JPH11300215A - Photocatalytic particle - Google Patents

Photocatalytic particle

Info

Publication number
JPH11300215A
JPH11300215A JP12418298A JP12418298A JPH11300215A JP H11300215 A JPH11300215 A JP H11300215A JP 12418298 A JP12418298 A JP 12418298A JP 12418298 A JP12418298 A JP 12418298A JP H11300215 A JPH11300215 A JP H11300215A
Authority
JP
Japan
Prior art keywords
titanium oxide
alloy
particle
photocatalytic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12418298A
Other languages
Japanese (ja)
Inventor
Hiroshige Nakamura
浩茂 中村
Shingo Yonezawa
信吾 米澤
Junji Saida
淳治 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12418298A priority Critical patent/JPH11300215A/en
Publication of JPH11300215A publication Critical patent/JPH11300215A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Cookers (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic particle in which photocatalytic characteristics are excellent, especially in a visible light range. SOLUTION: The photocatalytic particle 1 is equipped with a titanium oxide particle 2 and at least one kind of metal selected from silver, copper, zinc and nickel or alloy 3 which covers the surface 2a of the titanium oxide particle 2 so that a part of the surface 2a of the particle 2 is exposed. The diameter of the particle 2 is <=1 μm. Photocatalytic activity of titanium oxide is developed in the especially exposed part because a part of the surface 2a of the particle 2 is exposed. Since the photocatalytic particle 1 is equipped with at least one kind of metal selected from silver, copper, zinc and nickel or alloy 3, it is easily excited by irradiation of light in a visible region and an electron and a positive hole are generated. Such a state is caused that movement or the electron and the positive hole is enabled between metal or alloy 3 and the particle 2 in the covered parts. Therefore, the electron of the positive hole generated in metal or alloy is supplied to titanium oxide. Further, since particle diameter of titanium oxide is <=1 μm, quantum size effect arises.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒作用を有す
る光触媒性粒子に関し、特に、厨房機器等に付着した油
分の分解、外装材等の汚れの分解、脱臭、二酸化炭素の
固定等に使用して好適な光触媒性粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to photocatalytic particles having a photocatalytic action, and more particularly to photocatalytic particles used for decomposing oil attached to kitchen equipment, decomposing dirt on exterior materials, deodorizing, fixing carbon dioxide, and the like. Suitable photocatalytic particles.

【0002】[0002]

【従来の技術】従来、油の分解等には、γ-酸化マンガ
ンを触媒として用い、油をこれと一緒に加熱し油の完全
燃焼を促進する方法(熱触媒)や、酸化チタンを鋼板や
フィルター等の担持体に塗布し、これに紫外線を照射す
ることによって油分を分解する光触媒による方法が用い
られてきた。特に、光触媒は熱触媒のように分解に際し
て対象物を高温に保持する必要がないため、近年急速に
需要が高まっている。また、酸化チタンにCr等の遷移
金属をイオン注入したものが可視光域で光触媒作用を有
することも知られていた。さらに、比較的可視光域に近
い波長で励起する有機高分子半導体でも、光励起効果は
確認されている。
2. Description of the Related Art Conventionally, for the decomposition of oil, etc., a method of using γ-manganese oxide as a catalyst and heating the oil together therewith to promote complete combustion of the oil (thermal catalyst), or a method of using titanium oxide on a steel sheet or the like. A method using a photocatalyst, which applies oil to a support such as a filter and irradiates the support with ultraviolet rays to decompose oil, has been used. In particular, the demand for photocatalysts has been rapidly increasing in recent years because there is no need to maintain the target at a high temperature during decomposition unlike the thermal catalysts. It is also known that titanium oxide obtained by ion implantation of a transition metal such as Cr has a photocatalytic action in the visible light region. Furthermore, even with an organic polymer semiconductor that excites at a wavelength relatively close to the visible light region, a photoexcitation effect has been confirmed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、以上の
ような酸化チタンに代表される無機系光触媒は、紫外線
でなければ触媒作用が起きないために、使用にあたって
は、紫外線ランプが必要になり、また紫外線を用いるの
で人体への光遮断も考慮しなければならなかった。ま
た、イオン注入を利用した光触媒は製造コストが高く、
実用上広範囲に使用することは困難であった。一方、有
機高分子半導体の光励起効果は、油や汚れを分解できる
ほど強いものではないという問題があった。
However, the inorganic photocatalyst represented by titanium oxide as described above does not produce a catalytic action unless it is ultraviolet light, and therefore requires an ultraviolet lamp when used. Since ultraviolet rays are used, light shielding to the human body must be considered. Also, photocatalysts utilizing ion implantation have high manufacturing costs,
It was difficult to use widely in practical use. On the other hand, there is a problem that the photoexcitation effect of the organic polymer semiconductor is not strong enough to decompose oil and dirt.

【0004】そこで本発明は、光触媒特性に優れ、特に
可視光領域での光触媒特性に優れた光触媒性粒子を提供
することを目的としている。
Accordingly, an object of the present invention is to provide photocatalytic particles having excellent photocatalytic properties, particularly excellent photocatalytic properties in the visible light region.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明による光触媒性粒子1は、図1
に示すように、酸化チタン粒子2と;酸化チタン粒子2
の表面2aの一部が露出するように酸化チタン粒子2の
表面2aを被覆する、銀、銅、亜鉛、及びニッケルから
選択される少なくとも1種の金属または合金3を備え;
酸化チタン粒子2の粒径が1μm以下であることを特徴
とする。
In order to achieve the above object, a photocatalytic particle 1 according to the first aspect of the present invention has a structure as shown in FIG.
And titanium oxide particles 2;
At least one metal or alloy 3 selected from silver, copper, zinc, and nickel, which covers the surface 2a of the titanium oxide particles 2 so that a part of the surface 2a is exposed;
The particle size of the titanium oxide particles 2 is 1 μm or less.

