JPH1129847A - Titanium hardened member and hardening treatment therefor - Google Patents
Titanium hardened member and hardening treatment thereforInfo
- Publication number
- JPH1129847A JPH1129847A JP18530597A JP18530597A JPH1129847A JP H1129847 A JPH1129847 A JP H1129847A JP 18530597 A JP18530597 A JP 18530597A JP 18530597 A JP18530597 A JP 18530597A JP H1129847 A JPH1129847 A JP H1129847A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- inert gas
- hardened
- heating
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Adornments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、表面から任意の深
さが硬化処理されたチタン硬化部材に関するものであ
り、特に時計ケース、バンド、ベゼルといった時計外装
用の装飾部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hardened titanium member whose surface is hardened at an arbitrary depth, and more particularly to a decorative member for a watch exterior such as a watch case, a band, and a bezel.
【0002】[0002]
【従来の技術】近年、チタン及びチタン合金は軽い、錆
びない、メタルアレルギーを起こさないといった特徴を
利用して、様々な分野に用いられている。中でも上記の
特徴は時計材料としても非常に有効であることから、従
来から応用展開が図られてきた。その一方で材質固有の
問題から、チタン及びチタン合金は表面が傷つきやすい
という欠点を有している。特に美観を伴うような面であ
る鏡面等を考えた場合、表面に付いた傷が目立ちやすい
という問題点から、従来はサンドブラスト処理等を行
い、傷を目立ちにくくしていた。そのため、一般の人々
にはチタン、チタン合金を用いた装飾部材は、表面が暗
い、という印象を与えていた。2. Description of the Related Art In recent years, titanium and titanium alloys have been used in various fields by utilizing their characteristics of being light, not rusting, and not causing metal allergy. Above all, the above-mentioned features are very effective as a watch material, and therefore, application development has been conventionally attempted. On the other hand, titanium and titanium alloy have a disadvantage that the surface is easily damaged due to a problem inherent to the material. In particular, when considering a mirror surface or the like, which is a surface with an aesthetic appearance, scratches on the surface are easily noticeable, so that sand blast treatment or the like has been conventionally performed to make the scratches less noticeable. For this reason, ordinary people have been given the impression that decorative members made of titanium or titanium alloy have a dark surface.
【0003】傷が付きやすいという現象は、部材が持つ
表面硬度の低さに由来するものであり、チタンに対する
各種の硬化処理がこれまで行われてきた。チタンの表面
硬化処理には、大きく分けてチタン部材表面に硬質膜を
被覆する方法と、チタン部材自体を硬化する方法の2種
類がある。チタン部材表面に硬質膜を被覆する方法とし
ては電気メッキに代表されるウェットプロセスと真空蒸
着、イオンプレーティング、スパッタリング、プラズマ
CVD等に代表されるドライプロセスが公知であるが、
いずれも部材との密着性に難があり膜剥離問題に対して
は完全に解決するまでには至っていない。一方、金属部
材自体を硬化する方法としては、ガス酸化、イオン注
入、イオン窒化、ガス窒化、ガス浸炭、ガス軟窒化など
が知られているが、処理時間が長く生産性に問題があ
り、また処理温度が高いために、結晶粒が粗大化し、表
面荒れを生じ、外観品質が劣るという問題があり、使用
範囲が限定されていた。[0003] The phenomenon that the member is easily scratched is derived from the low surface hardness of the member, and various hardening treatments have been performed on titanium. The surface hardening treatment of titanium is roughly classified into two types: a method of coating a hard film on the titanium member surface and a method of hardening the titanium member itself. As a method for coating a titanium member surface with a hard film, a wet process typified by electroplating and a dry process typified by vacuum deposition, ion plating, sputtering, plasma CVD, etc. are known.
In any case, the adhesion to the member is difficult, and the problem of film peeling has not yet been completely solved. On the other hand, as a method of curing the metal member itself, gas oxidation, ion implantation, ion nitriding, gas nitriding, gas carburizing, gas nitrocarburizing, and the like are known, but the processing time is long and there is a problem in productivity, and Since the treatment temperature is high, there is a problem that the crystal grains are coarsened, the surface is roughened, and the appearance quality is inferior, and the use range is limited.
【0004】上述の方法の中で、チタン部材自体を硬化
する方法は、部材内部の拡散元素が表面から傾斜的な濃
度を有するという点から膜剥離問題を生じることがな
い。よって、チタン部材の表面硬化処理方法として有用
であると考えられているが、表面荒れに起因する外観品
質の劣化の問題がある。イオン窒化技術の中で、表面荒
れを小さくするために、イオンスパッタ効果を減少させ
るということは行われてきているが、根本的に部材自体
に酸素が入ることによって生じる表面荒れ及び酸化物形
成による変色問題を解決することはできなかった。よっ
て、ガス酸化といったチタン部材自体を硬化する方法に
おいて、従来の技術の中では、表面荒れの低減化及び無
着色化を同時に改善することを目的とした酸化構造及び
酸化処理方法に関しては考えられていなかった。[0004] Among the above-mentioned methods, the method of hardening the titanium member itself does not cause a film peeling problem because the diffusion element in the member has a concentration that is inclined from the surface. Therefore, it is considered to be useful as a surface hardening treatment method for titanium members, but there is a problem of deterioration of appearance quality due to surface roughness. In the ion nitriding technology, it has been practiced to reduce the ion sputtering effect in order to reduce the surface roughness, but it is fundamentally due to the surface roughness and oxide formation caused by oxygen entering the member itself. The discoloration problem could not be solved. Therefore, in the method of hardening the titanium member itself such as gas oxidation, in the prior art, an oxidation structure and an oxidation treatment method aiming to simultaneously reduce surface roughness and improve colorlessness are considered. Did not.
【0005】外観品質の劣化の問題は、結晶粒界部での
隆起及び化合物形成による表面荒れが原因として考えら
れる。ガス酸化処理時に発生する結晶粒界部での隆起
は、結晶粒界部での化合物形成または酸素の固溶拡散に
よる格子歪みから発生する結晶粒界部での応力集中とい
った現象から生じると考えられる。結晶粒界部での隆起
を肉眼で観察した場合、表面が荒れているように感じら
れた。特に従来のチタンのガス酸化処理は、表面に厚い
酸化層であるスケールを形成してしまう。このスケール
を形成した場合、表面荒れ及び変色といった問題を発生
し、研磨等によりスケールを除去しても鏡面が得られな
かった。この結果、時計、眼鏡、宝飾などに代表される
装飾部材の美観を伴うような表面に対し、表面荒れを生
じさせず、更には表面酸化等の化合物による表面の変色
といった問題を発生することなく硬化処理をするような
ことはできなかった。結晶粒界部での隆起が高くなるほ
ど、最大高さRmax、平均表面粗さRaは大きくな
り、外観品質は劣化する。[0005] The problem of deterioration of the appearance quality is considered to be caused by bumps at crystal grain boundaries and surface roughness due to compound formation. It is considered that the prominence at the crystal grain boundaries generated during the gas oxidation treatment is caused by a phenomenon such as compound formation at the crystal grain boundaries or stress concentration at the crystal grain boundaries generated from lattice distortion due to solid solution diffusion of oxygen. . When the protuberance at the crystal grain boundary was visually observed, it was felt that the surface was rough. In particular, the conventional gas oxidation treatment of titanium forms a scale, which is a thick oxide layer, on the surface. When this scale was formed, problems such as surface roughness and discoloration occurred, and a mirror surface could not be obtained even if the scale was removed by polishing or the like. As a result, for a surface with a beautiful appearance of a decorative member represented by a watch, eyeglasses, jewelry, and the like, the surface is not roughened, and furthermore, a problem such as discoloration of the surface due to a compound such as surface oxidation does not occur. No hardening treatment could be performed. As the height of the ridge at the crystal grain boundary increases, the maximum height Rmax and the average surface roughness Ra increase, and the appearance quality deteriorates.
【0006】表面荒れを起こさずに硬化層を付与するチ
タン硬化部材に関して詳細に検討した結果、この隆起の
高さが、チタン内部の酸素濃度及び結晶粒の大きさに起
因していて、隆起の高さはチタン硬化部材の内部の酸素
濃度が大きくなるほど、結晶粒の大きさが大きくなるほ
ど高くなることが分かった。また、表面の変色もチタン
硬化部材表面の酸素濃度に起因しており、酸素濃度が高
くなり、着色化合物を形成すると変色問題が発生するこ
とが解かった。[0006] As a result of a detailed study of a titanium hardened member that provides a hardened layer without causing surface roughness, the height of the bump is attributed to the oxygen concentration and the size of crystal grains inside the titanium. It was found that the height increased as the oxygen concentration inside the hardened titanium member increased and as the size of the crystal grains increased. The discoloration of the surface was also caused by the oxygen concentration on the surface of the hardened titanium member, and it was found that when the oxygen concentration was increased and a colored compound was formed, a discoloration problem occurred.
【0007】また、従来のガス窒化、酸化方法では、変
態点近くの温度(800℃〜870℃)で長時間加熱す
るために、結晶粒が粗大化するという現象が発生し、上
述のように結晶粒界部での隆起等が更に大きくなってい
た。Further, in the conventional gas nitriding and oxidizing methods, since the heating is performed at a temperature near the transformation point (800 ° C. to 870 ° C.) for a long time, a phenomenon that crystal grains become coarse occurs. The bumps and the like at the crystal grain boundaries were further increased.
