JPH11326274A - Member for electrophoresis - Google Patents
Member for electrophoresisInfo
- Publication number
- JPH11326274A JPH11326274A JP10140720A JP14072098A JPH11326274A JP H11326274 A JPH11326274 A JP H11326274A JP 10140720 A JP10140720 A JP 10140720A JP 14072098 A JP14072098 A JP 14072098A JP H11326274 A JPH11326274 A JP H11326274A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- channel
- flow path
- analysis
- intersection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、極微量のサンプル
を高速かつ高分離で分析する電気泳動装置に用いる部材
に関し、さらに詳しくは2枚の透明板状部材を貼り合わ
せて内側に泳動用流路を形成させた電気泳動用部材に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member used in an electrophoresis apparatus for analyzing a very small amount of sample at high speed and high separation. The present invention relates to an electrophoretic member having a passage formed therein.
【0002】[0002]
【従来の技術】極微量のタンパク質や核酸などを分析す
る場合には、従来から電気泳動法が用いられており、そ
の装置化技術の例としてキャピラリ電気泳動装置があ
る。キャピラリ電気泳動装置は、内径が100μm以下
のガラスキャピラリー内に泳動バッファを充填し、一端
側に試料を導入した後、両端間に高電圧を印加して分析
対象物をキャピラリー内で展開させるものである。キャ
ピラリー内は容積に対して表面積が大きい、すなわち冷
却効率が高いことから、高電圧の印加が可能となり、D
NAなどの極微量試料を高速、かつ高分解能にて分析す
ることができる。2. Description of the Related Art In the case of analyzing a very small amount of protein, nucleic acid, or the like, an electrophoresis method has been conventionally used, and a capillary electrophoresis apparatus is an example of a technique for realizing the apparatus. A capillary electrophoresis device is a device in which a glass capillary having an inner diameter of 100 μm or less is filled with an electrophoresis buffer, a sample is introduced at one end side, and a high voltage is applied between both ends to develop an analyte in the capillary. is there. Since the inside of the capillary has a large surface area with respect to the volume, that is, high cooling efficiency, a high voltage can be applied, and D
A very small amount of sample such as NA can be analyzed at high speed and with high resolution.
【0003】近年、取扱いが煩雑なガラスキャピラリー
に代わって、分析の高速化、装置の小型化が期待できる
形態として、D. J. Harrison et al./ Science 261 (19
93)895-897 や Anal. Chim. Acta 283 (1993) 361-366
に示されているように、2枚の基板を接合して形成され
たキャピラリー電気泳動に用いるチップ(マイクロチッ
プという)が提案されている。そのマイクロチップの例
を図1に示す。一対の透明基板(一般にはガラス、石
英、樹脂など)51,52からなり、一方の基板52の
表面に互いに交差する試料流路54、分析流路55を形
成し、他方の基板51には試料流路54及び分析流路5
5の端に対応する位置にリザーバ53を貫通穴として設
けたものである。In recent years, DJ Harrison et al./Science 261 (19) has been proposed as a form that can be expected to increase the speed of analysis and reduce the size of the apparatus in place of a glass capillary that is complicated to handle.
93) 895-897 and Anal. Chim. Acta 283 (1993) 361-366.
As shown in (1), a chip (referred to as a microchip) used for capillary electrophoresis formed by joining two substrates has been proposed. FIG. 1 shows an example of the microchip. A pair of transparent substrates (generally, glass, quartz, resin, etc.) 51 and 52 are formed. A sample flow path 54 and an analysis flow path 55 are formed on the surface of one substrate 52 so as to intersect each other. Channel 54 and analysis channel 5
The reservoir 53 is provided as a through hole at a position corresponding to the end of the fifth.