【0006】このように構成すると、酸化チタン粒子2
の表面2aの一部が露出しているので、特に露出した部
分で酸化チタンの光触媒活性が発現し、銀、銅、亜鉛、
及びニッケルから選択される少なくとも1種の金属また
は合金3を備えるので、可視光域またはそれより短い波
長の光の照射により容易に励起されて電子と正孔を生
じ、被覆された部分では金属または合金3と酸化チタン
2との間で電子や正孔の移動が可能な状態になっている
ので、金属または合金3で生じた電子または正孔が酸化
チタンに供給される。また、酸化チタンの粒径が1μm
以下であるので、量子サイズ効果を生み出す。
With this configuration, the titanium oxide particles 2
Of the surface 2a is exposed, the photocatalytic activity of the titanium oxide is particularly exhibited in the exposed portion, and silver, copper, zinc,
And at least one metal or alloy 3 selected from nickel and nickel, so that it is easily excited by irradiation with light of a visible light region or a shorter wavelength to generate electrons and holes, and a metal or alloy Since electrons and holes can move between the alloy 3 and the titanium oxide 2, electrons or holes generated in the metal or the alloy 3 are supplied to the titanium oxide. In addition, the particle size of titanium oxide is 1 μm
The following produces a quantum size effect.

【0007】この光触媒性粒子では、請求項2に記載の
ように、合金3が銀を含み、さらに銅または亜鉛の一方
または両方を合計10〜50重量%だけ含むものとして
もよい。
[0007] In the photocatalytic particles, the alloy 3 may contain silver, and may further contain one or both of copper and zinc in a total amount of 10 to 50% by weight.

【0008】このような構成では、合金3が銀を含み、
さらに銅または亜鉛の一方または両方を合計10〜50
重量%だけ含むので、油分解特性に特に優れる。
In such a configuration, the alloy 3 contains silver,
Further, one or both of copper and zinc are added in a total of 10 to 50.
Since it contains only% by weight, it is particularly excellent in oil decomposition characteristics.

【0009】以上のような光触媒性粒子では、請求項3
に記載のように、金属または合金3は、酸化チタン粒子
2の表面2aに不連続膜状に被覆されていることが好ま
しい。
[0009] In the photocatalytic particles as described above, claim 3
As described above, the metal or alloy 3 is preferably coated on the surface 2a of the titanium oxide particles 2 in a discontinuous film form.

【0010】このような構成では、金属または合金3
は、酸化チタン粒子2の表面2aに不連続膜状に被覆さ
れているので、酸化チタン粒子の表面が一部露出する。
In such a configuration, the metal or alloy 3
Since the surface 2a of the titanium oxide particles 2 is coated in a discontinuous film form, a part of the surface of the titanium oxide particles is exposed.

【0011】さらに請求項4に記載のように、請求項1
乃至請求項3のいずれかに記載の光触媒性粒子では、金
属または合金3の粒径が0.1μm以下であるようにす
るのが好ましい。
[0011] Further, as described in claim 4, claim 1
It is preferable that the metal or alloy 3 has a particle diameter of 0.1 μm or less.

【0012】また、請求項5に記載のように、請求項1
乃至請求項4のいずれかに記載の光触媒性粒子では、被
覆された金属または合金の、光触媒性粒子1に対する重
量比が、1〜20%であるように構成するのが好まし
い。
Further, as described in claim 5, claim 1 is
In the photocatalytic particles according to any one of claims to 4, it is preferable that the weight ratio of the coated metal or alloy to the photocatalytic particles 1 is 1 to 20%.

【0013】このときは、金属または合金の、光触媒性
粒子1に対する重量比が、1〜20%であるので、金属
または合金の皮膜が不連続膜状例えば島状に微細に被覆
でき、酸化チタンに十分な電子や正孔が供給されるた
め、油や汚れの分解特性に優れる。
In this case, since the weight ratio of the metal or alloy to the photocatalytic particles 1 is 1 to 20%, the metal or alloy film can be coated finely in a discontinuous film, for example, in the form of islands. Since sufficient electrons and holes are supplied, the composition has excellent oil and dirt decomposition properties.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明による光
触媒性粒子を1個だけ取り出して示した拡大模式図であ
る。実際はこのような光触媒性粒子からなる微粉末を触
媒として用いる。図1に示されるように、本発明の実施
の形態による光触媒性粒子は、ほぼ球形をした基材であ
る酸化チタン2の表面2aに、その一部が露出するよう
に金属または合金3を被覆している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged schematic view showing only one photocatalytic particle according to the present invention. Actually, a fine powder composed of such photocatalytic particles is used as a catalyst. As shown in FIG. 1, the photocatalytic particles according to the embodiment of the present invention cover a metal or alloy 3 on a surface 2a of titanium oxide 2 which is a substantially spherical base material so that a part thereof is exposed. doing.

【0015】本発明の一実施の形態では、紫外光域で励
起し、油分解特性等を発現する酸化チタン粒子に、銀、
銅、亜鉛及びニッケルのうち少なくとも1種以上を主た
る成分とする金属または合金を、酸化チタンの表面の一
部が露出するように、不連続膜状(特に島状)に被覆す
る。
In one embodiment of the present invention, silver, silver, or titanium oxide particles that are excited in the ultraviolet light range and exhibit oil decomposition characteristics and the like are added.
A metal or alloy containing at least one of copper, zinc and nickel as a main component is coated in a discontinuous film form (particularly in an island form) such that a part of the surface of titanium oxide is exposed.