【0008】[0008]
【発明が解決しようとする課題】ガス窒化、酸化等のチ
タン部材自体を硬化する手法では、上述したような硬化
後の表面荒れ、変色の問題、更には処理時間の短縮化を
解決することができなかった。The technique of hardening the titanium member itself, such as gas nitriding or oxidation, solves the above-mentioned problems of surface roughness and discoloration after hardening and shortens the processing time. could not.
【0009】本発明の目的は、上記課題を解決して、硬
化処理後も外観品質の劣化がなく、表面荒れが小さくな
り、無着色化を可能とし、更には迅速に硬化層を形成す
るチタン硬化部材及びその硬化処理方法を提供すること
である。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and to prevent the appearance quality from deteriorating even after the curing treatment, to reduce the surface roughness, to make it possible to obtain a non-colored state, and to quickly form a cured layer. An object of the present invention is to provide a curing member and a curing method thereof.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明のチタン硬化部材及びその硬化処理方法は、
下記記載の構造及び方法を採用する。In order to achieve the above object, a titanium cured member and a method for curing the same according to the present invention are provided.
The structure and method described below are adopted.
【0011】本発明は、チタン部材の表面から任意の深
さの硬化層を有するチタン硬化部材であって、前記硬化
層は表面から深さ10μmに0.5〜5重量パーセント
の酸素を含有していることを特徴としたチタン硬化部材
とすることにより、耐傷性に強い表面層を形成するのに
必要とされる表面硬度が付与され、更には外観品質の劣
化がない、すなわち表面荒れが小さくすることを可能と
する。The present invention relates to a titanium hardened member having a hardened layer at an arbitrary depth from the surface of the titanium member, wherein the hardened layer contains 0.5 to 5% by weight of oxygen at a depth of 10 μm from the surface. By providing a titanium hardened member characterized by the fact that the surface hardness required to form a surface layer with high scratch resistance is imparted, furthermore, there is no deterioration in appearance quality, that is, the surface roughness is small It is possible to do.
【0012】チタン部材をアルゴン、ヘリウムなどの不
活性ガス雰囲気中で加熱する昇温加熱工程と、前記不活
性ガスと水蒸気の混合ガス雰囲気中で700〜800℃
の処理温度に加熱する第一硬化処理工程と、前記不活性
ガス雰囲気中で700〜800℃の処理温度に加熱する
第二硬化処理工程と、前記不活性ガス雰囲気中で冷却す
る冷却工程とからなるチタン硬化部材の硬化処理方法と
することで酸化物形成による変色のない硬化層を迅速に
得ることを可能とする。A heating step of heating the titanium member in an atmosphere of an inert gas such as argon or helium; and a step of heating at 700 to 800 ° C. in a mixed gas atmosphere of the inert gas and steam.
A first curing treatment step of heating to a treatment temperature of, a second curing treatment step of heating to a treatment temperature of 700 to 800 ° C. in the inert gas atmosphere, and a cooling step of cooling in the inert gas atmosphere. By using a method for curing a titanium cured member, a cured layer free from discoloration due to oxide formation can be quickly obtained.
【0013】[0013]
【発明の実施の形態】以下図面を用いて、本発明のチタ
ン装飾部材の実施例及び製造方法について説明する。図
1は本発明の実施形態における硬化処理により硬化層を
形成したチタン硬化部材を立体的に拡大した図であり、
図2は本発明のチタン硬化部材の表面を硬化する硬化処
理装置を示す概念図である。図3は本発明の実施形態に
おけるチタン部材に対して硬化層を形成するための処理
工程を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a titanium decorative member according to an embodiment of the present invention; FIG. 1 is a three-dimensionally enlarged view of a titanium hardened member having a hardened layer formed by a hardening process according to an embodiment of the present invention.
FIG. 2 is a conceptual view showing a curing device for curing the surface of a titanium cured member of the present invention. FIG. 3 is a schematic view showing a process for forming a hardened layer on a titanium member according to the embodiment of the present invention.
【0014】図1は本発明のチタン硬化部材を立体的に
拡大した図であり、光学顕微鏡を用いて高倍率で観察し
たときに確認できる表面組織である。ここまで記載した
結晶粒の大きさとは図1中の表面の結晶粒の大きさ26
を表し、結晶粒界とは図1中の結晶粒界22であり、結
晶粒間の境界を示している。FIG. 1 is a three-dimensionally enlarged view of the hardened titanium member of the present invention, and shows the surface structure that can be confirmed when observed at a high magnification using an optical microscope. The size of the crystal grains described so far is the size 26 of the crystal grains on the surface in FIG.
And the crystal grain boundary is the crystal grain boundary 22 in FIG. 1 and indicates a boundary between crystal grains.
【0015】図2は本発明の硬化処理をするための硬化
処理装置であり、ガス導入口8及び試料取り出し口18
を備えた処理槽6中に、加熱電源14より供給される加
熱手段12によって、試料台4上に配置されたチタン部
材2の表面を加熱できるようにした装置を用いた。また
真空排気装置16及びガス排気口10を設けて、処理槽
6内の真空排気を可能として、減圧下の雰囲気で硬化処
理できる様な構成とした。FIG. 2 shows a hardening apparatus for performing the hardening process of the present invention, which comprises a gas inlet 8 and a sample outlet 18.
The apparatus used was such that the surface of the titanium member 2 placed on the sample stage 4 could be heated by the heating means 12 supplied from the heating power supply 14 into the processing tank 6 provided with the above. Further, a vacuum exhaust device 16 and a gas exhaust port 10 are provided so that the processing tank 6 can be evacuated to a vacuum so that the curing process can be performed in a reduced pressure atmosphere.
【0016】図3は処理工程を概念的に示した硬化処理
方法であるが、チタン部材を700℃まで昇温するとき
に、チタンに不活性な雰囲気とする昇温工程30は、研
磨加工時にチタン部材表面に発生する加工歪み層の緩和
を目的として行なうものである。加工ひずみ層は研磨加
工時の応力が格子歪みとなって残っている状態で結晶的
にはアモルファス相に近い状態である。研磨加工後のチ
タン部材に対してそのまま酸化性ガスを導入して硬化処
理を施すと、加工歪み層は酸素との反応性が大きいため
に、表面に着色物質である酸化物が形成される。これら
の着色物質が形成されると外観品質が低下するため装飾
部材として好ましい状態ではない。従って本発明におけ
る第一硬化処理工程に入る前の昇温工程は、不活性雰囲
気にすることにより加工歪み層を緩和する。FIG. 3 shows a hardening method conceptually showing the processing steps. When the temperature of the titanium member is raised to 700 ° C., the temperature raising step 30 for making the atmosphere inert to titanium is performed during polishing. The purpose is to alleviate the work distortion layer generated on the surface of the titanium member. The processing strain layer is in a state crystallinely close to an amorphous phase in a state where the stress during polishing processing remains as lattice distortion. When an oxidizing gas is directly introduced into the polished titanium member to perform a hardening treatment, an oxide serving as a coloring substance is formed on the surface of the processed strained layer because the processed strained layer has high reactivity with oxygen. When these colored substances are formed, the appearance quality is deteriorated, so that this is not a preferable state as a decorative member. Therefore, in the temperature raising step before the first hardening treatment step in the present invention, the work distortion layer is relaxed by setting the atmosphere to an inert atmosphere.
【0017】第一硬化処理工程32は昇温工程30の
後、不活性ガスに微量の酸素成分を添加した混合ガスを
処理装置内に導入して、処理圧力を0.001〜10T
orrの範囲内に調整した混合ガス雰囲気中で処理する
ことを特徴としている。In the first hardening step 32, after the temperature raising step 30, a mixed gas obtained by adding a small amount of oxygen component to an inert gas is introduced into the processing apparatus, and the processing pressure is set to 0.001 to 10T.
The treatment is performed in a mixed gas atmosphere adjusted to a range of orr.
【0018】第二硬化処理工程は、処理装置内に導入し
た酸素成分のガスを装置内から完全に排除するための工
程を示している。すなわち、この後の冷却工程36時に
第一硬化処理工程時の酸素成分のガスが残存していると
雰囲気温度が低いためチタン部材内部への拡散が遅く、
チタン部材表面に酸化物を形成してしまう。これらの化
合物は上記と同様、表面荒れ及び外観品質の低下の問題
を引き起こし、チタン装飾部材として好ましい状態では
ない。また、この工程は不活性ガスと水蒸気及び不活性
ガスと酸素と水素の混合ガス雰囲気中で硬化処理したと
きにチタン内部に拡散した水素成分を除去するための脱
水素の効果をも含んでいる。The second curing step is a step for completely removing the oxygen component gas introduced into the processing apparatus from the apparatus. In other words, when the oxygen component gas during the first curing treatment step remains during the subsequent cooling step 36, diffusion into the titanium member is slow because the ambient temperature is low,
An oxide is formed on the surface of the titanium member. As described above, these compounds cause problems of surface roughness and deterioration of appearance quality, and are not in a preferable state as a titanium decorative member. In addition, this step also has the effect of dehydrogenation for removing hydrogen components diffused inside titanium when cured in a mixed gas atmosphere of an inert gas and water vapor or an inert gas, oxygen and hydrogen. .
