the floating body I.
Since the second floating body 3 is continuous via .about.Iy4, when the third floating body I vibrates in the y direction, the second floating body 3 also vibrates in the y direction.

【0033】すなわち、第1浮動体2は、x方向に振動
しうるがy方向には振動し得ない。第2浮動体3は、y
方向には振動しうるがx方向には振動し得ない。第3浮
動体Iは、第1浮動体2に対してy方向には振動しうる
がx方向には振動し得ず、また、第2浮動体3に対して
x方向には振動しうるがy方向には振動し得ない。これ
により、z軸廻りの角速度が加わっていないときには、
第1浮動体2がx方向に振動駆動されると第1浮動体2
および第3浮動体Iがx方向に振動するが、両者共にy
方向には振動しない。第2浮動体3は静止である。z軸
廻りの角速度が加わると、第3浮動体Iがx方向に加え
てy方向にも振動し、このy方向の振動と同じく第2浮
動体3がy方向に振動する。
That is, the first floating body 2 can vibrate in the x direction but cannot vibrate in the y direction. The second floating body 3 is y
It can vibrate in the direction but not in the x direction. The third floating body I can vibrate in the y direction with respect to the first floating body 2 but cannot vibrate in the x direction, and can vibrate in the x direction with respect to the second floating body 3. It cannot vibrate in the y direction. Thereby, when the angular velocity around the z-axis is not applied,
When the first floating body 2 is driven to vibrate in the x direction, the first floating body 2
And the third floating body I oscillates in the x direction.
Does not vibrate in the direction. The second floating body 3 is stationary. When an angular velocity about the z-axis is applied, the third floating body I vibrates in the y direction in addition to the x direction, and the second floating body 3 vibrates in the y direction in the same manner as the vibration in the y direction.

【0034】第1浮動体2(および第2浮動体3,第3
浮動体I)は、基板1上の配線9a,9bを介してx駆
動回路15に接続され、そこで機器ア−ス(GND)に
接続されている。固定電極4と5は、電極パッド10,
11上の電極導体を介してx駆動回路15に接続されて
いる。x駆動回路15は、固定電極4と5に交互に高電
圧を印加しこれを繰返す。第1浮動体2(および第3浮
動体I)は、固定電極4(櫛歯電極42)に高電圧が加
わったときに図1上で右方に引かれ、固定電極5(櫛歯
電極52)に高電圧が加わったときに左方に引かれて、
左右に振動する。
The first floating body 2 (and the second floating body 3 and the third floating body 3)
The floating body I) is connected to the x drive circuit 15 via the wirings 9a and 9b on the substrate 1, where it is connected to the equipment ground (GND). The fixed electrodes 4 and 5 are
11 is connected to the x drive circuit 15 via an electrode conductor. The x drive circuit 15 alternately applies a high voltage to the fixed electrodes 4 and 5 and repeats this. The first floating body 2 (and the third floating body I) are pulled rightward in FIG. 1 when a high voltage is applied to the fixed electrode 4 (comb electrode 42), and the fixed electrode 5 (comb electrode 52). ) Is pulled to the left when high voltage is applied to
Vibrates left and right.

【0035】第1浮動体2が右方に移動するときには、
x移動検出用の可動櫛歯電極24aとx移動検出用の第
1組の固定櫛歯電極6cとの間の静電容量は減少する
が、可動櫛歯電極24aとx移動検出用の第2組の固定
櫛歯電極7cとの間の静電容量は増大する。左方に移動
するときにはその逆となる。可動櫛歯電極24aは機器
ア−ス電位(GND)であるが、固定櫛歯電極6cと7
cは静電容量検出回路16に接続されている。静電容量
検出回路16は、電極6cと7cの、電極24a(機器
ア−ス電位GND)に対する静電容量の差を表わす電気
信号を発生してx駆動回路15に与える。この電気信号
は、第1浮動体2のx振動に同期したレベル変化を示す
交流信号(以下、x振動同期信号)である。x駆動回路
15は、該交流信号のレベルの絶対値が設定値に達する
度に、上述の、高電圧を印加する電極4,5の切換えを
行なう。これにより、第1浮動体2(および第3浮動体
I)が、所定振幅でx方向に振動する。
When the first floating body 2 moves to the right,
Although the capacitance between the movable comb electrode 24a for x-movement detection and the first set of fixed comb-teeth electrodes 6c for x-movement detection decreases, the movable comb-teeth electrode 24a and the second comb-electrode for x-movement detection are reduced. The capacitance between the pair of fixed comb electrodes 7c increases. The opposite is true when moving to the left. The movable comb electrode 24a is at the equipment earth potential (GND), but is fixed to the fixed comb electrodes 6c and 7c.
c is connected to the capacitance detection circuit 16. The capacitance detection circuit 16 generates an electric signal indicating the difference between the capacitance of the electrodes 6c and 7c with respect to the electrode 24a (the equipment ground potential GND), and supplies the signal to the x drive circuit 15. This electric signal is an AC signal (hereinafter referred to as an x vibration synchronization signal) indicating a level change synchronized with the x vibration of the first floating body 2. Each time the absolute value of the level of the AC signal reaches the set value, the x drive circuit 15 switches the electrodes 4 and 5 to which the high voltage is applied. Thereby, the first floating body 2 (and the third floating body I) vibrate in the x direction at a predetermined amplitude.

【0036】また、駆動方法として静電容量検出回路1
6より得られる信号を用いて、PLL(フェ−ズド ロ
ック ル−プ)制御により共振周波数で駆動し、静電容
量検出回路16より得られる信号により駆動振幅を求
め、駆動電圧を増減して振幅が一定となるように制御し
てもよい。これにより低電圧駆動が可能となる。
As a driving method, a capacitance detecting circuit 1
6 is driven at a resonance frequency by PLL (Phase Lock Loop) control using the signal obtained from the control circuit 6, the drive amplitude is obtained from the signal obtained from the capacitance detection circuit 16, and the drive voltage is increased or decreased to increase or decrease the amplitude. May be controlled to be constant. This enables low-voltage driving.

【0037】また、可動櫛歯電極24a,固定櫛歯電極
6c,7cは、駆動櫛歯電極23,42,52と同様な
形状で、駆動櫛歯電極と同じ向きに配置してもよい。こ
れにより、駆動振幅を大きく設定しうる。
The movable comb electrode 24a and the fixed comb electrodes 6c, 7c may have the same shape as the drive comb electrodes 23, 42, 52 and may be arranged in the same direction as the drive comb electrodes. Thereby, the drive amplitude can be set large.

【0038】第2浮動体3がy方向に振動すると、第2
浮動体3の櫛歯電極33aと固定櫛歯電極6a,6bと
の間の静電容量が増減振動し、これと逆位相で櫛歯電極
33aと固定櫛歯電極7a,7bとの間の静電容量が増
減振動する。静電容量検出回路17は、櫛歯電極33a
と固定櫛歯電極6a,6bとの間の静電容量と、櫛歯電
極33aと固定櫛歯電極7a,7bとの間の静電容量
と、の差を表わす電気信号(y振動同期信号)を発生
し、これを信号処理回路18に与える。第2浮動体3の
x振動が一定である場合、角速度と第2浮動体3および
第3浮動体Iのy振動の振幅との間には一定の関係があ
る。信号処理回路18は、この関係に基づいて、y振動
同期信号を角速度を表わす信号(角速度信号)に変換す
る。
When the second floating body 3 vibrates in the y direction, the second floating body 3
The capacitance between the comb electrode 33a of the floating body 3 and the fixed comb electrodes 6a and 6b fluctuates, and the capacitance between the comb electrode 33a and the fixed comb electrodes 7a and 7b is opposite to this. The capacitance fluctuates. The capacitance detection circuit 17 includes a comb-shaped electrode 33a.
Electric signal (y vibration synchronization signal) representing the difference between the capacitance between the fixed comb-tooth electrodes 6a and 6b and the capacitance between the comb-tooth electrode 33a and the fixed comb-tooth electrodes 7a and 7b. Is generated and supplied to the signal processing circuit 18. If the x vibration of the second floating body 3 is constant, there is a certain relationship between the angular velocity and the amplitude of the y vibration of the second floating body 3 and the third floating body I. The signal processing circuit 18 converts the y vibration synchronization signal into a signal representing angular velocity (angular velocity signal) based on this relationship.

【0039】図3に、x駆動回路15が固定電極4,5
に加える電圧V1,V2と第1浮動体2(および第3浮
動体I)のx振動(x方向の変位)の関係、ならびに、
該x振動と第3浮動体Iおよび第2浮動体3のy振動
(y方向の変位)の関係を示す。角速度の方向(時計廻
り/反時計廻り)により、y振動の位相が180度のず
れ(図3上のy変位の実線と2点鎖線)を生ずる。信号
処理回路18は、静電容量検出回路16からのx移動同
期信号に対するy振動同期信号の位相差に基づいて角速
度の方向(時計廻り/反時計廻り)を判定してそれを表
わす方向信号と、y振動同期信号の振幅に対応する角速
度の絶対値を表わす角速度値信号とを出力する。
FIG. 3 shows that the x driving circuit 15 has fixed electrodes 4 and 5.
Between the voltages V1 and V2 applied to the first floating body 2 and the x vibration (displacement in the x direction) of the first floating body 2 (and the third floating body I), and
The relationship between the x vibration and the y vibration (displacement in the y direction) of the third floating body I and the second floating body 3 is shown. Depending on the direction of the angular velocity (clockwise / counterclockwise), the phase of the y vibration is shifted by 180 degrees (the solid line of y displacement and the two-dot chain line in FIG. 3). The signal processing circuit 18 determines the direction (clockwise / counterclockwise) of the angular velocity based on the phase difference of the y vibration synchronization signal with respect to the x movement synchronization signal from the capacitance detection circuit 16 and outputs a direction signal indicating the direction. , An angular velocity value signal representing the absolute value of the angular velocity corresponding to the amplitude of the y vibration synchronization signal.

【0040】上述の第1実施例によれば、第1浮動体2
には可動櫛歯電極23a,23bと固定櫛歯電極42,
52との間に+y方向又は−y方向の静電吸引力が加わ
り易い、すなわちy駆動力が作用し易いが、y方向に延
びる第1組の浮動支持梁22a〜dで第1浮動体2が支
持されているので、第1浮動体2のy移動は第1組の支
持梁22a〜dで阻止され、x駆動電圧V1,V2によ
り第1浮動体2がy駆動されることがない。これによ
り、第1浮動体2(および第3浮動体I)のx振動駆動
の効率が向上しx振動が安定する。
According to the first embodiment described above, the first floating body 2
The movable comb electrodes 23a and 23b and the fixed comb electrodes 42,
52, the electrostatic attraction force in the + y direction or the −y direction is likely to be applied, that is, the y driving force is likely to act, but the first floating body 2 is provided by the first set of floating support beams 22a to 22d extending in the y direction. Are supported, the y movement of the first floating body 2 is prevented by the first set of support beams 22a to 22d, and the first floating body 2 is not y-driven by the x drive voltages V1 and V2. Thereby, the efficiency of the x vibration drive of the first floating body 2 (and the third floating body I) is improved, and the x vibration is stabilized.

【0041】一方、第3浮動体Iは、x方向に延びる第
3組の浮動支持梁Ix1〜Ix4で第1浮動体2に支持
されているので、角速度が加わると容易にy方向に振動
する。このy振動には、x駆動電圧V1,V2によるy
変位が実質上含まれないので、また上述のようにx振動
が安定しているので、第3浮動体Iのy振動は角速度の
みに対応するものであり、加えて、第3浮動体Iに第4
組の浮動支持梁Iy1〜Iy4を介して第2浮動体3が
連なりしかも第2浮動体3が第2組のx方向に延びる浮
動支持梁32a〜32dで基板1に対して支持されてい
るので、第3浮動体Iのy方向振動のみに同期して第2
浮動体3がy方向に振動し、x方向には振動しない。ま
た、z方向の加速度が加わると、第3浮動体Iは梁を介
して第1および第2浮動体で支持されているので、z方
向に変位し易いが、第2浮動体3は、一端が基板1のア
ンカ8e,8fで支持された梁32a〜32dで浮動支
持されているので、z方向に変位可であるものの、該変
位に対する抵抗が大きく、第3浮動体Iよりもz方向に
は変位しにくい。これにより、第2浮動体3の、z方向
加速度による固定電極42,52に対する変位が少く、
角速度検出信号のS/Nが高い。また検出精度の安定性
が高い。
On the other hand, since the third floating body I is supported by the first floating body 2 by the third set of floating support beams Ix1 to Ix4 extending in the x direction, it easily vibrates in the y direction when an angular velocity is applied. . This y vibration includes y by x driving voltages V1 and V2.
Since the displacement is substantially not included, and the x vibration is stable as described above, the y vibration of the third floating body I corresponds only to the angular velocity. 4th
Since the second floating body 3 is connected via the pair of floating support beams Iy1 to Iy4, and the second floating body 3 is supported on the substrate 1 by the second set of floating support beams 32a to 32d extending in the x direction. The second floating body I in synchronization with only the y-direction vibration of the third floating body I.
The floating body 3 vibrates in the y direction and does not vibrate in the x direction. Further, when acceleration in the z direction is applied, the third floating body I is supported by the first and second floating bodies via the beam, and thus is easily displaced in the z direction, but the second floating body 3 has one end. Is floatingly supported by the beams 32a to 32d supported by the anchors 8e and 8f of the substrate 1, so that the substrate 1 can be displaced in the z direction, but the resistance to the displacement is large, and the third floating body I is more displaceable in the z direction. Is not easily displaced. Thereby, the displacement of the second floating body 3 with respect to the fixed electrodes 42 and 52 due to the acceleration in the z direction is small,
The S / N of the angular velocity detection signal is high. In addition, the stability of detection accuracy is high.

【0042】また、第1〜3浮動体2,3,Iの重心
が、それらの静止時には実質上同一位置であって、これ
らの浮動体の形状、ならびに、それらに連続した支持梁
の分布が、該重心を通るxz面およびyz面に対して実
質上対称であるので、各浮動体2,3,Iに加わる駆動
力およびコリオリ力の力点は実質上前記重心を通り、浮
動体間で重心位置が異なるとか、支持梁分布が非対称で
あるとかによる回転モ−メントの発生が実質上無くなり
したがって不要振動あるいは振動方向ずれが実質上無く
なり、角速度検出のS/Nが向上する。
Further, the centers of gravity of the first to third floating bodies 2, 3, I are substantially at the same position when they are at rest, and the shapes of these floating bodies and the distribution of the supporting beams continuous therewith are different. Are substantially symmetrical with respect to the xz plane and the yz plane passing through the center of gravity, the power points of the driving force and Coriolis force applied to each of the floating bodies 2, 3, I substantially pass through the center of gravity, and the center of gravity between the floating bodies Rotational moments due to different positions or asymmetrical distribution of the support beams are substantially eliminated, so that unnecessary vibrations or deviations in the vibration direction are substantially eliminated, and the S / N of the angular velocity detection is improved.

【0043】−第2実施例− 図4に本発明の第2実施例を示す。この第2実施例で
は、第2浮動体3と第1浮動体1との位置を入れ替え
て、第2浮動体3の内部に第3浮動体Iを、第3浮動体
Iの内部に第1浮動体2を配置した。これに伴って、第
1浮動体2をx方向に励振するための固定電極4,5な
らびに振動検出用の電極6c,7cを第3浮動体Iの内
部に形成し、y振動検出用の電極群を2組として、第2
浮動体3の外に形成した。
Second Embodiment FIG. 4 shows a second embodiment of the present invention. In the second embodiment, the positions of the second floating body 3 and the first floating body 1 are exchanged, and the third floating body I is placed inside the second floating body 3 and the first floating body I is placed inside the third floating body I. The floating body 2 was arranged. Accordingly, fixed electrodes 4 and 5 for exciting the first floating body 2 in the x direction and electrodes 6c and 7c for vibration detection are formed inside the third floating body I, and an electrode for y vibration detection is formed. The second group consists of two groups.
Formed outside the floating body 3.

【0044】y振動検出用の電極群の固定電極のための
電極リ−ド13a,13bに連続した分岐線(点線)は
絶縁層で覆われ、絶縁層を部分的に欠いた所で固定電極
6a,6bが接合している。すなわち固定電極6aおよ
び6bはそれぞれ電極リ−ド13aおよび13bと電気
的に同電位である。該絶縁層の上に、電極リ−ド12
a,12bに連続した分岐線が接合しており、この分岐
線に固定電極7a,7bが接合している。すなわち固定
電極6aおよび6bはそれぞれ電極リ−ド13aおよび
13bと電気的に同電位である。
The branch lines (dotted lines) continuous to the electrode leads 13a and 13b for the fixed electrode of the electrode group for detecting the y-vibration are covered with an insulating layer, and the fixed electrode is partially removed from the fixed electrode. 6a and 6b are joined. That is, the fixed electrodes 6a and 6b are electrically at the same potential as the electrode leads 13a and 13b, respectively. An electrode lead 12 is formed on the insulating layer.
A continuous branch line is joined to a and 12b, and fixed electrodes 7a and 7b are joined to this branch line. That is, the fixed electrodes 6a and 6b are electrically at the same potential as the electrode leads 13a and 13b, respectively.

【0045】静電容量検出回路17は、固定電極6a,
6bと第2浮動体3の可動電極33a,33bとの静電
容量と、固定電極7a,7bと第2浮動体3の可動電極
33a,33bとの静電容量との差に対応するレベルの
容量検出信号を発生して信号処理回路18に与える。こ
の容量検出信号は第2浮動体3のy振動に同期したレベ
ル変動を示す。
The capacitance detecting circuit 17 includes a fixed electrode 6a,
6b and the capacitance between the movable electrodes 33a and 33b of the second floating body 3, and the level corresponding to the difference between the capacitance between the fixed electrodes 7a and 7b and the movable electrodes 33a and 33b of the second floating body 3. A capacitance detection signal is generated and provided to the signal processing circuit 18. This capacitance detection signal indicates a level fluctuation synchronized with the y vibration of the second floating body 3.

【0046】第2実施例のその他の構成および機能は、
上述の第1実施例と同様であり、第2浮動体3の、z方
向加速度による固定電極42,52に対する変位が少
く、角速度検出信号のS/Nが高い。また検出精度の安
定性が高い。
Other configurations and functions of the second embodiment are as follows.
As in the first embodiment, the displacement of the second floating body 3 with respect to the fixed electrodes 42 and 52 due to the acceleration in the z direction is small, and the S / N of the angular velocity detection signal is high. In addition, the stability of detection accuracy is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の平面図である。FIG. 1 is a plan view of a first embodiment of the present invention.

【図2】 (a)は図1に示す第2浮動体3の一部分2
Aの拡大平面図、(b)は(a)の2B−2B線断面図
である。
FIG. 2A shows a part 2 of a second floating body 3 shown in FIG.
2A is an enlarged plan view, and FIG. 2B is a sectional view taken along line 2B-2B in FIG.

【図3】 図1に示すx駆動回路15の出力電圧の波
形,第1浮動体2のx変位および第3,第2浮動体I,
3のy変位を示すタイムチャ−トである。
3 shows the waveform of the output voltage of the x drive circuit 15 shown in FIG. 1, the x displacement of the first floating body 2, and the third and second floating bodies I,
3 is a time chart showing a y displacement of 3.

【図5】 本発明の第2実施例の平面図である。FIG. 5 is a plan view of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:シリコン基板 2:第1浮動体 21:ロ形基部 22a〜d:第
1組の浮動支持梁 23a,23b:可動側櫛歯電極 24a,24
b:可動側櫛歯電極 25a,25b:浮動連結梁 3:第2浮動体 31:基幹 32a〜d:第
2組の浮動支持梁 33a,33b:櫛歯電極 I:第3浮動体 Ix1〜Ix4:第3組の浮動支持梁 Iy1〜Iy
4:第4組の浮動支持梁 4:固定電極 41:電極基幹 42:固定櫛歯電極 5:固定電極 51:電極基幹 52:固定櫛歯
電極 6a〜6c:固定電極 7a〜7c:固
定櫛歯電極 8a〜f:浮動体アンカ 9a,9b:配
線 10,11:固定電極の電極パッド 12,12a,b,13,13
a,13b:配線 15:x駆動回路 16,17:静
電容量検出回路 18:信号処理回路
1: Silicon substrate 2: First floating body 21: B-shaped base 22a-d: First set of floating support beams 23a, 23b: Movable comb electrode 24a, 24
b: movable side comb-tooth electrode 25a, 25b: floating connecting beam 3: second floating body 31: backbone 32a-d: second set of floating support beams 33a, 33b: comb-tooth electrode I: third floating body Ix1-Ix4 : Third set of floating support beams Iy1 to Iy
4: Fourth set of floating support beams 4: Fixed electrode 41: Electrode base 42: Fixed comb electrode 5: Fixed electrode 51: Electrode base 52: Fixed comb electrode 6a to 6c: Fixed electrode 7a to 7c: Fixed comb tooth Electrodes 8a-f: Floating body anchors 9a, 9b: Wiring 10, 11: Electrode pads for fixed electrodes 12, 12a, b, 13, 13
a, 13b: wiring 15: x drive circuit 16, 17: capacitance detection circuit 18: signal processing circuit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年11月7日[Submission date] November 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の平面図である。FIG. 1 is a plan view of a first embodiment of the present invention.

【図2】 (a)は図1に示す第2浮動体3の一部分2
Aの拡大平面図、(b)は(a)の2B−2B線断面図
である。
FIG. 2A shows a part 2 of a second floating body 3 shown in FIG.
2A is an enlarged plan view, and FIG. 2B is a sectional view taken along line 2B-2B in FIG.

【図3】 図1に示すx駆動回路15の出力電圧の波
形,第1浮動体2のx変位および第3,第2浮動体I,
3のy変位を示すタイムチャ−トである。
3 shows the waveform of the output voltage of the x drive circuit 15 shown in FIG. 1, the x displacement of the first floating body 2, and the third and second floating bodies I,
3 is a time chart showing a y displacement of 3.

【図4】 本発明の第2実施例の平面図である。FIG. 4 is a plan view of a second embodiment of the present invention.

【符号の説明】 1:シリコン基板 2:第1浮動体 21:ロ形基部 22a〜d:第
1組の浮動支持梁 23a,23b:可動側櫛歯電極 24a,24
b:可動側櫛歯電極 25a,25b:浮動連結梁 3:第2浮動体 31:基幹 32a〜d:第
2組の浮動支持梁 33a,33b:櫛歯電極 I:第3浮動体 Ix1〜Ix4:第3組の浮動支持梁 Iy1〜Iy
4:第4組の浮動支持梁 4:固定電極 41:電極基幹 42:固定櫛歯電極 5:固定電極 51:電極基幹 52:固定櫛歯
電極 6a〜6c:固定電極 7a〜7c:固
定櫛歯電極 8a〜f:浮動体アンカ 9a,9b:配
線 10,11:固定電極の電極パッド 12,12a,b,13,13
a,13b:配線 15:x駆動回路 16,17:静
電容量検出回路 18:信号処理回路
[Description of Signs] 1: Silicon substrate 2: First floating body 21: B-shaped base 22a-d: First set of floating support beams 23a, 23b: Movable comb electrode 24a, 24
b: movable side comb-tooth electrode 25a, 25b: floating connecting beam 3: second floating body 31: backbone 32a-d: second set of floating support beams 33a, 33b: comb-tooth electrode I: third floating body Ix1-Ix4 : Third set of floating support beams Iy1 to Iy
4: Fourth set of floating support beams 4: Fixed electrode 41: Electrode base 42: Fixed comb electrode 5: Fixed electrode 51: Electrode base 52: Fixed comb electrode 6a to 6c: Fixed electrode 7a to 7c: Fixed comb tooth Electrodes 8a-f: Floating body anchors 9a, 9b: Wiring 10, 11: Electrode pads for fixed electrodes 12, 12a, b, 13, 13
a, 13b: wiring 15: x drive circuit 16, 17: capacitance detection circuit 18: signal processing circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板;該基板にx方向には可動に、y方向
には実質上不動に支持された第1可動体;前記基板にy
方向には可動に、x方向には実質上不動に支持された第
2可動体; x,y方向に可動であって、第1可動体に
対してはy方向に可動にx方向には実質上不動に連結さ
れ、第2可動体に対してはx方向に可動にy方向には実
質上不動に連結された、第3可動体;第1可動体をx方
向に振動駆動する励振手段;第2可動体のy方向変位を
検出する変位検出手段;および、 該変位検出手段が発生する変位信号を角速度信号に変換
する変換手段;を備える角速度センサ。
A first movable body supported by the substrate so as to be movable in the x direction and substantially immovable in the y direction;
A second movable body supported to be movable in the direction and substantially immovable in the x direction; movable in the x and y directions, movable in the y direction with respect to the first movable body, and substantially in the x direction. A third movable body, which is movably connected in the x direction to the second movable body and is substantially movably connected in the y direction with respect to the second movable body; an excitation means for oscillating the first movable body in the x direction; An angular velocity sensor comprising: displacement detection means for detecting a y-direction displacement of the second movable body; and conversion means for converting a displacement signal generated by the displacement detection means into an angular velocity signal.
【請求項2】第1可動体および第3可動体はx,y平面
上で矩形リング状であり、第1可動体の内空間に第3可
動体が、第3可動体の内空間に第2可動体があり、第
1,第2および第3可動体の重心が実質上同一位置であ
る、請求項1記載の角速度センサ。
2. The first movable body and the third movable body have a rectangular ring shape on the x, y plane, and the third movable body is provided in the inner space of the first movable body and the third movable body is provided in the inner space of the third movable body. The angular velocity sensor according to claim 1, wherein there are two movable bodies, and the centers of gravity of the first, second, and third movable bodies are substantially at the same position.
【請求項3】第2可動体および第3可動体はx,y平面
上で矩形リング状であり、第2可動体の内空間に第3可
動体が、第3可動体の内空間に第1可動体があり、第
1,第2および第3可動体の重心が実質上同一位置であ
る、請求項1記載の角速度センサ。
3. The second movable body and the third movable body have a rectangular ring shape on the x, y plane, and the third movable body is provided in the inner space of the second movable body and the third movable body is provided in the inner space of the third movable body. The angular velocity sensor according to claim 1, wherein there is one movable body, and the centers of gravity of the first, second, and third movable bodies are substantially at the same position.
【請求項4】第1可動体は、一端が基板に固定されたy
方向に延びる梁で基板に対して浮動支持された、請求項
1,請求項2又は請求項3記載の角速度センサ。
4. The first movable body has one end fixed to a substrate.
4. The angular velocity sensor according to claim 1, wherein the angular velocity sensor is floatingly supported on the substrate by a beam extending in the direction.
【請求項5】第2可動体は、一端が基板に固定されたx
方向に延びる梁で基板に対して浮動支持された、請求項
1,請求項2,請求項3又は請求項4記載の角速度セン
サ。
5. The second movable body has an end fixed to the substrate.
5. The angular velocity sensor according to claim 1, wherein the angular velocity sensor is floatingly supported on the substrate by a beam extending in the direction.
【請求項6】第3可動体は、x方向に延びる梁で第1可
動体に、y方向に延びる梁で第2可動体に連結された、
請求項1,請求項2,請求項3,請求項4又は請求項5
記載の角速度センサ。
6. The third movable body is connected to the first movable body by a beam extending in the x direction and to the second movable body by a beam extending in the y direction.
Claim 1, Claim 2, Claim 3, Claim 4, or Claim 5
An angular velocity sensor as described.
【請求項7】第1可動体,第2可動体および第3可動体
は、それらの重心が実質上同一位置であって該重心を通
るxz面およびyz面に対して実質上対称構造である、
請求項1記載の角速度センサ。
7. The first movable body, the second movable body, and the third movable body have substantially the same center of gravity, and have a substantially symmetric structure with respect to an xz plane and a yz plane passing through the center of gravity. ,
The angular velocity sensor according to claim 1.
JP9203560A 1997-06-20 1997-07-29 Angular velocity sensor Pending JPH1144541A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9203560A JPH1144541A (en) 1997-07-29 1997-07-29 Angular velocity sensor
DE19827688A DE19827688A1 (en) 1997-06-20 1998-06-22 Angular velocity sensor
US09/100,888 US6044707A (en) 1997-06-20 1998-06-22 Angular rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9203560A JPH1144541A (en) 1997-07-29 1997-07-29 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH1144541A true JPH1144541A (en) 1999-02-16

Family

ID=16476168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9203560A Pending JPH1144541A (en) 1997-06-20 1997-07-29 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH1144541A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097708A (en) * 1998-09-18 2000-04-07 Denso Corp Angular velocity sensor and its manufacture
JP2000337884A (en) * 1999-03-25 2000-12-08 Murata Mfg Co Ltd Angular velocity sensor
JP2000337885A (en) * 1999-05-13 2000-12-08 Samsung Electro Mech Co Ltd Microgyroscope
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
US6739191B2 (en) 1999-12-28 2004-05-25 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP2004518970A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation rate sensor
JP2004518971A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation rate sensor
JP2004518969A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Yaw rate sensor
US6786094B2 (en) 2000-05-02 2004-09-07 Murata Manufacturing Co., Ltd. Process of making an acceleration detecting element
JP2005249784A (en) * 2004-02-27 2005-09-15 Univ California Nonresonant micromachined gyroscope having mode decoupled structure
JP2007155489A (en) * 2005-12-05 2007-06-21 Hitachi Ltd Inertial sensor
JP2007199077A (en) * 2007-02-26 2007-08-09 Denso Corp Oscillation-type angular velocity sensor
JP2011203127A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Angular velocity sensor
JP2013029522A (en) * 2012-10-02 2013-02-07 Hitachi Ltd Angular velocity detecting device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097708A (en) * 1998-09-18 2000-04-07 Denso Corp Angular velocity sensor and its manufacture
JP2000337884A (en) * 1999-03-25 2000-12-08 Murata Mfg Co Ltd Angular velocity sensor
JP2000337885A (en) * 1999-05-13 2000-12-08 Samsung Electro Mech Co Ltd Microgyroscope
US6739191B2 (en) 1999-12-28 2004-05-25 Murata Manufacturing Co., Ltd. Angular velocity sensor
US6786094B2 (en) 2000-05-02 2004-09-07 Murata Manufacturing Co., Ltd. Process of making an acceleration detecting element
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2004518970A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation rate sensor
JP2004518971A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation rate sensor
JP2004518969A (en) * 2001-02-21 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Yaw rate sensor
KR100928356B1 (en) 2001-02-21 2009-11-23 로베르트 보쉬 게엠베하 Rotational speed sensor
EP1377797B1 (en) * 2001-02-21 2018-05-23 Robert Bosch Gmbh Rotation rate sensor
JP2005249784A (en) * 2004-02-27 2005-09-15 Univ California Nonresonant micromachined gyroscope having mode decoupled structure
JP2007155489A (en) * 2005-12-05 2007-06-21 Hitachi Ltd Inertial sensor
JP2007199077A (en) * 2007-02-26 2007-08-09 Denso Corp Oscillation-type angular velocity sensor
JP2011203127A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Angular velocity sensor
JP2013029522A (en) * 2012-10-02 2013-02-07 Hitachi Ltd Angular velocity detecting device

Similar Documents

Publication Publication Date Title
US6044707A (en) Angular rate sensor
JP3882973B2 (en) Angular velocity sensor
JP4075022B2 (en) Angular velocity sensor
KR101166866B1 (en) Mems gyroscope with horizontally oriented drive electrodes
JP3342496B2 (en) Rotation speed gyroscope
JP3882972B2 (en) Angular velocity sensor
JPH1144541A (en) Angular velocity sensor
US7546768B2 (en) Mounting structure of angular rate sensor
JPS6293668A (en) Angular speed/acceleration detector
JP3753209B2 (en) Angular velocity sensor
JP2000046560A (en) Angular velocity sensor
JP3805837B2 (en) Angular velocity detector
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
US11054259B2 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
US11112247B2 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JPH1047966A (en) Angular velocity sensor
JP2004233088A (en) Electrostatic movable mechanism, resonant device, and angular velocity sensor
JP4556515B2 (en) Angular velocity sensor
JP2000009470A (en) Angular velocity sensor
JP2010008300A (en) Inertia sensor
JP2001194155A (en) Motion sensor
JPH11351878A (en) Vibration type angular velocity sensor
JP2000105124A (en) Electrostatic drive, electrostatic detecting type angular velocity sensor
JPH1183494A (en) Angular velocity sensor
JP2000131074A (en) Electrostatically driven angular velocity-detecting apparatus