【0016】これらの金属または合金3は、酸化チタン
粒子2に被覆されると、周辺に存在する例えば大気中の
酸素により、その表面乃至は表層部に酸化物が形成され
る。このとき、被覆された金属または合金が内部まで全
体が酸化される必要はなく、被覆の表面乃至は表層部の
みが酸化されればよい。また、被覆の表面積全部が酸化
されなくても一部が酸化されるだけでもよい。
When these metals or alloys 3 are coated on the titanium oxide particles 2, oxides are formed on the surface or the surface layer by oxygen present in the periphery, for example, in the atmosphere. At this time, the coated metal or alloy does not need to be entirely oxidized to the inside, and only the surface or the surface layer of the coating need be oxidized. Further, the entire surface area of the coating may not be oxidized, but may be only partially oxidized.

【0017】このように、被覆の表面乃至は表層部に形
成された金属または合金の表面酸化物が半導体特性を有
する。例えば酸化銀(Ag2O)の場合の室温でのバン
ドギャップは1.2eVで、酸化チタンのそれの3.2
eVに比べると非常に狭く、可視光域またはそれよりも
短い波長の光の照射によって、容易に励起されて電子と
正孔を生じる。
As described above, the surface oxide of the metal or alloy formed on the surface or the surface layer of the coating has semiconductor characteristics. For example, the band gap at room temperature of silver oxide (Ag 2 O) is 1.2 eV, which is 3.2 eV of that of titanium oxide.
It is very narrow compared to eV, and is easily excited by irradiation with light having a wavelength in the visible light range or shorter to generate electrons and holes.

【0018】ここで酸化銀から放出された電子および正
孔の一部は、銀の皮膜を介して、基材である酸化チタン
に供給され、酸化チタンの表面で、太陽光等の可視光中
に含まれる紫外線により励起されて生成する電子および
正孔と相乗し、酸化チタンの光触媒活性を促進する。さ
らに、これらの金属または合金は、それ自体にも有機物
を酸化する触媒効果があることから、これら2つの効果
によって優れた油分解等の作用を発現する。
Here, some of the electrons and holes emitted from the silver oxide are supplied to the titanium oxide as a base material through the silver film, and the surface of the titanium oxide is exposed to visible light such as sunlight. Synergizes with electrons and holes generated by being excited by ultraviolet rays contained in the titanium oxide, thereby promoting the photocatalytic activity of titanium oxide. Furthermore, since these metals or alloys themselves have a catalytic effect of oxidizing organic substances, these two effects exert excellent effects such as oil decomposition.

【0019】すなわち本発明の実施の形態では、酸化チ
タンの表面の一部が露出し、かつそれ以外の部分では、
銀、銅、亜鉛及びニッケルの少なくとも1種以上を主た
る成分とする金属または合金の活性な皮膜が微細に被覆
されており、しかもこの皮膜が酸化チタンと電子や正孔
の移動が可能な状態で被覆されている。
That is, in the embodiment of the present invention, a part of the surface of titanium oxide is exposed, and
An active film of a metal or an alloy containing at least one of silver, copper, zinc and nickel as a main component is finely coated, and this film is made of titanium oxide and is capable of transferring electrons and holes. Coated.

【0020】また、基材である酸化チタンが1μm以下
の微粒子であるので、量子サイズ効果を生み出す。酸化
チタン粒子をこのような大きさにして、その表面に島状
に前記のような金属または合金が被覆されていると、こ
れらの電子や正孔は格子との熱緩和を受けずに反応性の
高いものとなる。即ち、粒子の表面に被覆する金属また
は合金が励起した際の電子や正孔の反応性が高まる。酸
化チタン粒子の大きさは、望ましくは0.5μm以下と
する。基材の酸化チタン粒子の大きさが1μmを超える
と、表面被覆された金属または合金の表層に存在する酸
化物が励起して生成する電子や正孔が、格子振動によっ
て消失し、光触媒活性を発現しにくくなる。
In addition, since the titanium oxide as the base material is fine particles of 1 μm or less, a quantum size effect is produced. When the titanium oxide particles have such a size and the surface is coated with the above-mentioned metal or alloy in the form of islands, these electrons and holes do not undergo thermal relaxation with the lattice and become reactive. Will be high. That is, the reactivity of electrons and holes when the metal or alloy coated on the surface of the particles is excited is increased. The size of the titanium oxide particles is desirably 0.5 μm or less. When the size of the titanium oxide particles of the base material exceeds 1 μm, electrons and holes generated by excitation of oxides present on the surface layer of the metal or alloy coated on the surface disappear by lattice vibration, and the photocatalytic activity is reduced. It is difficult to develop.

【0021】前記金属または合金は基材である酸化チタ
ンの表面に、酸化チタンの表面の一部が露出するよう
に、不連続膜状に被覆する。これは、酸化チタンが金属
または合金により、完全に被覆されていると、酸化チタ
ンの光触媒活性が発現しないからである。
The metal or alloy is coated on the surface of titanium oxide as a base material in a discontinuous film form so that a part of the surface of titanium oxide is exposed. This is because if the titanium oxide is completely covered with the metal or alloy, the photocatalytic activity of the titanium oxide does not appear.

【0022】ここで不連続膜状とは、島状、線状、筋
状、点状などの種々の形態がある。島状被覆とは、酸化
チタン粒子に対し、金属または合金が1つ以上の不連続
な膜で被覆されている状態である。不連続膜状に被覆し
たとき、その被覆率(酸化チタン粒子に金属または合金
が被覆されている部分の面積/酸化チタンの表面積)
は、望ましくは20〜50%の範囲とする。
Here, the discontinuous film form includes various forms such as island form, linear form, streak form, and dot form. The island-like coating is a state in which a metal or an alloy is coated with one or more discontinuous films on titanium oxide particles. When coated in the form of a discontinuous film, the coverage (area of titanium oxide particles coated with metal or alloy / surface area of titanium oxide)
Is desirably in the range of 20 to 50%.

【0023】また上記の不連続膜の観点から、酸化チタ
ン粒子の表面の一部が露出するように酸化チタン粒子の
表面を被覆する場合の、金属または合金の被覆形状は、
前述のように島状の他、線状、筋状、点状などの種々の
形態であってもよい。さらに、不連続膜の数は1つ以上
であれば効果を有するが、実用的には光の照射方向が等
方的でないことも考慮すると、図1に示すように、酸化
チタン粒子の周囲が2つ以上の複数の不連続膜で覆われ
ていることが望ましい(図1には、ほぼ球形をした酸化
チタン粒子の大円に沿って5個の島が形成された場合を
示してある)。
Further, from the viewpoint of the discontinuous film, when the surface of the titanium oxide particles is coated so that a part of the surface of the titanium oxide particles is exposed, the coating shape of the metal or alloy is as follows:
As described above, in addition to the island shape, various shapes such as a line shape, a streak shape, and a dot shape may be used. Further, the effect is obtained if the number of the discontinuous films is one or more. However, considering that the irradiation direction of light is not isotropic in practice, as shown in FIG. It is desirable to be covered with two or more discontinuous films (FIG. 1 shows a case where five islands are formed along a great circle of substantially spherical titanium oxide particles). .

【0024】また、上記の電子や正孔の供給を受けるた
めには、酸化チタンと金属または合金とは電気的に接合
させる。いわゆる両者の混合体であって、電気的な接合
が望めない場合には本発明のような効果は発現し難い。
In order to receive the supply of the electrons and holes, the titanium oxide and the metal or alloy are electrically joined. In the case of a so-called mixture of the two and electrical bonding cannot be expected, the effect as in the present invention is hardly exhibited.

【0025】このような例えば島状被覆において、金属
または合金の酸化チタン粒子上の被覆量を、形成された
光触媒性粒子の1〜20重量%(重量比)の範囲にす
る。この範囲では、不連続膜状被覆が達成され、かつ酸
化チタンに十分な電子、正孔の供給が行われる。
In such an island-shaped coating, for example, the coating amount of the metal or alloy on the titanium oxide particles is in the range of 1 to 20% by weight (weight ratio) of the formed photocatalytic particles. In this range, a discontinuous film-like coating is achieved, and sufficient electrons and holes are supplied to the titanium oxide.

【0026】また、被覆の際の不純物の混入はできるだ
け少なくする。このようにすると、電気的な接合が強固
になる。また合金被覆の点から、被覆方法としては真空
中または減圧中で処理する真空蒸着やスパッタリングと
いった物理蒸着を行う。
Further, contamination of impurities during coating is minimized. In this case, the electric connection is strengthened. Further, from the viewpoint of alloy coating, as a coating method, physical vapor deposition such as vacuum vapor deposition or sputtering performed in vacuum or under reduced pressure is performed.

【0027】また、酸化チタン粒子に対する金属または
合金の被覆量は、酸化チタン粒子の表面の一部が露出す
るように被覆するという観点から、即ち典型的には島状
に微細に被覆するという観点から、1〜20重量%の範
囲とする。1重量%よりも少ないと金属または合金被覆
の効果が現れないおそれがあり、また20重量%を超え
ると酸化チタン粒子またはその凝集体を完全に表面被覆
金属または合金が覆い光触媒活性を失うおそれがある。
また被覆時のコスト上昇も問題となる。
The amount of the metal or alloy coated on the titanium oxide particles is determined from the viewpoint that the titanium oxide particles are coated so that a part of the surface is exposed, that is, typically, the particles are finely coated in an island shape. From the range of 1 to 20% by weight. If the amount is less than 1% by weight, the effect of metal or alloy coating may not be exhibited. If the amount is more than 20% by weight, titanium oxide particles or agglomerates thereof may be completely covered by the surface-coated metal or alloy and photocatalytic activity may be lost. is there.
In addition, an increase in cost during coating is also a problem.

【0028】さらに、上記の被覆量によって達成される
表面に不連続膜状(典型的には島状)に被覆された金属
または合金はその粒径が、0.1μm以下が望ましい。
これは、微細粒子化によって表面積を増大させて有機物
を酸化させる触媒活性を増大させるとともに、量子サイ
ズ効果によって、電子や正孔を移動させやすくするため
である。
Further, the metal or alloy coated on the surface in the form of a discontinuous film (typically an island) achieved by the above-mentioned coating amount preferably has a particle size of 0.1 μm or less.
This is because the surface area is increased by finer particles to increase the catalytic activity of oxidizing organic substances, and electrons and holes are easily transported by the quantum size effect.

【0029】一方、被覆される酸化チタンは、光触媒活
性の点からアナターゼ型のものが好ましく、その形状は
特に限定されるものではない。また著しく凝集している
場合には解砕してから用いる。
On the other hand, the titanium oxide to be coated is preferably an anatase type from the viewpoint of photocatalytic activity, and its shape is not particularly limited. In the case of remarkable aggregation, use after pulverization.

【0030】以上のように、1〜20重量%の範囲で
銀、銅、亜鉛およびニッケルの少なくとも1種以上の金
属または合金を不連続膜状に被覆した粒径1μm以下の
酸化チタン粒子は、従来の紫外線波長域での油等の有機
物分解の効果が向上するだけでなく、可視光域の長波長
光においても油や汚れを分解することができ、鋼板や樹
脂に被覆することにより工業的用途は極めて大きい。
As described above, titanium oxide particles having a particle size of 1 μm or less, which are formed by coating at least one metal or alloy of silver, copper, zinc and nickel in a discontinuous film form in the range of 1 to 20% by weight, In addition to improving the effect of decomposing organic substances such as oil in the conventional ultraviolet wavelength range, it can also decompose oil and dirt even in long wavelength light in the visible light range. The application is extremely large.

【0031】このように、光触媒効果の強い酸化チタン
粉末に、所定量の銀、銅、亜鉛およびニッケルの少なく
とも1種以上を主たる成分とする金属または合金を被覆
することによって、従来の紫外線波長領域での光触媒活
性を高めるとともに、その領域よりも長波長側でも光触
媒活性を現出させることができる。
As described above, the titanium oxide powder having a strong photocatalytic effect is coated with a predetermined amount of a metal or an alloy containing at least one of silver, copper, zinc and nickel as a main component to obtain a conventional ultraviolet wavelength region. In addition to increasing the photocatalytic activity, the photocatalytic activity can be exhibited even on the longer wavelength side than that region.

【0032】前記のような金属または合金を酸化チタン
粒子の表面の一部が露出するように、即ち不連続な膜状
例えば島状に、酸化チタン粒子に被覆する方法には、無
電解めっき法や物理蒸着法等がある。特に、本出願人の
先の出願(特開平2−153068)で開示したスパッ
タリング法を用いるのが望ましい。この方法によれば、
不純物の混入も少なくまた廃液等の発生がなく、酸化チ
タン粉末に金属または合金を不連続な膜状に効率良く被
覆することができる。
As a method for coating the above-mentioned metal or alloy on the titanium oxide particles so that a part of the surface of the titanium oxide particles is exposed, that is, in a discontinuous film form, for example, an island form, an electroless plating method is used. And a physical vapor deposition method. In particular, it is desirable to use the sputtering method disclosed in the applicant's earlier application (Japanese Patent Application Laid-Open No. 2-153068). According to this method,
The titanium oxide powder can be efficiently coated with a metal or alloy in a discontinuous film form with little contamination of impurities and no generation of waste liquid.

【0033】ここで用いるスパッタリング法では、例え
ば、先ず酸化チタンの微粉末を、不活性雰囲気中で流体
ジェット・ミル処理して一次粒子に分散する。このよう
に分散処理して得た微粉末を不活性雰囲気中で減圧加熱
処理する。減圧加熱処理した微粉末を、スパッタリング
源(銀、銅、亜鉛またはニッケルあるいはそれらの合
金)を納めた回転容器に仕込み、その容器を回転させて
微粉末の流動層を形成し、容器を回転した状態で流動微
粉末にスパッタリングする。このようにして、酸化チタ
ン粒子の表面にスパッタリング源の金属または合金を被
覆する。
In the sputtering method used here, for example, first, a fine powder of titanium oxide is subjected to a fluid jet mill treatment in an inert atmosphere to be dispersed into primary particles. The fine powder obtained by the dispersion treatment is heat-treated under reduced pressure in an inert atmosphere. The fine powder subjected to the heat treatment under reduced pressure was charged into a rotating container containing a sputtering source (silver, copper, zinc or nickel or an alloy thereof), and the container was rotated to form a fluidized bed of the fine powder, and the container was rotated. Sputtered on the flowing fine powder in the state. Thus, the surface of the titanium oxide particles is coated with the metal or alloy of the sputtering source.

【0034】[0034]

【実施例】実施例1 平均粒径0.5μmの酸化チタン粉末に金属または合金
を所定の被覆量で被覆した。この粉末1gに対し、サラ
ダ油を0.1g加えて混合し、これを被照射物として直
径7cmのガラス製シャーレに入れ、密閉ボックスに静
置した。そして400Wの高圧水銀灯により、(紫外)
光をシャーレから250mm離れた位置から7時間にわ
たって照射した。なおこの照射時の被照射物の温度上昇
は約120℃であった。
Example 1 A titanium oxide powder having an average particle size of 0.5 μm was coated with a metal or an alloy at a predetermined coating amount. To 1 g of this powder, 0.1 g of salad oil was added and mixed, and the mixture was placed in a glass petri dish having a diameter of 7 cm as an object to be irradiated, and allowed to stand in a closed box. And with a 400W high pressure mercury lamp (ultraviolet)
Light was irradiated from a position 250 mm away from the petri dish for 7 hours. The temperature of the object to be irradiated during this irradiation was about 120 ° C.

【0035】この条件下で照射後の重量減少によって油
分解に関わる光触媒特性を評価した。その結果を図2、
図3の表に示す。評価は、比較材として同じ粒径の酸化
チタンのみを同様の方法で油分解させ、本実施例での重
量減少が、この重量減少よりも1.2倍を超えるものを
油分解特性が特に優れるとして◎を、また1.2倍以下
で1.0倍を超える場合を油分解特性が優れるとして○
を、1.0倍以下から0.8倍を超えるものを油分解特
性に改善がないとして△を、0.8倍以下を特性が劣化
するとして×とした。
Under these conditions, the photocatalytic properties relating to oil decomposition were evaluated by weight loss after irradiation. The result is shown in FIG.
This is shown in the table of FIG. In the evaluation, only titanium oxide having the same particle size as the comparative material was oil-decomposed by the same method, and a material whose weight loss in this example exceeded 1.2 times the weight loss was particularly excellent in oil decomposition characteristics. ◎, and the case of 1.2 times or less and more than 1.0 time indicates that the oil decomposition property is excellent.
Was evaluated as poor when the oil decomposition property was not improved from 1.0 times or more to more than 0.8 times, and x when the property was deteriorated when 0.8 times or less.

【0036】これらの結果から本実施例で用いた材料
は、紫外線照射下では酸化チタンのみに比べて油分解特
性に優れていることがわかる。また本実施例から表面被
覆層として銀に10〜50重量%の銅または亜鉛を含有
させた合金を用いたものが、特に優れた特性を有するこ
ともわかる。
From these results, it can be seen that the material used in this example is superior to titanium oxide alone in oil decomposition properties under ultraviolet irradiation. In addition, it can be seen from this example that a material using an alloy containing 10 to 50% by weight of copper or zinc in silver as a surface coating layer has particularly excellent characteristics.

【0037】実施例2 実施例1と同じ粉末に、赤外線から可視光の範囲にある
波長をもつ光を照射することのできる200Wの白熱電
球を用いて、実施例1と同じ評価を行なった。その結果
を図4、図5の表に示す。
Example 2 The same evaluation as in Example 1 was carried out using a 200 W incandescent lamp capable of irradiating the same powder as in Example 1 with light having a wavelength in the range from infrared light to visible light. The results are shown in the tables of FIGS.

【0038】これらの結果から本実施例で用いた材料
は、赤外線から可視光領域の光においても酸化チタンの
みの材料よりも油分解特性に優れていることがわかる。
また本実施例から表面被覆層として銀に10〜50重量
%の銅または亜鉛を含有させた合金を用いたものが、特
に優れた特性を有することもわかる。
From these results, it can be seen that the material used in the present example is superior in oil decomposition characteristics to the material in the infrared to visible light range as compared with the material containing only titanium oxide.
In addition, it can be seen from this example that a material using an alloy containing 10 to 50% by weight of copper or zinc in silver as a surface coating layer has particularly excellent characteristics.

【0039】実施例3 種々の平均粒径を有する酸化チタン粒子にスパッタリン
グ法によってAg50Zn50(添字は重量%を示す)の合
金を、できあがった光触媒性粒子の全体重量に対して約
5重量%となるように被覆した。この時、実施例1と同
じ評価方法で油分解特性を調べた。その結果を図6に示
す。この結果によれば、酸化チタンの粒径が約1.3μ
mでは評価が×であり、粒径が約1.15μmでは評価
が△であるのに対して、粒径が約1μm、約0.7μm
では評価が○であり、さらに粒径が約0.5μm、約
0.25μm、約0.1μmでは評価が◎である。
Example 3 An alloy of Ag50 Zn50 (subscripts indicate% by weight) was applied to titanium oxide particles having various average particle diameters by a sputtering method to make about 5% by weight based on the total weight of the completed photocatalytic particles. As described above. At this time, oil decomposition characteristics were examined by the same evaluation method as in Example 1. FIG. 6 shows the result. According to this result, the particle size of titanium oxide was about 1.3 μm.
m, the evaluation is x, and the particle size is about 1.15 μm, the evaluation is Δ, whereas the particle size is about 1 μm, about 0.7 μm
Is evaluated as ○, and further, when the particle size is about 0.5 μm, about 0.25 μm, and about 0.1 μm, the evaluation is ◎.

【0040】これらの結果から本実施例にある粒径1μ
m以下(図6ではAで示す範囲)の酸化チタンで油分解
特性が優れていることがわかる。また特に0.5μm以
下の粒径で特性が特に優れていることもわかる。
From these results, it was found that the particle diameter of 1 μm in this example was 1 μm.
It can be seen that oil decomposition characteristics are excellent with titanium oxide of m or less (indicated by A in FIG. 6). It can also be seen that the characteristics are particularly excellent at a particle size of 0.5 μm or less.

【0041】実施例4 平均粒径0.3μmの酸化チタン粒子に、スパッタリン
グ法で、種々の重量%のAg50Cu50(添字は重量%)
の合金を被覆した。この時、被覆量の違いによる油分解
特性を実施例1と同じ方法で評価した。その結果を図7
に示す。図7では、横軸は短縮して示すために途中を省
略してある。この結果によれば、合金の被覆量の重量%
が、約20.7%では評価は×であるのに対して、合金
の被覆量の重量%が、約20%、約15.7%、約15
%では評価は○、さらに約10%、約5%、約3%では
評価は◎である。次に合金の被覆量の重量%が、約1%
では評価は○となり、約0.5%では評価は△となる。
Example 4 Various weight percentages of Ag 50 Cu 50 (subscripts are weight percentages) were applied to titanium oxide particles having an average particle diameter of 0.3 μm by sputtering.
Alloy was coated. At this time, the oil decomposition characteristics due to the difference in the coating amount were evaluated by the same method as in Example 1. The result is shown in FIG.
Shown in In FIG. 7, the horizontal axis is abbreviated for the sake of shortening. According to this result, the weight% of the coating amount of the alloy
However, the evaluation was “×” at about 20.7%, while the weight% of the coating amount of the alloy was about 20%, about 15.7%, about 15%.
%, The evaluation is ○, and further, about 10%, about 5%, and about 3%, the evaluation is ◎. Next, the weight% of the coating amount of the alloy is about 1%
In this case, the evaluation is ○, and at about 0.5%, the evaluation is △.

【0042】これらの結果から本実施例の被覆量が1〜
20重量%(図7ではBで示す範囲)で、油分解特性に
優れていることがわかる。また特に被覆量が3〜10重
量%で特性が特に良いこともわかる。
From these results, it was found that the coating amount in this embodiment was 1 to
At 20% by weight (the range indicated by B in FIG. 7), it can be seen that the oil decomposition characteristics are excellent. It can also be seen that the characteristics are particularly good when the coating amount is 3 to 10% by weight.

【0043】実施例5 平均粒径1μmの酸化チタン粒子にスパッタリング法
で、Ag50Cu30Zn20(添字は重量%)の合金を20
重量%被覆し、これを600℃の温度で種々の時間、真
空中で熱処理した。なお本合金の融点は約800℃であ
る。この時、表面被覆合金の大きさを観察し、その粒径
と油分解特性の関係を実施例1と同じ方法で評価した。
その結果を図8に示す。なお図8の横軸は対数目盛であ
る。この結果によれば、合金の粒径が約0.3μmで評
価が○であるのに対して、合金の粒径が約0.1μm、
約0.035μm、約0.016μmで評価は◎であ
る。
Example 5 An alloy of Ag50Cu30Zn20 (subscript:% by weight) was applied to titanium oxide particles having an average particle size of 1 μm by sputtering.
Wt% coating, which was heat treated in vacuum at a temperature of 600 ° C. for various times. The melting point of this alloy is about 800 ° C. At this time, the size of the surface coating alloy was observed, and the relationship between the particle size and the oil decomposition characteristics was evaluated in the same manner as in Example 1.
FIG. 8 shows the result. The horizontal axis in FIG. 8 is a logarithmic scale. According to this result, the particle size of the alloy was about 0.3 μm and the evaluation was ○, whereas the particle size of the alloy was about 0.1 μm,
The evaluation is ◎ at about 0.035 μm and about 0.016 μm.

【0044】これらの結果から表面合金粒子の粒径が
0.1μm以下である場合に(図8ではCで示す範囲
で)特に良好な油分解特性を有することがわかる。
From these results, it can be seen that when the particle diameter of the surface alloy particles is 0.1 μm or less (in the range indicated by C in FIG. 8), particularly good oil decomposition characteristics are obtained.

【0045】以上のように、本発明の実施の形態によれ
ば酸化チタン光触媒の特性向上をもたらすことができ、
特に可視光領域での油分解特性を著しく向上させること
ができる。これら光触媒性粒子はセルフクリーニング性
を有した調理器具、厨房器具をはじめ、外装および内装
建材等への応用が可能であり、工業化への寄与は極めて
大きい。また、本発明による光触媒材は単に油分解のみ
ならず、窒素酸化物や硫黄酸化物の分解、有機物汚れの
分解、抗菌、二酸化炭素固定といった種々の分野に使用
することができる。
As described above, according to the embodiment of the present invention, the characteristics of the titanium oxide photocatalyst can be improved.
In particular, oil decomposition characteristics in the visible light region can be significantly improved. These photocatalytic particles can be applied to cooking utensils and kitchen utensils having self-cleaning properties, as well as exterior and interior building materials, and greatly contribute to industrialization. Further, the photocatalyst material according to the present invention can be used not only in oil decomposition but also in various fields such as decomposition of nitrogen oxides and sulfur oxides, decomposition of organic dirt, antibacterial and carbon dioxide fixation.

【0046】[0046]

【発明の効果】以上のように本発明によれば、紫外光域
で励起する酸化チタン粒子に、該粒子の表面の一部が露
出するように酸化チタン粒子の表面を被覆する、銀、
銅、亜鉛、及びニッケルから選択される少なくとも1種
の金属または合金を備え、前記酸化チタン粒子の粒径が
1μm以下であるので、光触媒特性に優れ、特に可視光
領域での光触媒特性に優れた光触媒性粒子を提供するこ
とが可能となる。
As described above, according to the present invention, silver, which covers the surface of titanium oxide particles so as to expose a part of the surface of the titanium oxide particles to be excited in the ultraviolet region,
It comprises at least one metal or alloy selected from copper, zinc, and nickel, and the titanium oxide particles have a particle size of 1 μm or less, so that they have excellent photocatalytic properties, particularly excellent photocatalytic properties in the visible light region. It is possible to provide photocatalytic particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光触媒性粒子の一例である粒子の拡大
模式図である。
FIG. 1 is an enlarged schematic view of a particle which is an example of the photocatalytic particle of the present invention.

【図2】実施例1の評価結果をまとめた表を示す図であ
る。
FIG. 2 is a view showing a table in which evaluation results of Example 1 are summarized.

【図3】図2の表の続きを示す図である。FIG. 3 is a diagram showing a continuation of the table of FIG. 2;

【図4】実施例2の評価結果をまとめた表を示す図であ
る。
FIG. 4 is a diagram showing a table summarizing evaluation results of Example 2.

【図5】図4の表の続きを示す図である。FIG. 5 is a diagram showing a continuation of the table of FIG. 4;

【図6】実施例3の評価結果をまとめた図である。FIG. 6 is a diagram summarizing evaluation results of Example 3.

【図7】実施例4の評価結果をまとめた図である。FIG. 7 is a diagram summarizing evaluation results of Example 4.

【図8】実施例5の評価結果をまとめた図である。FIG. 8 is a diagram summarizing the evaluation results of Example 5.

【符号の説明】[Explanation of symbols]

1 光触媒性粒子 2 酸化チタン粒子 2a 酸化チタン粒子の表面 3 銀、銅、亜鉛、ニッケルの被覆 DESCRIPTION OF SYMBOLS 1 Photocatalytic particle 2 Titanium oxide particle 2a Surface of titanium oxide particle 3 Coating of silver, copper, zinc, nickel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/755 B01J 23/80 Z 23/80 23/89 Z 23/835 C09K 3/00 U 23/89 112Z C09K 3/00 A47J 36/02 A 112 C08J 11/10 CFJ // A47J 36/02 B01J 23/74 321Z C08J 11/10 CFJ 23/82 Z C08L 91:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/755 B01J 23/80 Z 23/80 23/89 Z 23/835 C09K 3/00 U 23/89 112Z C09K 3/00 A47J 36/02 A 112 C08J 11/10 CFJ // A47J 36/02 B01J 23/74 321Z C08J 11/10 CFJ 23/82 Z C08L 91:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン粒子と;前記酸化チタン粒子
の表面の一部が露出するように前記酸化チタン粒子の表
面を被覆する、銀、銅、亜鉛、及びニッケルから選択さ
れる少なくとも1種の金属または合金を備え;前記酸化
チタン粒子の粒径が1μm以下であることを特徴とす
る;光触媒性粒子。
1. A titanium oxide particle; and at least one kind selected from silver, copper, zinc, and nickel, which coats the surface of the titanium oxide particle so that a part of the surface of the titanium oxide particle is exposed. A metal or alloy; a particle diameter of the titanium oxide particles is 1 μm or less; photocatalytic particles.
【請求項2】 前記合金が銀を含み、さらに銅または亜
鉛の一方または両方を合計10〜50重量%だけ含むこ
とを特徴とする、請求項1に記載の光触媒性粒子。
2. Photocatalytic particles according to claim 1, wherein the alloy comprises silver and further comprises one or both of copper and zinc in a total amount of 10 to 50% by weight.
【請求項3】 前記金属または合金は、前記酸化チタン
粒子の表面に不連続膜状に被覆されていることを特徴と
する、請求項1または請求項2に記載の光触媒性粒子。
3. The photocatalytic particle according to claim 1, wherein the metal or the alloy is coated on the surface of the titanium oxide particle in a discontinuous film form.
【請求項4】 前記金属または合金の粒径が0.1μm
以下であることを特徴とする、請求項1乃至請求項3の
いずれかに記載の光触媒性粒子。
4. The metal or alloy has a particle size of 0.1 μm.
The photocatalytic particle according to any one of claims 1 to 3, wherein:
【請求項5】 前記被覆された金属または合金の、前記
光触媒性粒子に対する重量比が、1〜20%であること
を特徴とする、請求項1乃至請求項4のいずれかに記載
の光触媒性粒子。
5. The photocatalytic property according to claim 1, wherein a weight ratio of the coated metal or alloy to the photocatalytic particles is 1 to 20%. particle.
JP12418298A 1998-04-17 1998-04-17 Photocatalytic particle Withdrawn JPH11300215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12418298A JPH11300215A (en) 1998-04-17 1998-04-17 Photocatalytic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12418298A JPH11300215A (en) 1998-04-17 1998-04-17 Photocatalytic particle

Publications (1)

Publication Number Publication Date
JPH11300215A true JPH11300215A (en) 1999-11-02

Family

ID=14879018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12418298A Withdrawn JPH11300215A (en) 1998-04-17 1998-04-17 Photocatalytic particle

Country Status (1)

Country Link
JP (1) JPH11300215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026471A1 (en) * 2002-09-20 2004-04-01 Andes Electric Co.,Ltd. Photocatalyst material and process for producing the same
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent
WO2019230214A1 (en) * 2018-05-30 2019-12-05 株式会社信州セラミックス Agent having effect similar to effect realized under irradiation with light even when not irradiated with light, and method for preparing said agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026471A1 (en) * 2002-09-20 2004-04-01 Andes Electric Co.,Ltd. Photocatalyst material and process for producing the same
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent
JP2016199560A (en) * 2012-08-10 2016-12-01 株式会社信州セラミックス Fungicide, material and product thereof, and manufacturing method and usage thereof
JP2018043993A (en) * 2012-08-10 2018-03-22 株式会社信州セラミックス Agent, material and product thereof, and equipment thereof
WO2019230214A1 (en) * 2018-05-30 2019-12-05 株式会社信州セラミックス Agent having effect similar to effect realized under irradiation with light even when not irradiated with light, and method for preparing said agent
JPWO2019230214A1 (en) * 2018-05-30 2021-08-05 株式会社信州セラミックス Preparation of a material having a bactericidal effect containing an agent having an effect similar to that having an effect under light irradiation even without light irradiation, a product having a bactericidal effect containing a material having a bactericidal effect, and a material having a bactericidal effect. Method

Similar Documents

Publication Publication Date Title
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
US20050159306A1 (en) Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
JPWO2015146830A1 (en) Photocatalyst and method for producing the same
US20050227008A1 (en) Titanium oxide photocatalyst, process for producing the same and application
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
JP6700492B2 (en) Multilayer structure and method for manufacturing multilayer structure
TWI584877B (en) High surface area photocatalyst material and method of manufacture
JP3948739B2 (en) Multifunctional material having a carbon-doped titanium oxide layer
CN105764606B (en) High surface area photocatalyst material and its manufacturing method
JP2015199065A (en) Photocatalyst and production method therefor
JPWO2004026471A1 (en) Photocatalyst material and production method thereof
JP2015116526A (en) Photocatalytic complex, production method thereof, and photocatalytic deodorization system including photocatalytic complex
JPWO2003102096A1 (en) Antibacterial antifouling paint for building materials and building materials painted thereby
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP4487362B2 (en) Photocatalytic substance
Ashkarran et al. Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO 2 hybrid nanolayers
JPH11300215A (en) Photocatalytic particle
JPH11169726A (en) Functional material having photocatalytic function and composite functional material and manufacture thereof
JP3601752B2 (en) Ultrafine metal particle-supported photocatalyst and method for producing the same
WO2012023612A1 (en) Method for producing photocatalyst coating film, and photocatalyst coating film
JPH11276905A (en) Photocatalytic particle and its production
JP2002306963A (en) Photocatalyst substance absorbing visible light, method for decomposing water and method for fixing carbon
JP2000015110A (en) Photocatalytic particles
JP3566786B2 (en) Photocatalyst based on titanium dioxide and method for producing the same
JPH11253819A (en) Photocatalytic particle

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705