【0019】冷却工程36は、速やかにチタン部材を常
温まで冷却させ処理装置内部から取り出すため工程であ
る。冷却工程でも、硬化処理工程と同一のガス雰囲気に
すると、冷却しながら酸素成分のガスを供給しているた
め、チタン部材の表面から酸素の拡散が遅くなった状態
で、表面に着色物である酸化物を形成する。これら着色
物質の形成を防止するために冷却工程の雰囲気もチタン
部材に対して不活性な雰囲気とする必要がある。The cooling step 36 is a step for rapidly cooling the titanium member to room temperature and taking it out of the processing apparatus. Even in the cooling step, when the same gas atmosphere as in the hardening treatment step is used, the oxygen component gas is supplied while cooling, so that the diffusion of oxygen from the surface of the titanium member is delayed, and the surface is colored. Form an oxide. In order to prevent the formation of these coloring substances, the atmosphere in the cooling step needs to be an inert atmosphere with respect to the titanium member.
【0020】[0020]
(実施例1)本発明の第一の実施例について図3を用い
て説明を行う。チタン部材として、形状が25mm×2
5mmのJIS二種の純チタンを用いた。処理面は研磨
が施してあり、表面粗さは、最大高さRmax値で50
nm以下であった。未処理の結晶粒の大きさは10〜3
0μmの多結晶体の組織である。(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG. 25mm × 2 as titanium member
5 mm JIS two kinds of pure titanium were used. The treated surface has been polished, and the surface roughness has a maximum height Rmax value of 50.
nm or less. Untreated grain size is 10-3
This is a polycrystalline structure of 0 μm.
【0021】まず、真空排気工程28では、処理槽6内
を真空排気装置16により排気し、1×10−5tor
r以下の真空雰囲気とした。ガス導入口8よりアルゴ
ン、ヘリウムといった不活性ガスを一定量導入し、導入
ガス量と排気量を調節して処理槽6内を0.1torr
の圧力の不活性ガス雰囲気とした。そして昇温加熱工程
30で示した様に、チタン部材2を加熱手段12により
加熱し、硬化処理温度を650℃、700℃、800
℃、850℃と変えて昇温した。第一硬化処理工程32
においては、ガス導入口8から純アルゴン及び純アルゴ
ンガスに微量の水蒸気を含有させた混合ガスを導入し、
導入ガス量と排気量を調節して約0.1torrの純ア
ルゴンと微量の水蒸気の雰囲気とした。ここでは、すべ
ての温度について純アルゴンに対する水蒸気の割合は約
8000ppmとした。そして、硬化処理温度を一定に
保ったまま、約2.5時間保持した。その後、処理槽内
を再び減圧下の不活性ガス雰囲気として、約0.5時間
保持し第二硬化処理工程を行った。そして、不活性雰囲
気としたまま冷却し、約100℃以下の温度に到達した
ら、処理を完了して試料を取り出した。First, in the evacuation step 28, the inside of the processing tank 6 is evacuated by the evacuation device 16 to 1 × 10-5 torr.
r atmosphere or less. A predetermined amount of an inert gas such as argon or helium is introduced from the gas inlet 8 and the amount of the introduced gas and the amount of exhaust gas are adjusted to adjust the inside of the processing tank 6 to 0.1 torr.
An inert gas atmosphere with a pressure of Then, as shown in the heating and heating step 30, the titanium member 2 is heated by the heating means 12 to set the curing temperature to 650 ° C, 700 ° C, 800 ° C.
And 850 ° C. First curing process 32
In the above, pure argon and a mixed gas containing a small amount of water vapor in pure argon gas are introduced from the gas inlet 8,
The atmosphere of pure argon of about 0.1 torr and a small amount of water vapor was adjusted by adjusting the amount of introduced gas and the amount of exhaust gas. Here, for all temperatures, the ratio of water vapor to pure argon was about 8000 ppm. Then, the temperature was held for about 2.5 hours while keeping the curing temperature constant. After that, the inside of the treatment tank was again maintained as an inert gas atmosphere under reduced pressure for about 0.5 hour to perform a second curing treatment step. Then, the sample was cooled in an inert atmosphere. When the temperature reached about 100 ° C. or lower, the treatment was completed and the sample was taken out.
【0022】(実施例2)本発明の第二の実施例を図3
を用いて説明する。チタン部材として、実施例1と同
様、形状が25mm×25mmのJIS二種の純チタン
を用いた。処理面は研磨が施してあり、表面粗さは、最
大高さRmax値で50nm以下であった。未処理の結
晶粒の大きさは10〜30μmの多結晶体の組織であ
る。(Embodiment 2) FIG. 3 shows a second embodiment of the present invention.
This will be described with reference to FIG. As in the case of Example 1, two types of pure titanium having a shape of 25 mm × 25 mm were used as the titanium member. The treated surface was polished, and the surface roughness was 50 nm or less in maximum height Rmax value. Untreated crystal grains have a polycrystalline structure of 10 to 30 μm in size.
【0023】まず、真空排気工程28では、処理槽6内
を真空排気装置16により排気し、1×10−5tor
r以下の真空雰囲気とした。ガス導入口8よりアルゴ
ン、ヘリウムといった不活性ガスを一定量導入し、導入
ガス量と排気量を調節して処理槽6内を0.1torr
の圧力の不活性ガス雰囲気とした。そして昇温加熱工程
30で示した様に、チタン部材2を加熱手段12により
加熱し、硬化処理温度650℃、700℃、800℃、
850℃と変えて昇温した。第一硬化処理工程32にお
いては、ガス導入口8から純アルゴン及び純アルゴンに
微量の酸素を含有させた混合ガスを導入し、導入ガス量
と排気量を調節して約0.1torrの純アルゴンと微
量の酸素の雰囲気とした。ここではすべての温度に対し
て純アルゴンに対する酸素の割合は約4000ppmと
した。そして、硬化処理温度を一定に保ったまま、約
2.5時間保持した。その後、処理槽内を再び減圧下の
不活性ガス雰囲気として、約0.5時間保持し第二硬化
処理工程を行った。そして、不活性雰囲気としたまま冷
却し、約100℃以下の温度に到達したら、処理を完了
して試料を取り出した。First, in the evacuation step 28, the inside of the processing tank 6 is evacuated by the evacuation device 16 to 1 × 10-5 torr.
r atmosphere or less. A predetermined amount of an inert gas such as argon or helium is introduced from the gas inlet 8 and the amount of the introduced gas and the amount of exhaust gas are adjusted to adjust the inside of the processing tank 6 to 0.1 torr.
An inert gas atmosphere with a pressure of Then, as shown in the heating and heating step 30, the titanium member 2 is heated by the heating means 12, and the curing temperature is 650 ° C., 700 ° C., 800 ° C.
The temperature was raised to 850 ° C. In the first hardening treatment step 32, pure argon and a mixed gas containing a small amount of oxygen in pure argon are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 torr of pure argon. And a slight oxygen atmosphere. Here, the ratio of oxygen to pure argon was about 4000 ppm for all temperatures. Then, the temperature was held for about 2.5 hours while keeping the curing temperature constant. After that, the inside of the treatment tank was again maintained as an inert gas atmosphere under reduced pressure for about 0.5 hour to perform a second curing treatment step. Then, the sample was cooled in an inert atmosphere. When the temperature reached about 100 ° C. or lower, the treatment was completed and the sample was taken out.
【0024】(実施例3)本発明の第三の実施例を図3
を用いて説明する。チタン部材として、実施例1及び2
と同様、形状が25mm×25mmのJIS二種の純チ
タンを用いた。処理面は研磨が施してあり、表面粗さ
は、最大高さRmax値で50nm以下であった。未処
理の結晶粒の大きさは10〜30μmの多結晶体の組織
である。(Embodiment 3) FIG. 3 shows a third embodiment of the present invention.
This will be described with reference to FIG. Examples 1 and 2 as titanium members
Similarly to the above, two kinds of pure titanium of JIS having a shape of 25 mm × 25 mm were used. The treated surface was polished, and the surface roughness was 50 nm or less in maximum height Rmax value. Untreated crystal grains have a polycrystalline structure of 10 to 30 μm in size.
【0025】まず、真空排気工程28では、処理槽6内
を真空排気装置16により排気し、1×10−5tor
r以下の真空雰囲気とした。ガス導入口8よりアルゴ
ン、ヘリウムといった不活性ガスを一定量導入し、導入
ガス量と排気量を調節して処理槽6内を0.1torr
の圧力の不活性ガス雰囲気とした。そして昇温加熱工程
30で示した様に、チタン部材2を加熱手段12により
加熱し、硬化処理温度650℃、700℃、800℃、
850℃と変えて昇温した。第一の硬化処理工程32に
おいては、ガス導入口8から純アルゴン及び純アルゴン
に微量の酸素と水素を含有させた混合ガスを導入し、導
入ガス量と排気量を調節して約0.1torrの純アル
ゴンと微量の酸素と水素の雰囲気とした。純アルゴンに
対する酸素の割合は約8000ppmとし、水素の割合
は約1000ppmとした。そして、硬化処理温度を一
定に保ったまま、約2.5時間保持した。その後、処理
槽内を再び減圧下の不活性ガス雰囲気として、約0.5
時間保持し第二硬化処理工程を行った。そして、不活性
ガス雰囲気としたまま冷却し、約100℃以下の温度に
到達したら、処理を完了して試料を取り出した。First, in the evacuation step 28, the inside of the processing tank 6 is evacuated by the evacuation device 16 to 1 × 10-5 torr.
r atmosphere or less. A predetermined amount of an inert gas such as argon or helium is introduced from the gas inlet 8 and the amount of the introduced gas and the amount of exhaust gas are adjusted to adjust the inside of the processing tank 6 to 0.1 torr.