【0004】このマイクロチップを使用するときは、両
基板51,52を(C)に示すように重ね、いずれかのリ
ザーバ53から泳動液を試料流路54、分析流路55中
に注入する。その後、試料流路54の一方の端のリザー
バ53に試料を注入し、各リザーバ53にそれぞれ電極
を差し込んで所定時間だけそれぞれに所定の高電圧を印
加する。これにより試料は試料流路54と分析流路55
の交差部56に移動される。次に、各リザーバ53に所
定の泳動のための電圧を印加する。これにより、交差部
56に存在する試料が分析流路55内を電気泳動する。
分析流路55の適当な位置に検出器を配置しておくこと
により、分離成分の検出を行なう。When this microchip is used, both substrates 51 and 52 are overlapped as shown in FIG. 1C, and an electrophoresis running liquid is injected from one of the reservoirs 53 into a sample channel 54 and an analysis channel 55. Thereafter, a sample is injected into the reservoir 53 at one end of the sample flow path 54, electrodes are inserted into the respective reservoirs 53, and a predetermined high voltage is applied only for a predetermined time. As a result, the sample flows into the sample channel 54 and the analysis channel 55.
Is moved to the intersection 56 of. Next, a predetermined voltage for electrophoresis is applied to each reservoir 53. Thus, the sample existing at the intersection 56 electrophoreses in the analysis channel 55.
By arranging a detector at an appropriate position in the analysis channel 55, a separated component is detected.
【0005】[0005]
【発明が解決しようとする課題】試料を交差部56に導
びいたとき、交差部56での試料(サンプルプラグとも
いう)の形状は電位の勾配に依存し、その形状は楔形又
は台形になる。試料を分離するために泳動電圧を印加す
ると、楔形又は台形のまま試料は分析流路55に導かれ
る。そのため、分析流路55の幅方向での位置によって
サンプルプラグの長さが異なる。これは、分離能を劣化
させると考えられ、望ましいことではない。When the sample is guided to the intersection 56, the shape of the sample (also called a sample plug) at the intersection 56 depends on the gradient of the potential, and the shape becomes a wedge or trapezoid. . When an electrophoresis voltage is applied to separate the sample, the sample is guided to the analysis channel 55 while keeping the wedge or trapezoid. Therefore, the length of the sample plug differs depending on the position in the width direction of the analysis channel 55. This is thought to degrade the resolution and is not desirable.
【0006】そこで本発明は、分析流路におけるサンプ
ルプラグの形状を均一な厚みをもつ薄い層にしてマイク
ロチップ電気泳動の分離能を向上させることを目的とす
るものである。Accordingly, an object of the present invention is to improve the separation performance of microchip electrophoresis by making the shape of a sample plug in an analysis channel a thin layer having a uniform thickness.
【0007】[0007]
【課題を解決するための手段】本発明による電気泳動用
部材は、一対の透明板状部材を備え、少なくとも一方の
板状部材の表面に液が流れる溝が形成され、いずれかの
板状部材にはその溝に対応する位置に貫通穴が設けら
れ、これら板状部材が溝を内側にして貼り合わされてそ
の溝により流路を形成してなるものであって、その溝
は、試料を分離する分析流路と、分析流路と交差し、試
料を交差部に導く試料流路と、試料流路の試料注入側の
端部と交差部との間で交差する第3の流路と、を備えた
ものである。The electrophoretic member according to the present invention comprises a pair of transparent plate members, and at least one of the plate members has a surface on which a groove for flowing liquid is formed. Is provided with a through hole at a position corresponding to the groove, and these plate-like members are bonded together with the groove inside to form a flow path by the groove, and the groove separates the sample. An analysis flow path, a sample flow path that intersects with the analysis flow path and guides the sample to the intersection, a third flow path that intersects with the sample injection side end of the sample flow path and the intersection, It is provided with.
【0008】分析流路、試料流路及び第3の流路に泳動
バッファが充填され、試料流路の一端に試料が注入され
る。分析流路、試料流路及び第3の流路の各端部に試料
導入用の所定の電圧が印加されると、各流路の端から試
料流路の試料を注入した一端とは他端側に向かって電気
浸透流により流れが生じる。これにより、試料流路と第
3の流路の交差部から、試料流路と分析流路の交差部を
介して、試料流路の試料を注入した一端とは他端側に向
かってシースフローが形成される。試料はシースフロー
の中央部に沿って試料流路と分析流路の交差部に導かれ
るので、その交差部における試料の形状は均一な層状と
なる。その後、各流路の各端部に泳動用の所定の電圧が
印加されると、試料は均一な厚みをもつ層となって分析
流路に導かれる。[0008] The analysis flow path, the sample flow path, and the third flow path are filled with an electrophoresis buffer, and a sample is injected into one end of the sample flow path. When a predetermined voltage for sample introduction is applied to each end of the analysis channel, the sample channel, and the third channel, one end where the sample of the sample channel is injected from the end of each channel is the other end. A flow is created by the electro-osmotic flow towards the side. Thereby, the sheath flow from the intersection of the sample flow path and the third flow path to the other end side of the sample flow path through the intersection of the sample flow path and the analysis flow path to the other end side. Is formed. Since the sample is guided to the intersection of the sample channel and the analysis channel along the center of the sheath flow, the shape of the sample at the intersection is a uniform layer. Thereafter, when a predetermined voltage for electrophoresis is applied to each end of each flow channel, the sample is led to the analysis flow channel as a layer having a uniform thickness.
【0009】[0009]
【実施例】図2は一実施例を表し、(A)は正面図、(B)
は平面図、(C),(D)は(B)の流路の交差部における試
料導入時の試料の流れを表す拡大模式図、(E)は(D)に
おける電気泳動時の試料の泳動を表す模式図である。マ
イクロチップ2は石英を材料としたベースプレート4と
カバープレート6から構成されている。ベースプレート
4表面には分析流路8、試料流路10として互いに交差
する溝が形成され、交差部12を形成している。試料流
路の試料注入側の端と交差部12の間に交差する第3の
流路がシース形成用流路14として形成され、交差部1
6を形成している。FIG. 2 shows an embodiment, in which (A) is a front view and (B) is an embodiment.
Is a plan view, (C) and (D) are enlarged schematic diagrams showing the flow of the sample at the intersection of the flow paths in (B) when the sample is introduced, and (E) is the migration of the sample during electrophoresis in (D). FIG. The microchip 2 includes a base plate 4 made of quartz and a cover plate 6. On the surface of the base plate 4, grooves intersecting each other are formed as an analysis channel 8 and a sample channel 10, forming an intersection 12. A third channel that intersects between the sample injection side end of the sample channel and the intersection 12 is formed as a sheath-forming channel 14, and the intersection 1
6 are formed.
【0010】カバープレート6には分析流路8、試料流
路10及びシース形成用流路14の端に対応する位置に
リザーバ18a,18b,18c,18d,18e,1
8fが貫通穴として設けられている。分析流路8の長さ
は28mmであり、リザーバ18e側の端から7mmの
位置で試料流路10と交差して交差部12を形成してい
る。試料流路10の長さは14mmであり、リザーバ1
8a側の端から3.5mmの位置でシース形成用流路1
4と交差して交差部16を形成し、7mmの位置で分析
流路8と交差している。交差部12,16間の長さは
3.5mmである。分析流路8、試料流路10及びシー
ス形成用流路14は幅が50μmで深さが20μmであ
る。In the cover plate 6, the reservoirs 18a, 18b, 18c, 18d, 18e, and 1 are located at positions corresponding to the ends of the analysis channel 8, the sample channel 10, and the sheath-forming channel 14.
8f is provided as a through hole. The length of the analysis channel 8 is 28 mm, and intersects with the sample channel 10 at a position 7 mm from the end on the reservoir 18e side to form an intersection 12. The length of the sample channel 10 is 14 mm, and the reservoir 1
At a position 3.5 mm from the end on the side of 8a,
4 intersects with the analysis channel 8 at a position of 7 mm. The length between the intersections 12, 16 is 3.5 mm. The analysis channel 8, the sample channel 10, and the sheath forming channel 14 have a width of 50 μm and a depth of 20 μm.
【0011】図3は本実施例を適用したマイクロチップ
電気泳動装置の一実施例を表す概略斜視図である。図2
のマイクロチップ2の分析流路8の一定範囲を光照射す
るために、分析流路8に沿って線状に延びた光源20か
らの光がシリンドリカルレンズ22で平行光にされてバ
ンドパスフィルター24に入射し、バンドパスフィルタ
ー24を透過して所定の波長にされた光がシリンドリカ
ルレンズ26によりマイクロチップ2の分離流路に集光
されて入射する。マイクロチップ2の反対側には分離流
路を透過した光を集光するためにシリンドリカルレンズ
28が設けられ、シリンドリカルレンズ28で集光され
た光が光検出器のフォトセルアレイ30に入射して検出
される。シリンドリカルレンズ22,26,28、バン
ドパスフィルター24及びフォトセルアレイ30は分析
流路8の試料の泳動する部分よりは短かいが、分析流路
8の試料の泳動する部分とほぼ同じ長さを有している。
フォトセルアレイ30は、検出素子として分析流路の長
さ方向の一直線上に配列された、複数のフォトダイオー
ドを備えている。FIG. 3 is a schematic perspective view showing one embodiment of a microchip electrophoresis apparatus to which this embodiment is applied. FIG.
In order to irradiate a predetermined range of the analysis flow channel 8 of the microchip 2 with light, light from a light source 20 linearly extending along the analysis flow channel 8 is converted into parallel light by a cylindrical lens 22, and a band-pass filter 24. And the light having a predetermined wavelength transmitted through the band-pass filter 24 is condensed by the cylindrical lens 26 into the separation channel of the microchip 2 and is incident. On the opposite side of the microchip 2, a cylindrical lens 28 is provided for condensing the light transmitted through the separation channel, and the light condensed by the cylindrical lens 28 is incident on a photocell array 30 of a photodetector and detected. Is done. The cylindrical lenses 22, 26, and 28, the bandpass filter 24, and the photocell array 30 are shorter than the portion of the analysis channel 8 where the sample migrates, but have substantially the same length as the portion of the analysis channel 8 where the sample migrates. doing.
The photocell array 30 includes a plurality of photodiodes arranged as detection elements on a straight line in the length direction of the analysis channel.
【0012】図2及び図3を用いてこの実施例の動作を
説明する。リザーバ18aに例えば濃度が5μMのカル
セインを試料として注入し、リザーバ18b〜18fか
ら例えば濃度が45mMのトリス−ホウ酸バッファ(p
H8.2)を泳動バッファとして注入して流路を泳動バ
ッファを満たす。このとき、各リザーバ18a〜18f
の液面の高さを揃えておく。The operation of this embodiment will be described with reference to FIGS. For example, calcein having a concentration of 5 μM is injected as a sample into the reservoir 18a, and a tris-borate buffer (p
H8.2) was injected as an electrophoresis buffer to fill the flow path with the electrophoresis buffer. At this time, each of the reservoirs 18a to 18f
Make the liquid level equal.
【0013】各リザーバ18a〜18fには電極パター
ンが形成されているか、そうでない場合は電極(図示略)
を挿入する。交差部12に試料を導くために、リザーバ
18a〜18c,18fに1.2kV、リザーバ18e
に1.0kVの電圧を印加し、リザーバ18dを接地す
る。このとき、交差部12の電位は約0.78Vとな
る。リザーバ18a〜18c,18e,18fからリザ
ーバ18dに向けて電気浸透流が起こり、試料流路10
において、図2(C),(D)に示すようなシースフローが
形成される。試料は図(C),(D)中の斜線部を泳動して
交差部12に導かれる。交差部12における試料の形状
は斜線部(シースフローの中央部)に沿った薄い層状とな
る。Each of the reservoirs 18a to 18f has an electrode pattern formed thereon, or otherwise has an electrode (not shown).
Insert In order to guide the sample to the intersection 12, 1.2 kV is applied to the reservoirs 18a to 18c, 18f and the reservoir 18e.
, A voltage of 1.0 kV is applied, and the reservoir 18d is grounded. At this time, the potential of the intersection 12 is about 0.78V. Electroosmotic flow occurs from the reservoirs 18a to 18c, 18e, 18f toward the reservoir 18d, and the sample flow path 10
, A sheath flow as shown in FIGS. 2C and 2D is formed. The sample is guided to the intersection 12 by migrating the hatched portions in FIGS. The shape of the sample at the intersection 12 is a thin layer along the oblique line (the center of the sheath flow).
【0014】次いで、交差部12に導いた試料を分析流
路8に導くために、リザーバ18eに1.0kVの電圧
を印加し、リザーバ18fを接地する。過剰量の試料が
試料流路10から流れ込むのを防止するために、リザー
バ18a〜18c,18dに0.5kVの電圧を印加す
る。このようにして、図2(E)に示すように、薄いサン
プルプラグを分析流路に導入することができる。Next, a voltage of 1.0 kV is applied to the reservoir 18e and the reservoir 18f is grounded in order to guide the sample led to the intersection 12 to the analysis channel 8. In order to prevent an excessive amount of the sample from flowing from the sample channel 10, a voltage of 0.5 kV is applied to the reservoirs 18a to 18c and 18d. In this way, a thin sample plug can be introduced into the analysis channel as shown in FIG.
【0015】図3の実施例で、光源20からの光は、シ
リンドリカルレンズ22により平行光となり、バンドパ
スフィルター24を通って特定波長のみの光となり、シ
リンドリカルレンズ26によってマイクロチップ2上の
分析流路8へ集光される。分析流路8を通過した光はシ
リンドリカルレンズ28により再び平行光になり、フォ
トセルアレイ30へ照射される。分離した試料を検出す
るために、フォトセルアレイ30のフォトダイオードの
接合容量の飽和電荷量を超えない範囲で繰り返しスキャ
ンされ、得られたデータは積算平均化処理され、吸収し
た試料成分のバンドがピークとしてイメージング出力さ
れる。スキャン中は試料の泳動を一時的に停止させるこ
とにより、スキャン回数の平方根に比例してS/N比が
向上できる。分析流路8に導入されたサンプルプラグ
は、分離流路8の幅方向に厚みが均一な薄い層なので、
試料の分離状態を向上させることができる。In the embodiment shown in FIG. 3, the light from the light source 20 is converted into parallel light by the cylindrical lens 22, passes through the band-pass filter 24, becomes light of a specific wavelength only, and is analyzed by the cylindrical lens 26 on the microchip 2. Light is collected on the path 8. The light that has passed through the analysis channel 8 is converted into parallel light again by the cylindrical lens 28 and is irradiated on the photocell array 30. In order to detect the separated sample, scanning is repeatedly performed within a range not exceeding the saturation charge amount of the junction capacitance of the photodiode of the photocell array 30, and the obtained data is subjected to integration and averaging processing, and the band of the absorbed sample component is peaked. As an imaging output. By temporarily stopping the migration of the sample during scanning, the S / N ratio can be improved in proportion to the square root of the number of scans. Since the sample plug introduced into the analysis channel 8 is a thin layer having a uniform thickness in the width direction of the separation channel 8,
The separation state of the sample can be improved.
【0016】この実施例では、マイクロチップ電気泳動
装置として分析流路の広範囲に渡って光検出を行なう方
式のものを用いているが、分析流路の特定の位置で光検
出を行なうものでもよく、本発明によるマイクロチップ
は各リザーバに所望の電圧を印加できる装置であれば、
どのようなマイクロチップ電気泳動装置にも適用するこ
とができる。また、この実施例では電圧の印加で送液し
てシースフローを形成したが、圧力を利用して形成して
もよい。In this embodiment, a microchip electrophoresis apparatus which performs light detection over a wide range of the analysis flow path is used, but a microchip electrophoresis apparatus which performs light detection at a specific position in the analysis flow path may be used. The microchip according to the present invention is a device that can apply a desired voltage to each reservoir.
It can be applied to any microchip electrophoresis apparatus. Further, in this embodiment, the sheath flow is formed by supplying the liquid by applying a voltage, but the sheath flow may be formed by using pressure.
【0017】[0017]
【発明の効果】本発明による電気泳動用部材は、試料を
分離する分析流路と、分析流路と交差し、試料を交差部
に導く試料流路と、試料流路の試料注入側の端部と交差
部との間で交差し、分析流路との交差部にシースフロー
を形成するためのシース形成用流路と、を備え、試料導
入時には、試料流路と分析流路の交差部にシースフロー
を形成して試料を均一な厚みをもつ薄い層として分析流
路に導入するようにしたので、電気泳動の分離能を向上
させることができる。As described above, the electrophoretic member according to the present invention comprises an analysis channel for separating a sample, a sample channel that intersects the analysis channel and guides the sample to the intersection, and an end of the sample channel on the sample injection side. Intersecting between the section and the intersection, and a sheath forming flow path for forming a sheath flow at the intersection with the analysis flow path. Since the sample is introduced into the analysis channel as a thin layer having a uniform thickness by forming a sheath flow, the resolution of electrophoresis can be improved.
【図1】マイクロチップを示す図であり、(A)と(B)は
マイクロチップを構成する透明板状部材を示す平面図、
(C)はマイクロチップの正面図である。FIGS. 1A and 1B are diagrams showing a microchip, and FIGS. 1A and 1B are plan views showing a transparent plate member constituting the microchip; FIGS.
(C) is a front view of the microchip.
【図2】一実施例を表し、(A)は正面図、(B)は平面
図、(C),(D)は(B)の流路の交差部における試料導入
時の試料の流れを表す拡大模式図、(E)は(D)における
電気泳動時の試料の泳動を表す模式図である。2 (A) is a front view, FIG. 2 (B) is a plan view, and FIGS. 2 (C) and 2 (D) show the flow of the sample at the intersection of the flow paths in FIG. 2 (B). (E) is a schematic diagram showing the migration of the sample during electrophoresis in (D).
【図3】同実施例を適用したマイクロチップ電気泳動装
置の一実施例を表す概略斜視図である。FIG. 3 is a schematic perspective view illustrating an embodiment of a microchip electrophoresis apparatus to which the embodiment is applied.
2 マイクロチップ 4 ベースプレート 6 カバープレート 8 分析流路 10 試料流路 12,16 交差部 14 シース形成用流路 18a,18b,18c,18d,18e,18f
リザーバ2 Microchip 4 Base plate 6 Cover plate 8 Analysis flow path 10 Sample flow path 12, 16 Intersection 14 Sheath formation flow path 18a, 18b, 18c, 18d, 18e, 18f
Reservoir
Claims (1)
一方の板状部材の表面に液が流れる溝が形成され、いず
れかの板状部材にはその溝に対応する位置に貫通穴が設
けられ、これら板状部材が前記溝を内側にして貼り合わ
されてその溝により流路を形成してなる電気泳動用部材
において、 前記溝は、 試料を分離する分析流路と、 前記分析流路と交差し、試料を交差部に導く試料流路
と、 前記試料流路の試料注入側の端部と前記交差部との間で
交差する第3の流路と、を備えたことを特徴とする電気
泳動用部材。1. A plate comprising a pair of transparent plate members, a groove through which a liquid flows is formed on a surface of at least one of the plate members, and a through hole is provided at a position corresponding to the groove in one of the plate members. In an electrophoresis member in which these plate-shaped members are bonded together with the groove inside and the groove forms a flow path, the groove includes an analysis flow path for separating a sample, and the analysis flow path. A sample flow path that intersects and guides the sample to the intersection, and a third flow path that intersects between the sample injection side end of the sample flow path and the intersection. Electrophoresis components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14072098A JP3855457B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14072098A JP3855457B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11326274A true JPH11326274A (en) | 1999-11-26 |
JP3855457B2 JP3855457B2 (en) | 2006-12-13 |
Family
ID=15275147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14072098A Expired - Fee Related JP3855457B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3855457B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003302330A (en) * | 2002-04-12 | 2003-10-24 | Asahi Kasei Corp | Planar flow cell device |
JP2003534532A (en) * | 2000-02-11 | 2003-11-18 | アクララ バイオサイエンシーズ, インコーポレイテッド | Microfluidic device and method with sample injector |
US7229540B2 (en) * | 2002-11-01 | 2007-06-12 | President Of Shizuoka University, A Japanese Government Agency | Biochip and a manufacturing method of biochip |
US7338584B2 (en) | 2004-06-29 | 2008-03-04 | Enplas Corporation | Electrophoresis apparatus |
-
1998
- 1998-05-22 JP JP14072098A patent/JP3855457B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003534532A (en) * | 2000-02-11 | 2003-11-18 | アクララ バイオサイエンシーズ, インコーポレイテッド | Microfluidic device and method with sample injector |
JP2008209407A (en) * | 2000-02-11 | 2008-09-11 | Aclara Biosciences Inc | Microfluid device with sample injector, and method |
JP4753517B2 (en) * | 2000-02-11 | 2011-08-24 | アクララ バイオサイエンシーズ, インコーポレイテッド | Microfluidic device and method with sample injector |
JP2003302330A (en) * | 2002-04-12 | 2003-10-24 | Asahi Kasei Corp | Planar flow cell device |
US7229540B2 (en) * | 2002-11-01 | 2007-06-12 | President Of Shizuoka University, A Japanese Government Agency | Biochip and a manufacturing method of biochip |
US7338584B2 (en) | 2004-06-29 | 2008-03-04 | Enplas Corporation | Electrophoresis apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3855457B2 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8142635B2 (en) | Capillary array | |
US5567294A (en) | Multiple capillary biochemical analyzer with barrier member | |
US7157053B2 (en) | Absorbance detection system for lab-on-a-chip | |
US5599432A (en) | Device and a method for the electrophoretic separation of fluid substance mixtures | |
JP3736007B2 (en) | Microchip electrophoresis device | |
JP3434914B2 (en) | Electrophoresis device sample holding device, electrophoresis device, and method for injecting sample into electrophoresis device | |
WO1998010122A1 (en) | Microfabricated hybrid capillary array and multichannel detection assembly | |
US10866212B2 (en) | Analytical tool and analytical system | |
JP3725591B2 (en) | Small electrophoresis device | |
JP3855457B2 (en) | Electrophoresis member | |
US6319705B1 (en) | Microchip device for electrophoresis | |
JP3506652B2 (en) | Capillary array electrophoresis device | |
JPH10274638A (en) | Cataphoresis member and electric cataphoresis device using the same | |
JP3511910B2 (en) | Detector cell | |
US6913679B1 (en) | Apparatus and methods for high resolution separation of sample components on microfabricated channel devices | |
JP3417143B2 (en) | Capillary electrophoresis device | |
US6939454B2 (en) | Chip type electrophoresis device | |
JP3405162B2 (en) | Microchip electrophoresis device | |
DE4313367C2 (en) | Electrophoresis machine | |
JP2003156474A (en) | Chip for electrophoresis and electrophoresis device using the chip | |
JP4483469B2 (en) | Electrophoresis device | |
JP4458525B2 (en) | Electrophoresis device | |
JP2002243701A (en) | Micro-chip electrophoretic method | |
JPH1183798A (en) | Electrophoresis member and electrophoresis apparatus using the same | |
JP2001083118A (en) | Electrophoresis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060904 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |