JPH1130590A - Foreign matter and defect inspecting device, and manufacture of semiconductor device - Google Patents
Foreign matter and defect inspecting device, and manufacture of semiconductor deviceInfo
- Publication number
- JPH1130590A JPH1130590A JP18477697A JP18477697A JPH1130590A JP H1130590 A JPH1130590 A JP H1130590A JP 18477697 A JP18477697 A JP 18477697A JP 18477697 A JP18477697 A JP 18477697A JP H1130590 A JPH1130590 A JP H1130590A
- Authority
- JP
- Japan
- Prior art keywords
- light
- foreign matter
- detected
- light amount
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体製造工程に
おける半導体基板やフォトマスク,レチクル上の異物・
欠陥を高感度に検査する装置およびこれを用いた高品質
な半導体の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor substrate, a photomask, and a reticle in a semiconductor manufacturing process.
The present invention relates to an apparatus for inspecting defects with high sensitivity and a method for manufacturing a high-quality semiconductor using the apparatus.
【0002】[0002]
【従来の技術】従来、半導体製造工程では半導体基板
(半導体ウエハ)上に異物が存在すると、配線の絶縁不
良や短絡、あるいはキャパシタの絶縁膜やゲート酸化膜
の破壊などの不良原因になる。これらの異物は搬送装置
の稼働部から発生するもの、人体から発生するもの、プ
ロセスガスによって処理装置内で反応生成されたもの及
び薬品や材料等に混入されているものなどの原因に応じ
て種々の状態で混入される。また、フォトマスクやレチ
クルのようにガラスや石英などの透明薄板にクロムなど
の層を形成し、これをエッチングすることにより微細な
透明・不透明の回路パターンを形成する場合、基板表面
に異物が存在すると露光の際に異物の影も転写され、不
良委が発生する。2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, the presence of foreign matter on a semiconductor substrate (semiconductor wafer) causes defects such as poor insulation of a wiring, short circuit, or destruction of an insulating film and a gate oxide film of a capacitor. These contaminants are generated in various ways depending on the causes, such as those generated from the operating part of the transport device, those generated from the human body, those generated by reaction in the processing device by process gas, and those mixed in chemicals and materials. It is mixed in the state of. Also, when a layer of chromium or the like is formed on a transparent thin plate such as glass or quartz like a photomask or reticle, and this is etched to form a fine transparent or opaque circuit pattern, foreign substances may be present on the substrate surface. Then, the shadow of the foreign matter is also transferred at the time of exposure, and a defect occurs.
【0003】従来のこの種の半導体基板上の異物を検出
する技術の一つとして、特開昭62−89336号公報
に記載されているように、半導体基板上にレーザ光を照
射して基板上に異物が付着している場合に発生する異物
からの散乱光を検出し、直前に検査した同一品種半導体
基板の検査結果と比較することにより、パターンによる
虚報を無くし、高感度・高信頼度異物および欠陥検査を
可能とするものが、また、特開昭63−135848号
公報に開示されているように、半導体基板上にレーザを
照射して基板に異物が付着している場合に発生する異物
からの散乱光を検出し、この検出した異物をレーザフォ
トルミネッセンスあるいは2次X線分析(XMR)など
の分析技術で分析するものがある。As one of the conventional techniques for detecting foreign matter on a semiconductor substrate of this type, as described in Japanese Patent Application Laid-Open No. 62-89336, a semiconductor substrate is irradiated with a laser beam so Detects scattered light from foreign matter generated when foreign matter is attached to the substrate and compares it with the inspection result of the same type of semiconductor substrate inspected immediately before, eliminating false alarms due to patterns, and ensuring high sensitivity and high reliability of foreign matter In addition, as disclosed in Japanese Patent Application Laid-Open No. 63-135848, a foreign substance generated when a semiconductor substrate is irradiated with a laser and a foreign substance adheres to the substrate as disclosed in JP-A-63-135848. There is a method in which scattered light from the object is detected, and the detected foreign matter is analyzed by an analysis technique such as laser photoluminescence or secondary X-ray analysis (XMR).
【0004】従来、上記基板上の異物・欠陥を検査する
装置においては、被検査物である基板に照明光を照射
し、前記被検査物からの散乱光を光検出器で検出し、被
検査物の繰り返し性を利用した信号比較して異物・欠陥
を検出する方法や、半導体基板にコヒーレントな光を照
射し、前記基板上の繰り返しパターンから散乱する光を
空間フィルタで除去し、繰り返し性を持たない異物・欠
陥を強調して検出する方法が開示されている。Conventionally, in an apparatus for inspecting foreign substances and defects on a substrate, the substrate to be inspected is irradiated with illumination light, and scattered light from the inspected object is detected by a photodetector. A method for detecting foreign matter and defects by comparing signals using the repeatability of an object, irradiating a semiconductor substrate with coherent light, removing light scattered from a repeat pattern on the substrate with a spatial filter, and improving repeatability. There is disclosed a method of emphasizing and detecting foreign substances / defects not having them.
【0005】また、前記空間フィルタとして、光空間変
調素子の光伝導性およびポッケルス効果を利用したもの
が特開昭63−210755号公報に開示されている。
また、特開平3−2546号公報にペリクル付きレチク
ル等のペリクル枠からの過大散乱光による光電変換部へ
のダメージおよび前記過大信号による増幅器の誤動作に
よる異物からの微弱光の未検出を解決する手段として、
検出感度を変化させる技術が開示されている。Japanese Patent Application Laid-Open No. 63-210755 discloses a spatial filter utilizing the photoconductivity and Pockels effect of a spatial light modulator.
Japanese Patent Laid-Open Publication No. Hei 3-2546 discloses a means for solving the problem of damage to a photoelectric conversion unit due to excessive scattered light from a pellicle frame such as a reticle with a pellicle, and the detection of weak light from a foreign substance due to a malfunction of an amplifier due to the excessive signal. As
Techniques for changing the detection sensitivity have been disclosed.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
検査装置においては検査対象領域を全面同一照度で照明
するために、光検出器の検出光量は被検査物上のパター
ンからの散乱光量に比例して大きくなり、ついには光検
出器の飽和レベルに到達してしまう。この場合、前記飽
和レベルに達したパターンの上の異物・欠陥はその光量
の変化が検出できなくなり、異物・欠陥の見逃しが発生
してしまう。また、前記見逃しを検出するために、検査
対象領域全面の検出光量を下げる、例えば、照明光の照
度を下げる方法を用いている。しかし、この場合、異物
・欠陥からの微小な光量も低下させてしまうため、検出
感度の低下を招く。However, in the conventional inspection apparatus, since the entire inspection area is illuminated with the same illuminance, the amount of light detected by the photodetector is proportional to the amount of light scattered from the pattern on the inspection object. And eventually reaches the saturation level of the photodetector. In this case, a change in the amount of foreign matter or defect on the pattern that has reached the saturation level cannot be detected, and the foreign matter or defect is overlooked. Further, in order to detect the oversight, a method of reducing the amount of detected light over the entire inspection target area, for example, reducing the illuminance of illumination light is used. However, in this case, a minute amount of light from a foreign substance or a defect is also reduced, and the detection sensitivity is reduced.
【0007】図1にこの様子を示す。図において、
(a)は被検査物を上方から見たときの模式図であり、
(b),(c),(d),(e)は光検出器の出力信号
の一次元波形を示している。101は被検査物において
散乱光量が相対的に少ないパターン、102は被検査物
において散乱光量の多いパターンである。また、103
は被検査物101上に存在している異物、104は被検
査物102上に存在している異物であり、105は
(b),(d)に示した一次元波形の出力場所を示して
おり、106は(c),(e)に示した一次元波形の出
力場所を示している。また、(b),(c),(d),
(e)において、107は光検出器の飽和レベルを示し
ており、108は光検出器の一次元波形の内、被検査物
102からの散乱光による部分である。同様に光検出器
の一次元波形の内、109,111は異物103からの
散乱光の信号を、110は異物104からの散乱光の信
号を示している。FIG. 1 shows this state. In the figure,
(A) is a schematic diagram when the inspection object is viewed from above,
(B), (c), (d), and (e) show one-dimensional waveforms of the output signal of the photodetector. Reference numeral 101 denotes a pattern in which the amount of scattered light is relatively small in the inspection object, and reference numeral 102 denotes a pattern in which the amount of scattered light is large in the inspection object. Also, 103
Denotes a foreign substance existing on the inspection object 101, 104 denotes a foreign substance existing on the inspection object 102, and 105 denotes an output place of the one-dimensional waveform shown in (b) and (d). And reference numeral 106 denotes an output place of the one-dimensional waveform shown in (c) and (e). (B), (c), (d),
In (e), reference numeral 107 denotes a saturation level of the photodetector, and reference numeral 108 denotes a portion of the one-dimensional waveform of the photodetector due to scattered light from the inspection object 102. Similarly, in the one-dimensional waveform of the photodetector, reference numerals 109 and 111 denote signals of scattered light from the foreign substance 103, and 110 denotes a signal of scattered light from the foreign substance 104.
【0008】従来は、(b),(c)に示すように、異
物103、すなわち信号109を検出するために、照明
光源の照度を設定するために異物102は光検出器の飽
和レベルに隠れてしまう。また、異物102を検出する
ために照明光源の照度を減少させた場合、(d),
(e)に示すように、異物102、すなわち信号110
は検出可能であっても、異物103、すなわち信号11
1は検出が困難となり、どちらかを見逃してしまう可能
性が高い。また、これらの見逃し異物・欠陥は半導体製
造工程においても前述したように半導体デバイスの動作
不良の原因となり、半導体デバイスの品質低下を招く。Conventionally, as shown in (b) and (c), the foreign matter 102, that is, the foreign matter 102 is hidden by the saturation level of the photodetector to set the illuminance of the illumination light source to detect the signal 109. Would. When the illuminance of the illumination light source is reduced to detect the foreign matter 102, (d),
As shown in (e), the foreign matter 102, ie, the signal 110
Is detectable, but the foreign matter 103, ie, the signal 11
No. 1 is difficult to detect, and one of them is likely to be overlooked. In addition, as described above, these missed foreign substances and defects also cause a malfunction of the semiconductor device in the semiconductor manufacturing process, which leads to a deterioration in the quality of the semiconductor device.
【0009】[0009]
【課題を解決するための手段】本発明は、上記のような
従来技術の欠点を解消するために、従来の検査装置構成
である被検査物に光を照射する照明手段と、前記照明手
段によって照明された被検査物からの散乱構造を集光・
結像する結像手段と、前記結像手段による光学像を検出
する光検出手段と、前記光検出手段によって検出された
信号に基づいて異物・欠陥を検出する信号処理手段を有
する装置に、前記光検出手段で検出される光量を調整す
る検出光量調整手段と前記光検出手段で検出される光量
の変化を事前検知する検知手段を備えたことを特徴とす
るものである。つまり、被検査物において、適当に区切
った検査領域毎の被検査物からの散乱光強度を事前検知
し、被検査物からの散乱光強度に合わせて前記各検査領
域毎に光検出手段の検出光量を調整する手段を持つこと
である。SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks of the prior art, the present invention provides an illumination device for irradiating an object to be inspected with a conventional inspection apparatus, and an illumination device. Focusing and scattering structures from the illuminated inspection object
An apparatus having image forming means for forming an image, light detecting means for detecting an optical image by the image forming means, and signal processing means for detecting a foreign substance / defect based on a signal detected by the light detecting means; A light quantity adjusting means for adjusting the light quantity detected by the light detecting means and a detecting means for detecting in advance a change in the light quantity detected by the light detecting means are provided. That is, in the inspection object, the intensity of scattered light from the inspection object for each inspection area appropriately divided is detected in advance, and the light detection unit detects the intensity of scattered light from the inspection object for each inspection area in accordance with the intensity of scattered light from the inspection object. The point is to have a means for adjusting the amount of light.
【0010】ここで、被検査物は例えば、半導体基板や
レチクル,フォトマスクであり、光検出手段の検出光量
を調整する手段としては、例えば、照明光源と被検査物
もしくは被検査物と光検出手段の間の光路に局所的また
は全体的に光透過率を変えたフィルタを設置する手段で
あり、または、光伝導効果とポッケルス効果などの電気
光学効果を有した光空間変調素子結晶を用いて、前記光
空間変調素子結晶に光強度分布を記録・変調する手段で
ある。または、照明手段に印加される電圧を調整し、照
明照度を変化させる手段であり、または、検出手段に対
する印加電圧を調整することにより、検出手段の検出感
度を調整する手段である。Here, the object to be inspected is, for example, a semiconductor substrate, a reticle, or a photomask. As means for adjusting the amount of light detected by the light detecting means, for example, an illumination light source and an object to be inspected or an object to be inspected and light detection It is a means to install a filter whose light transmittance is changed locally or entirely in the optical path between the means, or by using a light spatial modulation element crystal having an electro-optic effect such as a photoconductive effect and a Pockels effect. Means for recording and modulating a light intensity distribution on the light spatial modulation element crystal. Alternatively, it is means for adjusting the voltage applied to the illumination means to change the illumination illuminance, or for adjusting the detection voltage of the detection means by adjusting the voltage applied to the detection means.
【0011】これらの構成によって、被検査物上の散乱
光強度の異なる各パターン・各検査領域について、散乱
光の各強度に応じて光検出手段で検出される光強度を適
当に調整することが可能となる。従って、従来、光検出
器の検出出力の飽和レベル以上の散乱光強度を有するパ
ターンの上にあるために、異物・欠陥からの散乱光によ
る変化を検出することができなかった検査領域に対し
て、本発明を用いて光検出器の検出出力を低減すること
により、前記パターンの信号について光検出器の飽和レ
ベル以下での検出が可能となり、前記パターンの上の異
物・欠陥の信号の変化を捕らえることが可能となり、前
記異物・欠陥の検出が可能となる。With these configurations, it is possible to appropriately adjust the light intensity detected by the light detecting means in accordance with each scattered light intensity for each pattern / inspection region having different scattered light intensity on the inspection object. It becomes possible. Therefore, conventionally, an inspection area in which a change due to scattered light from a foreign substance or a defect cannot be detected because it is on a pattern having a scattered light intensity equal to or higher than the saturation level of the detection output of the light detector. By using the present invention to reduce the detection output of the photodetector, it is possible to detect the signal of the pattern at a saturation level of the photodetector or less, and to detect a change in the signal of a foreign substance / defect on the pattern. This makes it possible to detect the foreign matter / defect.
【0012】一方、本発明の手段では、被検査物上の散
乱光強度の弱いパターンに関しては、光検出器の検出出
力を低減させないため、散乱光強度の弱いパターンの上
の異物・欠陥も感度良く検出可能となる。従って、被検
査物上の散乱光強度の異なるパターンの上の異物・欠陥
を高感度に検出でき、従来の問題であった見逃し異物・
欠陥数を減少させ、これらを対策することによって半導
体デバイスの品質向上を図ることが可能となる。On the other hand, according to the means of the present invention, the detection output of the photodetector is not reduced for a pattern having a low scattered light intensity on the inspection object. Good detection is possible. Therefore, foreign substances and defects on patterns having different scattered light intensities on the inspection object can be detected with high sensitivity.
By reducing the number of defects and taking countermeasures against them, the quality of the semiconductor device can be improved.
【0013】[0013]
【発明の実施の形態】本発明の一実施例を以下に説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.
【0014】図2に本発明の一実施例を示す。FIG. 2 shows an embodiment of the present invention.
【0015】本実施例は同図に示すように、照明手段2
01,結像光学系203,検出光量調整手段204,結
像光学系205,光検出手段206,信号処理回路20
7から構成されている。また、図3(a)に本実施例に
おける検出光量調整手段204の構成を示す。同図に示
すように、偏光子305,基板ガラス304,透明電極
303,絶縁層302,光空間変調素子結晶301,検
光子306で構成される。In this embodiment, as shown in FIG.
01, imaging optical system 203, detected light amount adjusting means 204, imaging optical system 205, light detecting means 206, signal processing circuit 20
7. FIG. 3A shows the configuration of the detected light amount adjusting means 204 in this embodiment. As shown in the same figure, it is composed of a polarizer 305, a substrate glass 304, a transparent electrode 303, an insulating layer 302, a spatial light modulator crystal 301, and an analyzer 306.
【0016】次に、検出光量調整手段203の詳細を説
明する。Next, details of the detection light amount adjusting means 203 will be described.
【0017】図3(a)において、入射光310が偏光
子305に入射し、ある方向の偏光が透過する。前記透
過光に対し透明電極303に十分高い電圧を加えると、
図3(b)に示すように光空間変調素子結晶301内に
電荷の分布が発生する。ここで、光空間変調素子結晶3
01とは、例えば、BSO(Bi12SiO20)の単結晶
のようなポッケスル効果等の電気光学効果を有した結晶
である。ここで、電気光学効果とは結晶に電界がかかる
と電歪効果に酔って結晶が変形する。さらに、結晶の変
形によって光弾性効果により屈折率が変化する。In FIG. 3A, incident light 310 enters a polarizer 305, and polarized light in a certain direction is transmitted. When a sufficiently high voltage is applied to the transparent electrode 303 with respect to the transmitted light,
As shown in FIG. 3B, a charge distribution occurs in the spatial light modulator crystal 301. Here, the spatial light modulator crystal 3
01 is a crystal having an electro-optical effect such as the Pockesle effect, such as a single crystal of BSO (Bi 12 SiO 20 ). Here, the electro-optic effect means that when an electric field is applied to the crystal, the crystal is deformed due to the electrostriction effect. Further, the refractive index changes due to the photoelastic effect due to the deformation of the crystal.
【0018】ここで、図3(c)に示すように、検出光
量調整手段に光強度の弱い入射光320と光強度の強い
入射光321とが入射した場合、光伝導効果により光空
間変調素子結晶301の内部に電荷が形成され、前記透
明電極203に印化された電界により結晶内をドリフト
し、結晶表面に分極される。Here, as shown in FIG. 3 (c), when the incident light 320 having a low light intensity and the incident light 321 having a high light intensity enter the detection light amount adjusting means, a light spatial modulation element is produced by a photoconductive effect. An electric charge is formed inside the crystal 301, drifts in the crystal due to the electric field imprinted on the transparent electrode 203, and is polarized on the crystal surface.
【0019】これにより、入射光320部分は光強度が
弱いため電荷の移動量が少なく、電界は強いままである
が、入射光321部分は光強度が強いため電荷の移動量
が多く、その部分の電界が弱まり、光空間変調素子結晶
301内部の電界分布が変化する。従って、それぞれの
電界分布に応じて、複屈折率の分布が発生し、前記複屈
折率分布に応じて位相変調される。そのため、入射光3
10の内、偏光子305を透過した光を光空間変調素子
結晶301に入力し、前記光空間変調素子結晶301に
より変調された出力光において、入射光強度の強い部分
からの出力光を遮る方向に検光子306を設置すること
により、入射光強度の強い部分の出力光強度を弱めるこ
とができる。As a result, the portion of the incident light 320 has a small light intensity, so that the amount of movement of charges is small, and the electric field remains strong. However, the portion of the incident light 321 has a large light intensity, so that the amount of movement of charges is large. Is weakened, and the electric field distribution inside the spatial light modulator crystal 301 changes. Therefore, a birefringence index distribution is generated according to each electric field distribution, and phase modulation is performed according to the birefringence index distribution. Therefore, the incident light 3
10, the light transmitted through the polarizer 305 is input to the spatial light modulating element crystal 301, and the output light modulated by the spatial light modulating element crystal 301 blocks the output light from the portion where the incident light intensity is strong. By installing the analyzer 306, the output light intensity of the portion where the incident light intensity is high can be reduced.
【0020】また、入射光強度の弱い部分は光空間変調
素子結晶301により変調される量が少ないため検光子
306を透過する。ここで、検光子306の設置方向は
例えば、透明電極に電圧をかけない状態、つまり、入射
光によりもっとも電荷が移動した状態で偏光子305を
透過した光のもっとも遮る方向に検光子306を設定す
る方法が考えられる。The portion where the intensity of the incident light is weak is transmitted through the analyzer 306 because the amount modulated by the spatial light modulator crystal 301 is small. Here, the analyzer 306 is installed in a direction in which no voltage is applied to the transparent electrode, that is, the direction in which light transmitted through the polarizer 305 is most blocked in a state in which electric charges are moved by incident light. There is a way to do it.
【0021】次に本実施例の動作を説明する。Next, the operation of this embodiment will be described.
【0022】動作は、散乱光量の分布の検出光量調整手
段204への記録動作、異物・欠陥検査動作を繰り返
す。In the operation, the recording operation of the distribution of the scattered light amount to the detected light amount adjusting means 204 and the foreign matter / defect inspection operation are repeated.
【0023】まず、記録動作について説明する。図2に
おいて、照明手段201は、前記したように、BSOに
記録可能な、例えば波長488nmのArレーザである。
前記照明手段201から射出された光は被検査物202
に照射される。前記照明光の内、被検査物202からの
散乱光は結像光学系203によって、検出光量調整手段
204に結像され、この時、結像された光量の強度分布
に応じて前記したように電圧分布が記録される。First, the recording operation will be described. In FIG. 2, the illumination means 201 is, for example, an Ar laser having a wavelength of 488 nm, which can be recorded on the BSO, as described above.
The light emitted from the illumination means 201 is
Is irradiated. Of the illumination light, scattered light from the inspection object 202 is imaged by the imaging optical system 203 on the detected light amount adjusting means 204, and at this time, as described above according to the intensity distribution of the formed light amount. The voltage distribution is recorded.
【0024】この様子の一例を図4に示す。図4(a)
は、被検査物を上方から見たときの模式図であり、40
1は回路パターン、403は異物、404は前記照明手
段201による一回に照明可能な照明領域である。ま
た、図4(b)は前記照明領域の図4(a)における前
記結像光学系203によって結像された光強度分布のX
方向の一次元波形を示したものである。FIG. 4 shows an example of this state. FIG. 4 (a)
Is a schematic diagram when the inspection object is viewed from above,
1 is a circuit pattern, 403 is a foreign substance, and 404 is an illumination area that can be illuminated at one time by the illumination means 201. FIG. 4B shows the X-ray intensity distribution of the light area formed by the imaging optical system 203 in FIG. 4A in the illumination area.
It shows a one-dimensional waveform in the direction.
【0025】図4(b)において、410は前記異物4
03の出力、411は前記照明領域を図4(a)におけ
るY方向に複数領域を走査したときの一次元波形を並べ
たものである。また、413はこれらの領域を走査した
ときに検出光量調整手段204に蓄積される光量分布を
示したものである。光強度分布の記録動作としては、複
数検査領域にわたって同位置にパターンが形成されてい
るような被検査物に対して、図4(b)の411の内の
異物の存在しない部分の光強度分布を記録するか、41
3のように複数領域を走査し、それらを蓄積することに
より検出光量調整手段204に記録する。In FIG. 4B, reference numeral 410 denotes the foreign substance 4
Outputs 411 and 411 are obtained by arranging one-dimensional waveforms when the illumination area is scanned in a plurality of areas in the Y direction in FIG. 4A. Reference numeral 413 denotes a light amount distribution accumulated in the detected light amount adjusting means 204 when these areas are scanned. As the light intensity distribution recording operation, the light intensity distribution of a portion where no foreign matter exists in 411 in FIG. 4B is measured for an inspection object in which a pattern is formed at the same position over a plurality of inspection regions. Or record 41
A plurality of areas are scanned as shown in FIG. 3 and stored in the detected light amount adjusting means 204 by accumulating them.
【0026】次に検査時の動作を説明する。検査時も前
記記録動作と同様に、照明手段201により被検査物2
02を照明する。この照明光の内、被検査物からの散乱
光を結像光学系203により検出光量調整手段204に
入射され、前述したように散乱光強度分布に応じて、光
量が調整される。さらに、前記の調整された光は結像光
学系205によって再結像され、前記結像光学系205
の結像位置に設置された光検出手段206、例えば、C
CDリニアセンサで検出される。前記光検出手段206
の出力は信号処理回路207で信号処理され、異物・欠
陥を検出する。Next, the operation at the time of inspection will be described. At the time of inspection, similarly to the recording operation described above, the illumination device 201 is used to inspect the inspection object 2
Illuminate 02. Of the illumination light, scattered light from the object to be inspected is incident on the detected light amount adjusting means 204 by the imaging optical system 203, and the light amount is adjusted according to the scattered light intensity distribution as described above. Further, the adjusted light is re-imaged by the image forming optical system 205, and the image forming optical system 205
Light detecting means 206 installed at the image forming position
It is detected by a CD linear sensor. The light detecting means 206
Is subjected to signal processing in a signal processing circuit 207 to detect foreign matter and defects.
【0027】図5に本発明の別の実施例を示す。FIG. 5 shows another embodiment of the present invention.
【0028】本実施例は、同図に示すように、照明光源
501,ハーフミラー502,照明光量調整手段50
3,全反射ミラー504,結像光学系506,光検出手
段507,信号処理回路508および散乱光強度分布検
知手段509,電圧制御系510,照明光量調整手段の
電源511により構成される。In this embodiment, as shown in the figure, an illumination light source 501, a half mirror 502, and an illumination light amount adjusting means 50 are provided.
3, a total reflection mirror 504, an imaging optical system 506, a light detecting means 507, a signal processing circuit 508, a scattered light intensity distribution detecting means 509, a voltage control system 510, and a power supply 511 of an illumination light amount adjusting means.
【0029】また、図6(a)に本実施例における照明
光量調整手段503の構成を示す。同図に示すように、
偏光子605,ガラス基板604,透明電極603,配
向膜602,液晶分子601,検光子606から構成さ
れる。また、図7(a)に本実施例における散乱光強度
分布検知手段の構成を示す。同図に示すように、結像光
学系701,散乱光検出器702,信号処理回路703
から構成される。FIG. 6A shows the configuration of the illumination light amount adjusting means 503 in this embodiment. As shown in the figure,
It comprises a polarizer 605, a glass substrate 604, a transparent electrode 603, an alignment film 602, liquid crystal molecules 601 and an analyzer 606. FIG. 7A shows the configuration of the scattered light intensity distribution detecting means in this embodiment. As shown in the figure, an imaging optical system 701, a scattered light detector 702, a signal processing circuit 703
Consists of
【0030】次に、照明光量調整手段503の詳細を説
明する。図6(a)において、入射光610が偏光子6
05に入射し、ある方向の偏光が透過する。前記透過光
に対し透明電極603に電圧がかかっていないときは、
液晶分子601によって偏向方向が90°ねじられ、偏
光子605とクロスニコルにした検光子606を透過す
る。これに対し、透明電極603に十分高い電圧を加え
ると、偏光子605を透過した光は、液晶分子601に
よってねじられることなく検光子606に入射するた
め、検光子606によって遮られ、照明光量を減少させ
ることが可能となる。さらに、本実施例においては前記
の偏光子605,ガラス基板604,透明電極603,
配向膜602,液晶分子601,検光子606を1ユニ
ット611とし、前記ユニット611を図6(b)に示
すように、アレイ状に配置することにより入射光に対し
て、局所的に光量を変動させることが可能である。Next, details of the illumination light amount adjusting means 503 will be described. In FIG. 6A, the incident light 610 is
05, and polarized light in a certain direction is transmitted. When no voltage is applied to the transparent electrode 603 for the transmitted light,
The deflection direction is twisted by 90 ° by the liquid crystal molecules 601, and the light passes through the polarizer 605 and the analyzer 606 that has been made into crossed Nicols. On the other hand, when a sufficiently high voltage is applied to the transparent electrode 603, the light transmitted through the polarizer 605 enters the analyzer 606 without being twisted by the liquid crystal molecules 601. Therefore, the light is blocked by the analyzer 606, and the amount of illumination is reduced. It is possible to reduce it. Further, in this embodiment, the polarizer 605, the glass substrate 604, the transparent electrode 603,
The alignment film 602, the liquid crystal molecules 601 and the analyzer 606 constitute one unit 611, and the units 611 are arranged in an array as shown in FIG. It is possible to do.
【0031】次に、散乱強度分布検知手段509の詳細
を説明する。図7(a)において照明光731を被検査
物732に照射し、前記被検査物732からの散乱光を
結像光学系701で光検出器702に結像させる。さら
に、前記光検出器702の出力を信号処理回路704で
処理し、照明光量の調整量を計算する。Next, details of the scattering intensity distribution detecting means 509 will be described. In FIG. 7A, illumination light 731 is irradiated on the inspection object 732, and scattered light from the inspection object 732 is formed on the photodetector 702 by the imaging optical system 701. Further, the output of the photodetector 702 is processed by a signal processing circuit 704 to calculate an adjustment amount of the illumination light amount.
【0032】図7(b),(c)は計算の方法の一例を
示したものである。ここで、図7(b)は被検査物を上
面から見たときのパターンの模式図である。同図におい
て、710,711はパターンであり、713は1走査
分の検査対象領域を示しており、712の部分の一次元
波形を図7(c)に示している。7図(c)において、
720は前記検査対象領域713における数ライン分の
一次元波形である。また、これらの波形を加算したもの
が721であり、加算波形721の中で、もっともレベ
ルの高い部分を725とする。計算方法としては、前記
加算波形721において、前記照明光量調整手段の1ユ
ニットに相当するエリアの平均値をとり、前記高レベル
部725の値を前記平均値で除算し、適当な係数を乗算
したものを照明光量調整手段503における透明電極6
03に印加する電圧とする方法である。なお、ここで
は、図7(b)におけるX方向の一次元波形について説
明したが、本実施例ではY方向の一次元波形についても
行い、これらの結果に基づいて、透明電極603への印
加電圧を決定するものとする。FIGS. 7B and 7C show an example of a calculation method. Here, FIG. 7B is a schematic diagram of a pattern when the inspection object is viewed from above. In FIG. 7, reference numerals 710 and 711 denote patterns, reference numeral 713 denotes an inspection target area for one scan, and a one-dimensional waveform 712 is shown in FIG. 7C. 7 In FIG.
Reference numeral 720 denotes a one-dimensional waveform of several lines in the inspection target area 713. The sum of these waveforms is 721, and the highest level portion of the added waveform 721 is 725. As a calculation method, in the added waveform 721, an average value of an area corresponding to one unit of the illumination light amount adjusting means was obtained, the value of the high level portion 725 was divided by the average value, and an appropriate coefficient was multiplied. The transparent electrode 6 in the illumination light amount adjusting means 503
03 is a method of setting a voltage to be applied. Although a one-dimensional waveform in the X direction in FIG. 7B has been described here, a one-dimensional waveform in the Y direction is also performed in the present embodiment, and the voltage applied to the transparent electrode 603 is determined based on these results. Shall be determined.
【0033】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.
【0034】図5に示すように、照明光源501から射
出された光はハーフミラー502によって光路を2つに
分割する。まず、ハーフミラー502で反射された光5
20は散乱光強度分布検出手段509の照明光として、
被検査物505に照射される。前記照明光の内、被検査
物からの散乱光は上記したように散乱光強度分布検知手
段509によって散乱光強度分布が検知され、検知内容
に従い、電圧制御系510にフィードバックされる。As shown in FIG. 5, the light emitted from the illumination light source 501 divides the optical path into two by a half mirror 502. First, the light 5 reflected by the half mirror 502
20 is illumination light of the scattered light intensity distribution detecting means 509,
The object to be inspected 505 is irradiated. Of the illumination light, the scattered light from the object to be inspected is detected by the scattered light intensity distribution detecting means 509 as described above, and is fed back to the voltage control system 510 according to the detected content.
【0035】一方ハーフミラー402を透過した光52
1は照明光量調整手段503に入射する。前記調整手段
509により照明光量を調整した後、全反射ミラー50
4により反射された光は被検査物505上の検査対象領
域に照射される。前記照射光の内、被検査物505から
の散乱光は結像光学系506で集光・結像され、前記結
像光学系506の結像位置に設置された光検出手段50
7で検出される。前記光検出手段507の出力を信号処
理回路508に入力され信号処理を施すことにより異物
を検出する。これら動作を、被検査物ステージを図5に
おけるY方向に移動させながら繰り返すことにより、被
検査物505を検査する。On the other hand, the light 52 transmitted through the half mirror 402
1 is incident on the illumination light amount adjusting means 503. After adjusting the amount of illumination by the adjusting means 509, the total reflection mirror 50 is adjusted.
The light reflected by 4 is applied to the inspection target area on the inspection object 505. Of the irradiation light, the scattered light from the inspection object 505 is condensed and imaged by the imaging optical system 506, and the light detecting means 50 installed at the image forming position of the imaging optical system 506.
7 is detected. The output of the light detection means 507 is input to a signal processing circuit 508 and subjected to signal processing to detect foreign matter. By repeating these operations while moving the inspection object stage in the Y direction in FIG. 5, the inspection object 505 is inspected.
【0036】尚、本明細書における被検査物からの散乱
光は被検査物の反射光であっても、被検査物の透過光で
あっても良い。また、照明光量を調整する手段、検出光
量を調整する手段ともNDフィルタのような光透過率を
部分的に変化させるものを使用しても良く、また、本明
細書では照明光源と被検査物の間に設置して照明光源か
らの照明光強度を調整するものを照明光量調整手段、被
検査物と光検出手段の間に設置して、散乱光量を調整す
るものを検出光量調整手段と記しているが、どちらも光
検出器に入射する光量を局所的にまたは全体的に調整す
るものであり、同様の作用を持つものである。The scattered light from the inspection object in this specification may be reflected light of the inspection object or transmitted light of the inspection object. As the means for adjusting the amount of illumination light and the means for adjusting the amount of detected light, those which partially change the light transmittance, such as an ND filter, may be used. The device that adjusts the intensity of the illumination light from the illumination light source and that is installed between the object to be inspected and the light detection device and that adjusts the amount of scattered light is called the detection light intensity adjustment device. However, in both cases, the light amount incident on the photodetector is locally or entirely adjusted, and has the same function.
【0037】また、照明光源からの照明光量を調整する
手段として、照明光源の印加電圧を変化させても良く、
また、光検出手段の検出光量を調整するのに、光検出手
段への印化電圧を変化させて光検出手段の感度を調整し
ても良い。ここで、光検出手段としては、CCDリニア
センサ,TDI,TVカメラ,光電子倍増管を指すもの
とする。また、被検査物からの散乱強度の分布の検知手
段としては、上記一実施例の様に光空間変調材料に記録
させる方法でも、また、検査のタイミングより早いタイ
ミングで検知し、実時間でフィードバックをかける方法
でも良く、また、予め散乱光強度分布を記憶しているも
のから順次読み出し、光量調整手段にフィードバックを
かけていも良い。また、結像光学系は光路中に空間フィ
ルタなどの空間変調材料を用いる構成でも良い。As means for adjusting the amount of illumination light from the illumination light source, the voltage applied to the illumination light source may be changed.
Further, in order to adjust the amount of light detected by the light detecting means, the sensitivity of the light detecting means may be adjusted by changing the printing voltage to the light detecting means. Here, the light detection means refers to a CCD linear sensor, a TDI, a TV camera, and a photomultiplier tube. Further, as a means for detecting the distribution of the scattering intensity from the inspection object, a method of recording on the spatial light modulation material as in the above-described embodiment, the detection is performed at a timing earlier than the inspection timing, and feedback is performed in real time. Alternatively, the scattered light intensity distribution may be sequentially read out from those in which it is stored in advance, and fed back to the light amount adjusting means. Further, the imaging optical system may be configured to use a spatial modulation material such as a spatial filter in the optical path.
【0038】[0038]
【発明の効果】本発明は以上説明したように構成されて
いるので、半導体製造工程の基板上の検出光量の大きい
パターン上の異物・欠陥も見逃しなく検出でき、前記検
出結果を半導体製造工程にフィードバック・対策するこ
とにより、高品質の半導体デバイスが提供できる。Since the present invention is configured as described above, foreign substances and defects on a pattern having a large amount of light detected on a substrate in a semiconductor manufacturing process can be detected without overlooking, and the detection result is used in the semiconductor manufacturing process. By providing feedback and taking measures, a high-quality semiconductor device can be provided.
【図1】従来の課題を示す図。FIG. 1 is a diagram showing a conventional problem.
【図2】本発明の一実施例の構成を示す図。FIG. 2 is a diagram showing a configuration of one embodiment of the present invention.
【図3】図2の検出光量調整手段の構成を示す図。FIG. 3 is a diagram illustrating a configuration of a detection light amount adjusting unit in FIG. 2;
【図4】図2の検出光量調整手段の方法を説明する図。FIG. 4 is a view for explaining a method of a detected light amount adjusting means in FIG. 2;
【図5】本発明の別の実施例を示す図。FIG. 5 is a diagram showing another embodiment of the present invention.
【図6】図5の照明光量調整手段の構成を示す図。FIG. 6 is a diagram illustrating a configuration of an illumination light amount adjusting unit in FIG. 5;
【図7】図5の照明光量調整手段の方法を説明する図。FIG. 7 is a view for explaining a method of the illumination light amount adjusting means of FIG. 5;
101,102…パターン、103,104…異物、1
05,106…波形出力場所、107…光検出器の飽和
レベル、108,109,110,111…被検査物か
らの散乱光信号、201…照明手段、202…被検査
物、203…結像光学系、204…検出光量調整手段、
205…結像光学系、206…光検出手段、207…信
号処理回路、301…光空間変調素子結晶、302…絶
縁層、303…透明電極、304…基板ガラス、305
…偏光子、306…検光子、310,320,321…
入射光、401…被検査物上のパターン、402…波形
出力場所、403…異物、404…照明領域、410…
被検査物からの散乱光信号、411…一次元波形群、4
13…検査領域の光量分布、501…照明光源、502
…ハーフミラー、503…照明光量調整手段、504…
全反射ミラー、506…結像光学系、507…光検出手
段、508…信号処理回路、509…散乱光強度分布検
知手段、510…電圧制御系、511…照明光量調整手
段の電源、601…液晶分子、602…配向膜、603
…透明電極、604…ガラス基板、605…偏光子、6
06…検光子、610…入射光、611…光量調整手
段、701…結像光学系、702…散乱光検出器、70
3…信号処理回路、710,711…被検査物上のパタ
ーン、712…波形出力場所、713…検査対象領域、
720…一次元波形群、721…加算波形、725…加
算波形内の最大値、731…照明光、732…被検査
物。101, 102: pattern, 103, 104: foreign matter, 1
05, 106: Waveform output location, 107: Saturation level of photodetector, 108, 109, 110, 111: Scattered light signal from the test object, 201: Illumination means, 202: Test object, 203: Imaging optics System, 204: detection light amount adjusting means,
205: imaging optical system, 206: light detection means, 207: signal processing circuit, 301: light spatial modulation element crystal, 302: insulating layer, 303: transparent electrode, 304: substrate glass, 305
... polarizer, 306 ... analyzer, 310,320,321 ...
Incident light, 401: pattern on inspection object, 402: waveform output location, 403: foreign matter, 404: illumination area, 410:
Scattered light signal from the inspection object, 411 ... one-dimensional waveform group, 4
13: light quantity distribution in the inspection area, 501: illumination light source, 502
... half mirror, 503 ... illumination light amount adjusting means, 504 ...
Total reflection mirror, 506: imaging optical system, 507: light detecting means, 508: signal processing circuit, 509: scattered light intensity distribution detecting means, 510: voltage control system, 511: power supply of illumination light amount adjusting means, 601: liquid crystal Molecule, 602... Alignment film, 603
... Transparent electrode, 604 ... Glass substrate, 605 ... Polarizer, 6
06: analyzer, 610: incident light, 611: light amount adjusting means, 701: imaging optical system, 702: scattered light detector, 70
3: Signal processing circuit, 710, 711: Pattern on inspection object, 712: Waveform output location, 713: Inspection target area,
720: one-dimensional waveform group, 721: added waveform, 725: maximum value in the added waveform, 731: illumination light, 732: inspection object.
フロントページの続き (72)発明者 見坊 行雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内Continued on the front page (72) Inventor Yukio Mibo 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture, Hitachi, Ltd.
Claims (10)
することと、前記検査の検出物に基づいて品質管理する
事により高品質な半導体デバイスを得ることを特徴とし
た異物欠陥検査装置および半導体デバイス製造方法。1. A foreign matter defect inspection apparatus characterized by inspecting foreign matter and defects on a semiconductor substrate with high sensitivity and obtaining a high quality semiconductor device by quality control based on a detected object of the inspection. And a semiconductor device manufacturing method.
において、被検査物に光を照射する照明手段と、前記照
明手段によって照明された被検査物からの散乱光像を集
光・結像する結像手段と、前記結像手段による光学像を
検出する光検出手段と、前記光検出手段によって検出さ
れた信号に基づいて異物・欠陥を検出する信号処理手段
と、前記光検出手段で検出される光量を調整する検出光
量手段と前記光検出手段で検出される光量の変化を事前
検知する検知手段を備えたことにより高感度に検査する
ことを特徴とする請求項1記載の異物欠陥検査装置。2. An apparatus for inspecting foreign matter and defects on a semiconductor substrate, comprising: an illuminating means for irradiating the object with light; and a scattered light image from the object illuminated by the illuminating means. Imaging means for imaging, light detection means for detecting an optical image by the imaging means, signal processing means for detecting foreign matter / defects based on a signal detected by the light detection means, and the light detection means 2. The foreign matter defect according to claim 1, wherein the inspection is performed with high sensitivity by providing a detection light amount unit for adjusting a detected light amount and a detection unit for detecting a change in the light amount detected by the light detection unit in advance. Inspection equipment.
割された検査領域に対して、どの検査領域も総検出光量
が同レベルになるように検出光量を調整することを特徴
とする請求項2記載の異物欠陥検査装置。3. The detected light amount adjusting means adjusts the detected light amount such that the total detected light amount becomes the same level in each of the inspection regions appropriately divided. The foreign matter defect inspection device according to the above.
からの散乱光強度変化の分布を予め記憶しておく記憶手
段を備え、前記記憶手段の内容に基づき検出光量を調整
することを特徴とする請求項2または3記載の異物欠陥
検査装置。4. The detection light quantity adjusting means includes a storage means for storing in advance a distribution of a change in the intensity of scattered light from the inspection object, and adjusts the detection light quantity based on the contents of the storage means. The foreign matter defect inspection device according to claim 2 or 3, wherein
からの散乱光強度変化の分布を実時間で検知し、前記検
知内容に基づいて実時間で検出光量を調整することを特
徴とする請求項2または3記載の異物欠陥検査装置。5. The detected light amount adjusting means detects a distribution of a change in the intensity of scattered light from the inspection object in real time, and adjusts the detected light amount in real time based on the detected content. Item 3. A foreign matter defect inspection device according to Item 2 or 3.
光量に基づき、被検査物に照射される光量を調整するこ
とを特徴とする請求項4または5記載の異物欠陥検査装
置。6. A foreign matter defect inspection apparatus according to claim 4, wherein said detected light amount adjusting means adjusts the amount of light irradiated on the inspection object based on the detected light amount.
光量に基づき、被検査物からの散乱光量の内の検出可能
量を調整することを特徴とする請求項4または5記載の
異物欠陥検査装置。7. The foreign matter defect inspection apparatus according to claim 4, wherein the detected light amount adjusting means adjusts a detectable amount of the scattered light amount from the inspection object based on the detected light amount. .
を調整するのに光透過率を変化させたフィルタを照明手
段または、結像手段の一部に用いることを特徴とする請
求項6または7記載の異物欠陥検査装置。8. The detecting light amount adjusting means, wherein a filter having a changed light transmittance is used as a part of the illuminating means or the image forming means to adjust the detected light amount. The foreign matter defect inspection device according to the above.
に照射される光量を調整するのに照明光源への印可電圧
を調整することを特徴とする請求項6記載の異物欠陥検
査装置。9. A foreign matter defect inspection apparatus according to claim 6, wherein said detection light amount adjusting means adjusts an applied voltage to an illumination light source to adjust the amount of light applied to the inspection object.
量を調整するのに光検出手段への印可電圧を調整するこ
とを特徴とする請求項7記載の異物欠陥検査装置。10. The foreign matter defect inspection apparatus according to claim 7, wherein said detecting light amount adjusting means adjusts an applied voltage to said light detecting means to adjust the detected light amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18477697A JPH1130590A (en) | 1997-07-10 | 1997-07-10 | Foreign matter and defect inspecting device, and manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18477697A JPH1130590A (en) | 1997-07-10 | 1997-07-10 | Foreign matter and defect inspecting device, and manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1130590A true JPH1130590A (en) | 1999-02-02 |
Family
ID=16159116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18477697A Pending JPH1130590A (en) | 1997-07-10 | 1997-07-10 | Foreign matter and defect inspecting device, and manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1130590A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001004347A (en) * | 1999-06-22 | 2001-01-12 | Mitsubishi Electric Corp | Defect inspecting device |
US7333192B2 (en) | 2006-01-23 | 2008-02-19 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
JP2014052217A (en) * | 2012-09-05 | 2014-03-20 | Dainippon Printing Co Ltd | Foreign matter inspection device, foreign matter inspection method |
CN112697794A (en) * | 2019-10-23 | 2021-04-23 | 上海微电子装备(集团)股份有限公司 | Mask detection device, photoetching equipment and mask detection method |
CN112798603A (en) * | 2021-01-06 | 2021-05-14 | 深圳技术大学 | Imaging system and imaging method thereof |
-
1997
- 1997-07-10 JP JP18477697A patent/JPH1130590A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001004347A (en) * | 1999-06-22 | 2001-01-12 | Mitsubishi Electric Corp | Defect inspecting device |
US7333192B2 (en) | 2006-01-23 | 2008-02-19 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
US7768635B2 (en) | 2006-01-23 | 2010-08-03 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
US7973920B2 (en) | 2006-01-23 | 2011-07-05 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
US8218138B2 (en) | 2006-01-23 | 2012-07-10 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
JP2014052217A (en) * | 2012-09-05 | 2014-03-20 | Dainippon Printing Co Ltd | Foreign matter inspection device, foreign matter inspection method |
CN112697794A (en) * | 2019-10-23 | 2021-04-23 | 上海微电子装备(集团)股份有限公司 | Mask detection device, photoetching equipment and mask detection method |
CN112798603A (en) * | 2021-01-06 | 2021-05-14 | 深圳技术大学 | Imaging system and imaging method thereof |
US12003868B2 (en) | 2021-01-06 | 2024-06-04 | Shenzhen Technology University | Imaging system and imaging method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6064477A (en) | Method of and apparatus for inspecting reticle for defects | |
US5805278A (en) | Particle detection method and apparatus | |
US7161671B2 (en) | Method and apparatus for inspecting defects | |
EP1049925B1 (en) | Optical inspection method and apparatus | |
US7295301B2 (en) | Dual stage defect region identification and defect detection method and apparatus | |
US8462330B2 (en) | Method and apparatus for detecting defects | |
JP4030815B2 (en) | System and method for simultaneous or sequential multiple perspective sample defect inspection | |
US7643139B2 (en) | Method and apparatus for detecting defects | |
US5659390A (en) | Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns | |
JPH05100413A (en) | Foreign matter detecting device | |
JPH1130590A (en) | Foreign matter and defect inspecting device, and manufacture of semiconductor device | |
JP2008051666A (en) | Flaw inspection device | |
JPH11201743A (en) | Method for inspecting foreign matter and defect, and its device | |
JP3282790B2 (en) | Defect inspection system for phase shift mask | |
JPH0792236A (en) | Inspecting apparatus for voltage distribution on surface of substrate | |
JP2000146537A5 (en) | ||
JPH07128032A (en) | Method and apparatus for inspecting surface waviness of plate-shaped material | |
JPH05215696A (en) | Method and apparatus for inspecting defect | |
JP2653853B2 (en) | Inspection method of periodic pattern | |
JP3409272B2 (en) | Foreign matter inspection method of exposure mask | |
JPH0682381A (en) | Foreign matter inspection device | |
US20030094938A1 (en) | Circuit pattern detecting apparatus and circuit pattern inspecting method | |
JP2880721B2 (en) | Defect inspection equipment | |
US7457454B1 (en) | Detailed grey scale inspection method and apparatus | |
JP3020546B2 (en) | Foreign matter inspection device |