An inert gas atmosphere with a pressure of Then, as shown in the heating and heating step 30, the titanium member 2 is heated by the heating means 12, and the curing temperature is 650 ° C., 700 ° C., 800 ° C.
The temperature was raised to 850 ° C. In the first hardening step 32, pure argon and a mixed gas containing trace amounts of oxygen and hydrogen in pure argon are introduced from the gas inlet 8 and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 torr. Of pure argon and trace amounts of oxygen and hydrogen. The ratio of oxygen to pure argon was approximately 8000 ppm, and the ratio of hydrogen was approximately 1000 ppm. Then, the temperature was held for about 2.5 hours while keeping the curing temperature constant. Thereafter, the inside of the processing tank is again set to an inert gas atmosphere under reduced pressure, and the
After holding for a time, a second curing treatment step was performed. Then, the sample was cooled in an inert gas atmosphere, and when the temperature reached about 100 ° C. or lower, the treatment was completed and the sample was taken out.
【0026】(実施例4)本発明の第四の実施例を図3
を用いて説明する。チタン部材として、JIS二種相当
の純チタン材の腕時計ケースを用いた。処理面はヘアー
ライン目付け研磨加工が施してあり、表面粗さは、最大
高さRmax値で10μm以下であった。未処理の結晶
粒の大きさは10μm〜40μm程度の組織である。(Embodiment 4) FIG. 3 shows a fourth embodiment of the present invention.
This will be described with reference to FIG. As the titanium member, a watch case made of pure titanium material equivalent to two kinds of JIS was used. The treated surface was subjected to a hairline basis weight polishing process, and the surface roughness was 10 μm or less in maximum height Rmax value. The untreated crystal grains have a structure of about 10 μm to 40 μm.
【0027】まず、真空排気工程28では、処理槽6内
を真空排気装置16により排気し、1×10−5tor
r以下の真空雰囲気とした。ガス導入口8よりアルゴ
ン、ヘリウムといった不活性ガスを一定量導入し、導入
ガス量と排気量を調節して処理槽6内を0.1torr
の圧力の不活性ガス雰囲気とした。そして昇温加熱工程
30で示した様に、チタン部材2を加熱手段12により
加熱し、硬化処理温度700℃で昇温した。第一の硬化
処理工程32においては、ガス導入口8から純アルゴン
及び純アルゴンに微量の水蒸気を含有させた混合ガスを
導入し、導入ガス量と排気量を調節して約0.1tor
rの純アルゴンと微量の水蒸気の雰囲気とした。純アル
ゴンに対する水蒸気の割合は約8000ppmとした。
そして、硬化処理温度を一定に保ったまま、約2.5時
間保持した。その後、処理槽内を再び減圧下の不活性ガ
ス雰囲気として、約0.5時間保持し第二硬化処理工程
を行った。そして、不活性ガス雰囲気としたまま冷却
し、約100℃以下の温度に到達したら、処理を完了し
て試料を取り出した。First, in the evacuation step 28, the inside of the processing tank 6 is evacuated by the evacuation device 16 to 1 × 10 −5 torr.
r atmosphere or less. A predetermined amount of an inert gas such as argon or helium is introduced from the gas inlet 8 and the amount of the introduced gas and the amount of exhaust gas are adjusted to adjust the inside of the processing tank 6 to 0.1 torr.
An inert gas atmosphere with a pressure of Then, as shown in the heating and heating step 30, the titanium member 2 was heated by the heating means 12 and heated at a curing treatment temperature of 700 ° C. In the first hardening step 32, pure argon and a mixed gas containing a small amount of water vapor in pure argon are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 torr.
An atmosphere of pure argon and a small amount of water vapor was used. The ratio of water vapor to pure argon was about 8000 ppm.
Then, the temperature was held for about 2.5 hours while keeping the curing temperature constant. After that, the inside of the treatment tank was again maintained as an inert gas atmosphere under reduced pressure for about 0.5 hour to perform a second curing treatment step. Then, the sample was cooled in an inert gas atmosphere, and when the temperature reached about 100 ° C. or lower, the treatment was completed and the sample was taken out.
【0028】(実施例5)本発明の第五の実施例につい
て図3を用いて説明する。チタン部材として、形状が2
5mm×25mmのJIS三種相当の結晶粒の細かい高
強度純チタンの腕時計バンドを用いた。処理面は研磨が
施してあり、表面粗さは、最大高さRmax値で50n
m以下であった。未処理の結晶粒の大きさは5μm以下
の微細組織である。(Embodiment 5) A fifth embodiment of the present invention will be described with reference to FIG. Shape 2 as titanium member
A high-strength pure titanium wristwatch band of 5 mm × 25 mm with fine crystal grains equivalent to three kinds of JIS was used. The treated surface is polished, and the surface roughness is 50 n in maximum height Rmax value.
m or less. Untreated crystal grains have a fine structure of 5 μm or less.
【0029】まず、真空排気工程28では、処理槽6内
を真空排気装置16により排気し、1×10−5tor
r以下の真空雰囲気とした。ガス導入口8よりアルゴ
ン、ヘリウムといった不活性ガスを一定量導入し、導入
ガス量と排気量を調節して処理槽6内を0.1torr
の圧力の不活性ガス雰囲気とした。そして昇温加熱工程
30で示した様に、チタン部材2を加熱手段12により
加熱し、硬化処理温度700℃で昇温した。第一の硬化
処理工程32においては、ガス導入口8から純アルゴン
及び純アルゴンに微量の酸素と水素を含有させた混合ガ
スを導入し、導入ガス量と排気量を調節して約0.1t
orrの純アルゴンと微量の酸素と水素の雰囲気とし
た。純アルゴンに対する酸素の割合は約8000ppm
とし、水素の割合を約1000ppmとした。そして、
硬化処理温度を一定に保ったまま、約2.5時間保持し
た。その後、処理槽内を再び減圧下の不活性ガス雰囲気
として、約0.5時間保持し第二硬化処理工程を行っ
た。そして、不活性ガス雰囲気としたまま冷却し、約1
00℃以下の温度に到達したら、処理を完了して試料を
取り出した。First, in the evacuation step 28, the inside of the processing tank 6 is evacuated by the evacuation device 16 to 1 × 10-5 torr.
r atmosphere or less. A predetermined amount of an inert gas such as argon or helium is introduced from the gas inlet 8 and the amount of the introduced gas and the amount of exhaust gas are adjusted to adjust the inside of the processing tank 6 to 0.1 torr.
An inert gas atmosphere with a pressure of Then, as shown in the heating and heating step 30, the titanium member 2 was heated by the heating means 12 and heated at a curing treatment temperature of 700 ° C. In the first hardening step 32, pure argon and a mixed gas containing trace amounts of oxygen and hydrogen in pure argon are introduced from the gas inlet 8 and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 t.
An atmosphere of pure argon at orr and trace amounts of oxygen and hydrogen was used. The ratio of oxygen to pure argon is about 8000 ppm
And the proportion of hydrogen was about 1000 ppm. And
The temperature was kept for about 2.5 hours while keeping the curing temperature constant. After that, the inside of the treatment tank was again maintained as an inert gas atmosphere under reduced pressure for about 0.5 hour to perform a second curing treatment step. Then, it is cooled in an inert gas atmosphere, and
When the temperature reached 00 ° C. or lower, the treatment was completed and the sample was taken out.
【0030】(実施例6)次に第一硬化処理工程に用い
たガスを昇温加熱工程から冷却工程まで常に導入した本
発明に対する比較例について図3を用いて説明する。チ
タン部材として、形状が25mm×25mmのJIS二
種の純チタンを用いた。処理面は研磨が施してあり、表
面粗さは、最大高さRmax値で50nm以下であっ
た。未処理の結晶粒の大きさは10〜30μmの多結晶
体の組織である。(Embodiment 6) Next, a comparative example of the present invention in which the gas used in the first curing treatment step is always introduced from the heating and heating steps to the cooling step will be described with reference to FIG. As the titanium member, JIS two kinds of pure titanium having a shape of 25 mm × 25 mm were used. The treated surface was polished, and the surface roughness was 50 nm or less in maximum height Rmax value. Untreated crystal grains have a polycrystalline structure of 10 to 30 μm in size.
【0031】まず、真空排気工程28で、処理槽6内を
真空排気装置16により排気し、1×10−5torr
以下の真空雰囲気とした。ガス導入口8から純アルゴン
及び純アルゴンガスに微量の水蒸気を含有させた混合ガ
スを導入し、導入ガス量と排気量を調節して約0.1t
orrの純アルゴンと微量の水蒸気の雰囲気とした。こ
こでは、純アルゴンに対する水蒸気の割合は約8000
ppmとした。そして昇温加熱工程30で示した様に、
チタン部材2を加熱手段12により加熱し、硬化処理温
度を700℃として昇温した。そして、硬化処理温度を
2.5時間保った後、冷却工程に移行し、約100℃以
下の温度に到達したら、処理を完了して試料を取り出し
た。First, in a vacuum evacuation step 28, the inside of the processing tank 6 is evacuated by the vacuum evacuation device 16 to 1 × 10 −5 torr.
The following vacuum atmosphere was used. Pure argon and a mixed gas containing a small amount of water vapor in pure argon gas are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 t.
An atmosphere of pure orr and a small amount of water vapor was used. Here, the ratio of water vapor to pure argon is about 8000.
ppm. And as shown in the heating and heating step 30,
The titanium member 2 was heated by the heating means 12 to raise the temperature by setting the curing temperature to 700 ° C. Then, after maintaining the curing temperature for 2.5 hours, the process was shifted to a cooling step. When the temperature reached about 100 ° C. or less, the processing was completed and the sample was taken out.
【0032】表面荒れを起こさずに硬化層を付与するチ
タン硬化部材に関して詳細に検討した結果、外観品質の
劣化の問題は、結晶粒界部での隆起による表面荒れ及び
化合物形成による表面荒れが原因となっていることが明
らかとなった。この結晶粒界部での隆起は、結晶粒界部
での化合物形成または酸素等の固溶拡散による格子歪み
から発生する結晶粒界部での応力集中といった現象から
生じると考えられた。結晶粒界部での隆起を肉眼で観察
した場合、表面が荒れているように感じられ、特に、鏡
面の装飾部材には適用できないという問題があった。こ
の隆起の高さが高くなるほど、最大高さRmax、平均
表面粗さRaは大きくなり、外観品質は劣化する。表面
荒れを起こさずに硬化層を付与するチタン硬化部材に関
して詳細に検討した結果、この隆起の高さが、チタン硬
化部材の酸素濃度及び結晶粒の大きさに起因していて、
隆起の高さはチタン硬化部材の内部の酸素濃度が大きく
なるほど、結晶粒の大きさが大きくなるほど高くなるこ
とが分かった。また、表面の変色もチタン硬化部材表面
の酸素濃度に起因しており、酸素濃度が高くなり、着色
化合物を形成すると変色問題が発生することが分かっ
た。As a result of a detailed study of a titanium hardened member that provides a hardened layer without causing surface roughness, the problem of deterioration in appearance quality is attributed to surface roughness due to bumps at crystal grain boundaries and surface roughness due to compound formation. It became clear that it was. It is considered that the prominence at the crystal grain boundary is caused by a phenomenon such as compound formation at the crystal grain boundary or stress concentration at the crystal grain boundary caused by lattice distortion due to solid solution diffusion of oxygen or the like. When the protuberance at the crystal grain boundary is observed with the naked eye, the surface seems to be rough, and there is a problem that it cannot be applied particularly to a mirror-like decorative member. As the height of the protrusion increases, the maximum height Rmax and the average surface roughness Ra increase, and the appearance quality deteriorates. As a result of a detailed study of a titanium hardened member that provides a hardened layer without causing surface roughness, the height of this protrusion is due to the oxygen concentration and the size of crystal grains of the titanium hardened member,
It has been found that the height of the protrusion increases as the oxygen concentration inside the hardened titanium member increases and as the size of the crystal grain increases. It was also found that the discoloration of the surface was also caused by the oxygen concentration on the surface of the hardened titanium member, and the discoloration problem occurred when the oxygen concentration increased and a colored compound was formed.
【0033】更に硬化処理後に、結晶粒界部及び粒内部
で、酸化チタンTiO2といった化合物の形成が進行す
ると、これを肉眼で観察した場合、表面が荒れているよ
うに感じられ、外観品質が劣化する。研磨等の後工程
で、これらのスケール層を取り除いても鏡面が得られな
かったという問題点もあり、特に鏡面の装飾部材には適
用できないということが分かった。Further, if the formation of a compound such as titanium oxide TiO 2 progresses in the crystal grain boundaries and the inside of the grains after the hardening treatment, when this is observed with the naked eye, the surface feels rough and the appearance quality is degraded. I do. There was also a problem that a mirror surface could not be obtained even if these scale layers were removed in a post-process such as polishing, and it was found that the method was not particularly applicable to decorative members having a mirror surface.
【0034】そこで上記実施の硬化部材の評価方法とし
て、耐傷性試験(砂落とし試験)、硬度、結晶粒の大き
さ、表面粗さを採用した。耐傷性試験は、砂落とし試験
後の光学顕微鏡による400倍の表面観察結果から表面
傷の発生度合いが50%以下のものに関して合格とし
た。硬度はビッカース硬さ試験機により、硬化処理表面
から10μm以内の深さのビッカース硬度がHv500
以上あるものに関して合格とした。表面粗さに関して
は、500μmの範囲の表面形状解析を行い、鏡面に関
しては最大高さRmaxで1000nm以下であるもの
に関して、ヘアーライン目付け面に関しては処理前後の
最大高さの変化率が5%以内であるものに関して合格と
した。測色試験に関しては、測色計により分光反射率を
測定し、400nm〜500nmの光の波長領域で、光
の吸収による反射率の低下が確認されず、更にはL*a
*b*表色系でa*及びb*が共に負の値を示したもの
に関して無着色で合格とした。総合評価結果は、耐傷性
試験、硬度、表面粗さ、測色試験が合格であるものに関
して合格とした。Therefore, as a method for evaluating the cured member of the present invention, a scratch resistance test (sand removal test), hardness, crystal grain size, and surface roughness were employed. The scratch resistance test was passed when the degree of occurrence of surface scratches was 50% or less based on the result of observation of the surface at 400 times with an optical microscope after the sand removal test. The Vickers hardness of a Vickers hardness tester at a depth of 10 μm or less from the cured surface was Hv500 by a Vickers hardness tester.
Those that passed above were accepted. Regarding the surface roughness, a surface shape analysis in the range of 500 μm was performed. For a mirror surface having a maximum height Rmax of 1000 nm or less, the maximum height change rate before and after the treatment was within 5% for the hairline basis surface. Passed for some. Regarding the colorimetric test, the spectral reflectance was measured with a colorimeter, and no decrease in the reflectance due to light absorption was confirmed in the wavelength region of light from 400 nm to 500 nm.
In the case of * b * color system, both a * and b * showed a negative value, and the color was acceptable without coloring. The comprehensive evaluation results were acceptable if the scratch resistance test, hardness, surface roughness, and colorimetric test passed.
【0035】[0035]
【表1】 [Table 1]
【0036】表1は、本発明の第一の実施例に相当して
いて、JIS二種純チタンを用いて、硬化処理する前、
処理温度650℃〜850℃まで変化させて本発明の純
アルゴンと水蒸気を用いた硬化処理を行った後及びガス
酸化処理による従来技術により硬化処理を行った後の耐
傷性試験、表面硬度、表面粗さ、測色試験について示し
た表である。Table 1 corresponds to the first embodiment of the present invention.
Scratch resistance test, surface hardness, surface after hardening treatment using pure argon and water vapor of the present invention at a processing temperature of 650 ° C. to 850 ° C. and after hardening treatment by a conventional technique using gas oxidation. 3 is a table showing roughness and a colorimetric test.
【0037】表1のaとfより、従来技術のガス酸化処
理は、表面にスケールを発生して、表面荒れは、最大高
さRmaxで未処理のJIS二種純チタンが50nm以
下であるのに対して、1800nmと大きくなってお
り、表面が荒れている。一方、表1のaとc、dより、
本発明の実施による表面粗さは、最大高さで1000n
m以下と従来技術より低くなっていることが分かる。ま
た、従来技術では化合物を形成して、着色と表面荒れを
起こすのに対して、本発明では800℃まで化合物を形
成せず、表面荒れと着色が良好であった。一方gとhか
ら、水蒸気の導入濃度が300ppmでは表面硬度の上
昇が認められずに、3%では濃度が高くて、表面に化合
物を形成して表面荒れと着色問題を発生した。From Tables 1a and 1f, the gas oxidation treatment of the prior art generates scale on the surface, and the surface roughness is less than 50 nm for untreated JIS Class 2 pure titanium at the maximum height Rmax. On the other hand, it is as large as 1800 nm, and the surface is rough. On the other hand, from a, c, and d in Table 1,
The surface roughness according to the implementation of the present invention is 1000n at the maximum height
m, which is lower than that of the prior art. Further, in the prior art, a compound was formed to cause coloring and surface roughness, whereas in the present invention, no compound was formed up to 800 ° C., and surface roughness and coloring were good. On the other hand, from g and h, no increase in surface hardness was observed when the introduced concentration of water vapor was 300 ppm, and when the introduced concentration was 3%, the concentration was high, and a compound was formed on the surface to cause surface roughness and coloring problems.
【0038】表2及び表3は、本発明の第二及び第三の
実施例に相当していて、JIS二種純チタンを用いて、
硬化処理する前、処理温度650℃〜850℃まで変化
させて本発明のアルゴンと酸素及びアルゴンと酸素と水
素を用いた硬化処理を行った後及び従来技術による硬化
処理を行った後の耐傷性試験、表面硬度、表面粗さ、測
色試験について示した表である。Tables 2 and 3 correspond to the second and third embodiments of the present invention.
Before the curing treatment, the scratch resistance after the curing treatment using argon and oxygen or argon, oxygen and hydrogen according to the present invention by changing the treatment temperature from 650 ° C. to 850 ° C. and after the curing treatment according to the prior art It is the table | surface which showed about test, surface hardness, surface roughness, and colorimetric test.
【0039】[0039]
【表2】 [Table 2]
【表3】 [Table 3]
【0040】表2のk、lから純アルゴンに対する酸素
の割合を4000ppmとした場合、700℃及び80
0℃は表面硬度も上昇し、表面荒れも小さく、着色もせ
ず良好な結果となった。また表3のs、tからアルゴン
に対する水素の割合を1000ppmとし、酸素の割合
を8000ppmとした場合、700℃及び800℃処
理は表面硬度が上昇し、表面荒れも小さく、着色もせず
良好な結果となった。When k and l in Table 2 show that the ratio of oxygen to pure argon is 4000 ppm, 700 ° C. and 80 ° C.
At 0 ° C., the surface hardness also increased, the surface roughness was small, and no coloration was observed. In addition, when the ratio of hydrogen to argon is set to 1000 ppm and the ratio of oxygen is set to 8000 ppm from Tables s and t, the treatment at 700 ° C. and 800 ° C. increases the surface hardness, reduces the surface roughness, and gives good results without coloring. It became.
【0041】また、ガス酸化処理のような従来の硬化処
理では表面に厚い酸化層であるスケールを形成してしま
うため、有効な硬化層を得るのに長時間かかるといった
問題点を有した。図4に概念的に示したように、本発明
の硬化処理方法によれば、酸素元素単独の固溶状態での
拡散であるため、有効な固溶硬化層が迅速に得られる。
本発明の硬化処理によれば、2.5時間程度で有効な硬
化層を得ることができ、時間短縮も可能となった。Further, in the conventional hardening treatment such as the gas oxidation treatment, a scale which is a thick oxide layer is formed on the surface, so that it takes a long time to obtain an effective hardened layer. As conceptually shown in FIG. 4, according to the curing treatment method of the present invention, the diffusion of the oxygen element alone in a solid solution state allows an effective solid solution hardened layer to be quickly obtained.
According to the curing treatment of the present invention, an effective cured layer can be obtained in about 2.5 hours, and the time can be reduced.
【0042】図5〜8は、本発明の第一の実施例におけ
る700℃の温度で硬化層を形成したチタン硬化部材及
び本発明の第一の実施例における650℃の温度で硬化
層を形成したチタン硬化部材及び未処理のチタン部材及
び比較例として示した第六の実施例における硬化層を形
成したチタン硬化部材の二次イオン質量分析計による深
さ方向の元素解析結果を重量濃度で示した結果である。FIGS. 5 to 8 show a titanium hardened member having a hardened layer formed at a temperature of 700 ° C. in the first embodiment of the present invention and a hardened layer formed at a temperature of 650 ° C. in the first embodiment of the present invention. Elemental analysis results in the depth direction by secondary ion mass spectrometry of the titanium hardened member and the untreated titanium member and the titanium hardened member formed with the hardened layer in the sixth embodiment shown as a comparative example are shown by weight concentration. It is a result.
【0043】図5から分かるように、本発明の実施によ
るチタン硬化部材は表面から約20μmの深さに酸素を
拡散し、表面の酸素濃度が減少して表面から10μmの
深さの酸素濃度が0.5重量パーセントから5重量パー
セントとなっている。従来技術の実施によるチタン硬化
部材は図8から分かるように、本発明と同様に表面から
約20μmの深さに酸素を拡散しているものの、表面の
酸素濃度が上昇していて、表面から10μmの深さ範囲
で酸素濃度が5重量パーセント以上となっている。As can be seen from FIG. 5, the titanium hardened member according to the embodiment of the present invention diffuses oxygen to a depth of about 20 μm from the surface, and the oxygen concentration at the surface decreases to increase the oxygen concentration at a depth of 10 μm from the surface. From 0.5 weight percent to 5 weight percent. As can be seen from FIG. 8, the titanium-hardened member according to the prior art diffuses oxygen to a depth of about 20 μm from the surface as in the present invention, but the oxygen concentration on the surface increases, and The oxygen concentration is 5% by weight or more in the depth range of.
【0044】また図6から分かるように、650℃の温
度で処理を行ったチタン硬化部材は、表面の酸素濃度が
減少しているものの、酸素の拡散深さは図5、8と比較
して浅く、約10μmでの酸素濃度が0.5重量パーセ
ント以下となっている。表1、2、3の結果で、650
℃処理品の耐傷性及び硬度が不合格なのは、上記の酸素
濃度が低下していることに影響しているからである。As can be seen from FIG. 6, the titanium hardened member treated at a temperature of 650 ° C. has a reduced oxygen concentration on the surface, but the oxygen diffusion depth is lower than that of FIGS. It is shallow, and the oxygen concentration at about 10 μm is 0.5% by weight or less. In the results of Tables 1, 2, and 3, 650
The reason why the scratch resistance and the hardness of the processed article at ° C. are unacceptable is that the above-mentioned reduced oxygen concentration is affected.
【0045】上記で酸素濃度0.5重量パーセントが必
要であるのは下記の理由による。すなわち、チタン硬化
部材に関して詳細な検討を行った結果、表面硬度の上昇
は約10μmの深さでの酸素濃度と相関していることが
見い出された。すなわち、図9に示したように、ビッカ
ース硬度は酸素濃度の上昇と共に上昇する。耐傷性が強
いと判断される深さ10μmで硬度500以上を付与す
るためには、約0.5重量パーセント以上の酸素を含有
していることが必要であることが分かった。The reason why the oxygen concentration of 0.5% by weight is required is as follows. That is, as a result of a detailed study of the hardened titanium member, it was found that the increase in surface hardness was correlated with the oxygen concentration at a depth of about 10 μm. That is, as shown in FIG. 9, the Vickers hardness increases as the oxygen concentration increases. It has been found that in order to impart a hardness of 500 or more at a depth of 10 μm, which is judged to be strong in scratch resistance, it is necessary to contain about 0.5% by weight or more of oxygen.
【0046】図10は処理する前及び本発明の第一の実
施例によるチタン硬化部材及び比較例である第六の実施
例によるチタン硬化部材を入射角0.5°で薄膜X線回
折による解析を行った結果である。この結果から分かる
ように、第六の実施例によるチタン硬化部材は処理前の
チタン部材とは明らかに異なるピークが認められ、これ
は着色化合物である酸化チタンである。一方、本発明の
チタン硬化部材のピークはいずれもチタン部材と比較し
てほぼ同様の位置にピークが認められていて、やや低角
度側にシフトしている。これは、チタン部材に酸素が固
溶した状態にあり、格子が歪んでいることによって生じ
ているためである。そのほかのピークが認められないこ
とから、化合物は形成されていないことが明らかであ
る。FIG. 10 is an analysis of the titanium cured member according to the first embodiment of the present invention and the titanium cured member according to the sixth embodiment as a comparative example by thin film X-ray diffraction at an incident angle of 0.5 ° before processing. This is the result of performing. As can be seen from the results, the titanium hardened member according to the sixth embodiment has a clearly different peak from the titanium member before the treatment, which is the titanium oxide which is a coloring compound. On the other hand, all of the peaks of the titanium hardened member of the present invention are found at substantially the same positions as those of the titanium member, and are slightly shifted to a lower angle side. This is because oxygen is in a solid solution state in the titanium member and the lattice is distorted. The absence of any other peaks clearly indicates that no compound was formed.
【0047】よって表面荒れを大きくしないこと及び着
色化を起こさないことにおいて重要なことは、表面に着
色化合物を形成しないことであり、そのためには本発明
の硬化処理方法が必要である。すなわち、研磨等の加工
により発生した加工歪み層を結晶化させる不活性ガス雰
囲気中での昇温加熱工程と第二硬化処理工程と冷却工程
が有効に作用する。また、表1、2、3で説明したよう
に、導入した微量の酸素成分の濃度も重要となってく
る。Therefore, what is important in not increasing the surface roughness and not causing coloring is not forming a coloring compound on the surface. For that purpose, the curing method of the present invention is required. That is, the heating and heating step, the second hardening step, and the cooling step in an inert gas atmosphere for crystallizing a strained layer generated by processing such as polishing work effectively. Further, as described in Tables 1, 2, and 3, the concentration of the introduced minute amount of oxygen component also becomes important.
【0048】第一、二、三、四、五、六の実施例のチタ
ン装飾部材としてJIS二種或いは三種相当の純チタン
部材を例にとって説明を行ったが、JIS一種純チタン
部材にも適用可能である。また、JIS規格のチタン合
金60種、60E種にも適用可能である。第一、二、
三、四、五、六の実施例の処理面については研磨した鏡
面及びヘアーライン面について説明したが、特に限定せ
ず、研磨面、ホーニング処理を行ったホーニング面、シ
ョットピーニング面等の表面のいずれも適用可能であ
る。The titanium decorative members of the first, second, third, fourth, fifth and sixth embodiments have been described by taking pure titanium members equivalent to JIS two or three as examples, but the present invention is also applicable to pure titanium members of JIS one kind. It is possible. Further, the present invention is also applicable to JIS standard titanium alloys 60 and 60E. First, second,
The treated surface of the third, fourth, fifth, and sixth embodiments was described with respect to a polished mirror surface and a hairline surface, but is not particularly limited, and any of a polished surface, a honed surface subjected to a honing treatment, and a surface such as a shot peened surface Is also applicable.
【0049】本発明の実施例において、第一、二、三の
実施例では板状のチタン硬化部材、第四、五の実施例で
は時計ケース、時計バンドを用いて説明を行ったが、こ
れらの部材に限らず、チタン製のベゼル、ピアス、イヤ
リング、指輪、めがねのフレーム等の装飾用品に適用可
能なものすべてを意味しており、ゴルフクラブのヘッド
及びシャフト、自転車のフレーム等、チタン部材を応用
した製品であれば全てに適用可能である。In the embodiments of the present invention, the first, second and third embodiments have been described using a plate-shaped titanium hardened member, and the fourth and fifth embodiments have been described using a watch case and a watch band. Not limited to the members described above, mean all applicable to decorative articles such as titanium bezels, piercings, earrings, rings, and frames for glasses, and titanium members such as golf club heads and shafts, bicycle frames, etc. It can be applied to all products that apply.
【0050】本発明の第一、二、三、四、五の実施例に
おいては、昇温加熱工程、第二硬化処理工程、冷却工程
時において、アルゴン、ヘリウムといった不活性ガス雰
囲気中として説明を行ったが、この工程間に上述したよ
うな酸化性ガスが導入されると表面に化合物を形成し、
表面が荒れたり、変色したりするため、これらのガスが
影響を及ぼさない雰囲気であれば良く、高真空雰囲気で
あっても良い。In the first, second, third, fourth and fifth embodiments of the present invention, the description will be made assuming that an inert gas atmosphere such as argon or helium is used in the heating step, the second curing step and the cooling step. Performed, but when an oxidizing gas as described above is introduced during this step, a compound is formed on the surface,
Since the surface may be roughened or discolored, any atmosphere may be used as long as these gases do not affect the atmosphere, and a high vacuum atmosphere may be used.
【0051】本発明の第一、二、三、四、五の実施例に
おいて、第一硬化処理工程の時間はいずれも2.5時間
で説明を行ったが、特に限定する必要性はない。表面に
化合物を形成しないことと必要硬度及び耐傷性を満たす
ように時間、温度条件を設定することである。長時間の
処理及び処理温度の上昇は化合物形成に影響してくるた
め、多くとも10時間以内の処理であれば任意の時間で
よい。処理温度も表面荒れの問題からなるべく低温度で
処理することが好ましいが、700℃〜800℃の処理
温度であれば任意の温度でよい。In each of the first, second, third, fourth and fifth embodiments of the present invention, the time for the first curing step is 2.5 hours, but it is not particularly necessary to limit the time. The time and temperature conditions are set so that no compound is formed on the surface and the required hardness and scratch resistance are satisfied. Since a long-time treatment and an increase in the treatment temperature affect the formation of the compound, any treatment may be performed for at most 10 hours. The processing temperature is preferably as low as possible due to the problem of surface roughness, but any temperature may be used as long as the processing temperature is from 700 ° C to 800 ° C.
【0052】本発明の第一、四及び第二の実施例におい
て第一硬化処理工程の水蒸気濃度及び酸素濃度は水蒸気
濃度が約8000ppmで酸素濃度が約4000ppm
として説明を行ったが、この濃度に特に限定する必要は
なく水蒸気であれば、300ppm〜30000ppm
の範囲内であれば良く、酸素であれば300〜1500
0ppmの範囲内であれば任意の濃度に適用可能であ
る。重要なことは、あまりに過剰にこれらのガスを供給
すると、表面が酸化物で変色してしまい、少なすぎると
硬度が不足するため、その間の濃度に調節されたもので
あれば任意の濃度に適用可能である。In the first, fourth and second embodiments of the present invention, the water vapor concentration and the oxygen concentration in the first curing treatment step are such that the water vapor concentration is about 8000 ppm and the oxygen concentration is about 4000 ppm.
However, it is not necessary to particularly limit the concentration to 300 ppm to 30000 ppm if it is steam.
And if it is oxygen, it is 300-1500.
Any concentration within the range of 0 ppm can be applied. The important thing is that if these gases are supplied in too much excess, the surface will be discolored by oxides, and if too little, the hardness will be insufficient. It is possible.
【0053】本発明の第一、二、三、四、五の実施例に
おいて、すべての工程の処理圧力を0.1torrとし
て、説明を行ったが、特に限定する必要性がなく、0.
001〜10torrの任意の圧力において適用可能で
ある。重要なことは、処理濃度と同様に、圧力が低すぎ
ると拡散元素の絶対量が不足し、圧力を高くしすぎると
表面に化合物を形成するためその範囲内に設定すること
である。In the first, second, third, fourth, and fifth embodiments of the present invention, the processing pressure in all the steps is set to 0.1 torr, but there is no particular limitation.
It is applicable at any pressure between 001 and 10 torr. What is important is that, similarly to the treatment concentration, if the pressure is too low, the absolute amount of the diffusion element is insufficient, and if the pressure is too high, a compound is formed on the surface.
【0054】また本発明の第一、二、三、四、五の実施
例において、第二硬化処理工程の時間として0.5時間
として説明を行ったが、特に限定する必要性はなく、冷
却工程に入る前の雰囲気が不活性となっていれば 任意
の時間で良い。Further, in the first, second, third, fourth and fifth embodiments of the present invention, the explanation has been made assuming that the time of the second curing step is 0.5 hour, but there is no need to particularly limit the cooling time. Any time is acceptable as long as the atmosphere before entering the process is inert.
【0055】[0055]
【発明の効果】チタン部材の表面から任意の深さの硬化
層を有するチタン硬化部材であって、前記硬化層は表面
から深さ10μmに0.5〜5重量パーセントの酸素を
含有していることを特徴としたチタン硬化部材とするこ
とにより、耐傷性に強い表面層を形成するのに必要とさ
れる表面硬度が付与され、更には外観品質の劣化がな
い、すなわち表面荒れが小さくすることが可能となっ
た。According to the present invention, there is provided a hardened titanium member having a hardened layer at an arbitrary depth from the surface of the titanium member, wherein the hardened layer contains 0.5 to 5% by weight of oxygen at a depth of 10 μm from the surface. By providing a titanium hardened member characterized by the fact that the surface hardness required to form a surface layer having high scratch resistance is imparted, and furthermore, there is no deterioration in appearance quality, that is, the surface roughness is reduced. Became possible.
【0056】また、チタン部材をアルゴン、ヘリウムな
どの不活性ガス雰囲気中で加熱する昇温加熱工程と、前
記不活性ガスと水蒸気または不活性ガスと酸素または不
活性ガスと酸素と水素の混合ガス雰囲気中で700〜8
00℃の処理温度に加熱する第一硬化処理工程と、前記
不活性ガス雰囲気中で700〜800℃の処理温度に加
熱する第二硬化処理工程と、前記不活性ガス雰囲気中で
冷却する冷却工程とからなるチタン硬化部材の硬化処理
方法とすることで酸化物形成による変色のない硬化層を
迅速に得ることが可能となった。A heating step of heating the titanium member in an atmosphere of an inert gas such as argon or helium; and a step of heating said inert gas and steam or an inert gas and oxygen or a mixed gas of an inert gas and oxygen and hydrogen. 700-8 in the atmosphere
A first curing treatment step of heating to a treatment temperature of 00 ° C., a second curing treatment step of heating to a treatment temperature of 700 to 800 ° C. in the inert gas atmosphere, and a cooling step of cooling in the inert gas atmosphere By using a method for curing a titanium cured member comprising the following, a cured layer free from discoloration due to oxide formation can be quickly obtained.
【図1】図1は本発明の実施形態における硬化層を形成
した後のチタン硬化部材を示す立体図である。FIG. 1 is a three-dimensional view showing a titanium hardened member after a hardened layer is formed in an embodiment of the present invention.
【図2】図2は本発明の実施形態におけるチタン硬化部
材に対して硬化層を形成するための処理装置を示す模式
図である。FIG. 2 is a schematic view showing a processing apparatus for forming a hardened layer on a hardened titanium member according to an embodiment of the present invention.
【図3】図3は本発明の実施形態におけるチタン硬化部
材に対して硬化層を形成するための処理工程を示す模式
図である。FIG. 3 is a schematic view showing a process for forming a hardened layer on a hardened titanium member according to the embodiment of the present invention.
【図4】図4は従来のガス酸化処理と本発明の硬化処理
方法による時間短縮を概念的に表した図である。FIG. 4 is a view conceptually showing a time reduction by a conventional gas oxidation treatment and a curing treatment method of the present invention.
【図5】図5は本発明の実施形態(700℃)における
チタン硬化部材に対して硬化層を形成した後の二次イオ
ン質量分析計による深さ方向の元素解析結果を重量濃度
で換算した結果である。FIG. 5 is a diagram illustrating the results of elemental analysis in the depth direction by a secondary ion mass spectrometer after forming a hardened layer on a hardened titanium member according to an embodiment of the present invention (700 ° C.) in terms of weight concentration. The result.
【図6】図6はチタン硬化部材に対して650℃の温度
により硬化層を形成した後の二次イオン質量分析計によ
る深さ方向の元素解析結果を重量濃度で換算した結果で
ある。FIG. 6 shows the results of elemental analysis in the depth direction by a secondary ion mass spectrometer in terms of weight concentration after forming a hardened layer on a hardened titanium member at a temperature of 650 ° C.
【図7】図7は処理する前のJIS二種チタン部材の二
次イオン質量分析計による深さ方向の元素解析結果を重
量濃度で換算した結果である。FIG. 7 shows the results of elemental analysis of the JIS two-species titanium member in the depth direction by a secondary ion mass spectrometer in terms of weight concentration before treatment.
【図8】図8は比較例とした第六の実施例によって表面
に化合物を形成したチタン硬化部材の二次イオン質量分
析計による深さ方向の元素解析結果を重量濃度で換算し
た結果である。FIG. 8 shows the results of elemental analysis in the depth direction of a titanium-cured member having a compound formed on its surface in the depth direction by a secondary ion mass spectrometer in terms of weight concentration according to a sixth example as a comparative example. .
【図9】図9は深さ10μmの酸素の重量濃度に対する
表面硬度の測定結果である。FIG. 9 shows the measurement results of surface hardness with respect to the weight concentration of oxygen having a depth of 10 μm.
【図10】図10は処理する前及び本発明のチタン硬化
部材及び従来技術のチタン硬化部材の入射角0.5°で
薄膜X線回折による解析を行った結果である。FIG. 10 shows the results of analysis by thin-film X-ray diffraction at an incident angle of 0.5 ° for the titanium hardened member of the present invention and the titanium hardened member of the prior art before processing, and of the present invention.
2 チタン硬化部材 4 試料台 6 処理槽 8 ガス導入口 10 ガス排気口 12 加熱手段 14 加熱電源 16 真空排気装置 18 試料取り出し口 20 硬化層 22 結晶粒界 24 表面の結晶粒 26 表面の結晶粒の大きさ 28 真空排気工程 30 昇温加熱工程 32 第一硬化処理工程 34 第二硬化処理工程 36 冷却工程 Reference Signs List 2 Titanium hardened member 4 Sample table 6 Processing tank 8 Gas inlet 10 Gas exhaust port 12 Heating means 14 Heating power supply 16 Vacuum exhaust device 18 Sample takeout port 20 Hardened layer 22 Crystal grain boundary 24 Surface crystal grain 26 Surface crystal grain Size 28 Vacuum pumping step 30 Heating / heating step 32 First curing step 34 Second curing step 36 Cooling step
Claims (6)
層を有するチタン硬化部材であって、前記硬化層は酸素
を固溶状態で含有していることを特徴としたチタン硬化
部材。1. A hardened titanium member having a hardened layer having an arbitrary depth from the surface of the titanium member, wherein the hardened layer contains oxygen in a solid solution state.
層を有するチタン硬化部材であって、前記硬化層は表面
から深さ10μmに0.5〜5重量パーセントの酸素を
含有していることを特徴としたチタン硬化部材。2. A titanium hardened member having a hardened layer at an arbitrary depth from the surface of the titanium member, wherein the hardened layer contains 0.5 to 5 weight percent oxygen at a depth of 10 μm from the surface. A hardened titanium member, characterized in that:
層を有するチタン硬化部材であって、前記硬化層は表面
から深さ10μmに0.5〜5重量パーセントの酸素を
含有し、かつ表面粗さRmaxが1000nm以下の表
面であることを特徴とするチタン硬化部材。3. A hardened titanium member having a hardened layer at an arbitrary depth from the surface of the titanium member, wherein the hardened layer contains 0.5 to 5 weight percent oxygen at a depth of 10 μm from the surface, and A hardened titanium member having a surface having a surface roughness Rmax of 1000 nm or less.
活性ガス雰囲気中で加熱する昇温加熱工程と、前記不活
性ガスと水蒸気の混合ガス雰囲気中で700〜800℃
の処理温度に加熱する第一硬化処理工程と、前記不活性
ガス雰囲気中で700〜800℃の処理温度に加熱する
第二硬化処理工程と、前記不活性ガス雰囲気中で冷却す
る冷却工程とからなるチタン硬化部材の硬化処理方法。4. A heating step of heating a titanium member in an atmosphere of an inert gas such as argon or helium; and 700 to 800 ° C. in a mixed gas atmosphere of the inert gas and steam.
A first curing treatment step of heating to a treatment temperature of, a second curing treatment step of heating to a treatment temperature of 700 to 800 ° C. in the inert gas atmosphere, and a cooling step of cooling in the inert gas atmosphere. Curing method for a titanium cured member.
不活性ガス雰囲気中で加熱する昇温加熱工程と、前記不
活性ガスと酸素の混合ガス雰囲気中で700〜800℃
の処理温度に加熱する第一硬化処理工程と、前記不活性
ガス雰囲気中で700〜800℃の処理温度に加熱する
第二硬化処理工程と、前記不活性ガス雰囲気中で冷却す
る冷却工程とからなるチタン硬化部材の硬化処理方法。5. A heating step of heating a titanium member in an atmosphere of an inert gas such as argon or helium; and 700 to 800 ° C. in a mixed gas atmosphere of the inert gas and oxygen.
A first curing treatment step of heating to a treatment temperature of, a second curing treatment step of heating to a treatment temperature of 700 to 800 ° C. in the inert gas atmosphere, and a cooling step of cooling in the inert gas atmosphere. Curing method for a titanium cured member.
不活性ガス雰囲気中で加熱する昇温加熱工程と、前記不
活性ガスと酸素と水素の混合ガス雰囲気中で700〜8
00℃の処理温度に加熱する第一硬化処理工程と、前記
不活性ガス雰囲気中で700〜800℃の処理温度に加
熱する第二硬化処理工程と、前記不活性ガス雰囲気中で
冷却する冷却工程とからなるチタン硬化部材の硬化処理
方法。6. A heating step of heating a titanium member in an atmosphere of an inert gas such as argon or helium; and 700 to 8 in a mixed gas atmosphere of said inert gas, oxygen and hydrogen.
A first curing treatment step of heating to a treatment temperature of 00 ° C., a second curing treatment step of heating to a treatment temperature of 700 to 800 ° C. in the inert gas atmosphere, and a cooling step of cooling in the inert gas atmosphere A curing method for a titanium cured member comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18530597A JP3898288B2 (en) | 1997-07-10 | 1997-07-10 | Titanium cured member and method of curing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18530597A JP3898288B2 (en) | 1997-07-10 | 1997-07-10 | Titanium cured member and method of curing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1129847A true JPH1129847A (en) | 1999-02-02 |
JP3898288B2 JP3898288B2 (en) | 2007-03-28 |
Family
ID=16168541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18530597A Expired - Fee Related JP3898288B2 (en) | 1997-07-10 | 1997-07-10 | Titanium cured member and method of curing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3898288B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7276129B2 (en) | 2002-11-20 | 2007-10-02 | Aisan Kogyo Kabushiki Kaisha | Surface treating methods of titanium parts |
US8252130B2 (en) | 2005-02-16 | 2012-08-28 | Mitsubishi Heavy Industries, Ltd. | Surface treatment for titanium alloy member for aerospace equipment |
WO2018181285A1 (en) * | 2017-03-27 | 2018-10-04 | Ntn株式会社 | Machine component and sliding bearing |
WO2018181140A1 (en) * | 2017-03-27 | 2018-10-04 | Ntn株式会社 | Mechanical component and surface treatment method |
WO2019124265A1 (en) * | 2017-12-20 | 2019-06-27 | Ntn株式会社 | Machine part and method for producing machine part |
JP2019108604A (en) * | 2017-12-20 | 2019-07-04 | Ntn株式会社 | Method for producing machine component |
-
1997
- 1997-07-10 JP JP18530597A patent/JP3898288B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7276129B2 (en) | 2002-11-20 | 2007-10-02 | Aisan Kogyo Kabushiki Kaisha | Surface treating methods of titanium parts |
US8252130B2 (en) | 2005-02-16 | 2012-08-28 | Mitsubishi Heavy Industries, Ltd. | Surface treatment for titanium alloy member for aerospace equipment |
WO2018181285A1 (en) * | 2017-03-27 | 2018-10-04 | Ntn株式会社 | Machine component and sliding bearing |
WO2018181140A1 (en) * | 2017-03-27 | 2018-10-04 | Ntn株式会社 | Mechanical component and surface treatment method |
JP2018162502A (en) * | 2017-03-27 | 2018-10-18 | Ntn株式会社 | Machine part and sliding bearing |
WO2019124265A1 (en) * | 2017-12-20 | 2019-06-27 | Ntn株式会社 | Machine part and method for producing machine part |
JP2019108604A (en) * | 2017-12-20 | 2019-07-04 | Ntn株式会社 | Method for producing machine component |
Also Published As
Publication number | Publication date |
---|---|
JP3898288B2 (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0905271B1 (en) | Titanium or titanium alloy member and surface treatment method therefor | |
CN109306446B (en) | Titanium or titanium alloy part and surface hardening method thereof | |
JP3225263B2 (en) | Titanium decorative member and its curing method | |
US20230167533A1 (en) | Alloy member and method for hardening surface thereof | |
JP3898288B2 (en) | Titanium cured member and method of curing the same | |
EP1146136B1 (en) | Ornament and method for preparation thereof | |
JP4658843B2 (en) | Method for manufacturing titanium or titanium alloy decorative member | |
EP3375903A2 (en) | Timepiece part, and timepiece | |
JP3958838B2 (en) | Method of curing titanium cured member | |
US6905758B1 (en) | Decorative item and process for producing the same | |
JP2000096208A (en) | Golf club member made of titanium and its hardening treatment | |
JPH11264063A (en) | Hardening treatment of titanium decorative member | |
CN213447263U (en) | Titanium component | |
JP2022030784A (en) | Watch component and watch | |
JP2002285358A (en) | Decorative member having hard layer and production method therefor | |
JP7320979B2 (en) | Method for manufacturing titanium member | |
JPH1192911A (en) | Hardening treatment into titanium hardened member | |
JPH10195612A (en) | Method for hardening metallic ornamental member | |
JP2007084867A (en) | Ornament | |
JP7332446B2 (en) | Golden ornament and method for producing golden ornament | |
JPH1192910A (en) | Hardening treatment method for titanium hardened member | |
JPH0765156B2 (en) | Method for manufacturing exterior parts for watches | |
JPH07150271A (en) | High purity platinum and its production | |
JPH10237619A (en) | Hardening treating method of metallic decorative member | |
JP2004190048A (en) | White decorative member having hardened layer and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061221 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140105 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |