JPH11291213A - Method for forming castable refractory block - Google Patents
Method for forming castable refractory blockInfo
- Publication number
- JPH11291213A JPH11291213A JP10097452A JP9745298A JPH11291213A JP H11291213 A JPH11291213 A JP H11291213A JP 10097452 A JP10097452 A JP 10097452A JP 9745298 A JP9745298 A JP 9745298A JP H11291213 A JPH11291213 A JP H11291213A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- refractory
- block
- forming
- refractory block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は不定形耐火ブロック
の形成方法に係り、さらに詳しくは緻密で、気孔分布の
バラツキが少ない耐用性の高い不定形耐火ブロックの形
成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an irregular-shaped refractory block, and more particularly to a method for forming a dense, highly durable irregular-shaped refractory block having less variation in pore distribution.
【0002】[0002]
【従来の技術】溶鋼取り鍋やタンディシュなどに使用す
るマスブロック、あるいはガス吹きプラグなどの大型ブ
ロック製品は、プレス成形で製造することが困難である
ため、不定形耐火物に水添加し、これを鋳込み、養生、
脱枠、乾燥することによって、ブロックに成形してい
る。すなわち、木製もしくは金属製の成形型を用意し、
この成形型の型面をマシン油などの離型剤で処理した
後、添加水と混練して調製した不定形耐火物を注入(流
し込みないし投入)し、成形・固体化している。なお、
不定形耐火物は、一般的に、成形型を振動台に載置する
か、あるいは棒状のバイブレータを用いて、脱泡を行い
ながら徐々に注入ないし投入している。2. Description of the Related Art Mass blocks used in molten steel ladle and tundish, and large block products such as gas blow plugs are difficult to manufacture by press molding. Casting, curing,
It is formed into a block by removing the frame and drying. In other words, prepare a wooden or metal mold,
After the mold surface of this mold is treated with a mold release agent such as machine oil, an irregular refractory prepared by kneading with added water is injected (poured or charged) to form and solidify. In addition,
Generally, the amorphous refractory is gradually poured or charged while defoaming by placing a mold on a shaking table or using a rod-shaped vibrator.
【0003】しかし、上記不定形耐火ブロックの形成方
法の場合は、成形体中に小気泡の集合体と見られる直径
5mm前後の大きな気泡が残存し易い傾向がある。特に、
不定形耐火物の流し込み後半になると、成形体の上部側
は、下部側の気泡上昇および下部側に比べて振動時間が
短縮することによって、気泡が残留し易くなり、緻密化
が損なわれるとともに、全体的な気孔分布が不均一化
(バラツキ)する。[0003] However, in the case of the above-mentioned method for forming an irregular-shaped refractory block, the diameter of the compact, which is regarded as an aggregate of small bubbles, is considered.
Large bubbles of about 5 mm tend to remain. Especially,
In the latter half of the casting of the amorphous refractory, the upper part of the molded body is more likely to remain bubbles by shortening the vibration time as compared with the lower side bubble rising and lower side, and the densification is impaired, The overall pore distribution becomes non-uniform (variable).
【0004】つまり、耐火材として要求される十分な耐
スポール性、耐溶銑性などなを有する不定形耐火ブロッ
クを得ることが困難である。この気孔の低減や気孔分布
の均一化のため、振動時間を延長したり、あるいは不定
形耐火物の1回当たりの流し込み量をできるだけ少量に
することが有効といえるが、一方では、骨材の沈降やブ
リージングなどの現象により、品質のバラツキを招来す
る。That is, it is difficult to obtain an irregular-shaped refractory block having sufficient spall resistance and hot metal resistance required as a refractory material. In order to reduce the pores and make the pore distribution uniform, it is effective to extend the vibration time or to reduce the amount of the amorphous refractory that can be poured at one time as much as possible. Phenomena such as settling and breathing cause variations in quality.
【0005】上記成形ブロックの緻密化を図るため、不
定形耐火物を減圧混練した後、あるいは減圧振動によっ
て成形型に鋳込む方法が提案されている(特開平8-1697
54号公報)。すなわち、不定形耐火物材料に水を添加し
て混練後、成形型に減圧振動鋳込みを行い、養生、脱
枠、乾燥を行う手段が開発されている。[0005] In order to densify the molding block, there has been proposed a method in which an amorphous refractory is kneaded under reduced pressure or cast into a molding die by vibration under reduced pressure (JP-A-8-1697).
No. 54). That is, means has been developed in which water is added to an amorphous refractory material, kneaded, and then pressure-reduced vibration casting is performed in a molding die to cure, deframe, and dry.
【0006】[0006]
【発明が解決しようとする課題】上記減圧混練あるいは
減圧振動によって鋳込む場合、脱泡能力の向上は期待で
きる。しかし、減圧混練は、若干の水分低下を招来する
とともに、流動性に寄与する径 1mm以下の気泡まで除去
されるため、成形型に流し込む際の流動性が損なわれ、
また、成形型に流し込むときに気泡を発生し易いという
問題がある。In the case of casting by the above-described kneading under reduced pressure or vibration under reduced pressure, an improvement in defoaming ability can be expected. However, kneading under reduced pressure causes a slight decrease in water content and also removes bubbles having a diameter of 1 mm or less which contribute to fluidity, so that fluidity at the time of pouring into a mold is impaired,
In addition, there is a problem that bubbles are easily generated when pouring into a molding die.
【0007】一方、減圧振動においては、成形型の全体
を真空容器に内装させる必要性があり、設備が大型化す
る。しかも、成形型に流し込み(注入)した不定形耐火
材料の水添加・混練物の脱泡は、成形型に密着していな
い上面側からのみで行われるため、流し込み量の高さ
(深さもしくは厚さ)が高くなるほど、脱泡の効果が低
減する。ここで、施工体の下部側まで、十分な脱泡効果
を得るために、真空度(減圧度)を上げると、水分の氷
結が発生したり、施工体の表面が極端に凹凸面化する恐
れがある。On the other hand, in the case of reduced pressure vibration, it is necessary to house the entire mold in a vacuum container, and the equipment becomes large. Moreover, since the addition of water and the defoaming of the kneaded material of the amorphous refractory material poured (injected) into the mold are performed only from the upper surface side which is not in close contact with the mold, the height of the pouring amount (depth or As the thickness increases, the defoaming effect decreases. Here, if the degree of vacuum (decompression degree) is increased in order to obtain a sufficient defoaming effect to the lower side of the construction body, freezing of moisture may occur or the construction body surface may become extremely uneven. There is.
【0008】なお、金属粉体の形成手段として、金属粉
体に分散媒、この分散媒とエマルジョンを作る硬化性樹
脂(たとえばエポキシ樹脂)、この硬化性樹脂の硬化剤
を加えて調製したスラリーを、脱液能を有する成形型に
注入し、脱液・硬化させることが知られている(特開平
5-195019号公報)。しかし、この成形方法の場合は、バ
インダーとして機能する硬化性樹脂およびその硬化剤
が、乾燥・焼成に収縮や揮散し、クラックなどを発生す
る恐れが多分にあるため、一般的に、不定形耐火フロッ
クの形成に転用できない。As a means for forming the metal powder, a slurry prepared by adding a dispersion medium to the metal powder, a curable resin (for example, an epoxy resin) for forming an emulsion with the dispersion medium, and a curing agent for the curable resin. It is known that a liquid is poured into a mold having a dewatering ability, and is dewatered and hardened (Japanese Patent Laid-Open No.
No. 5-195019). However, in the case of this molding method, since the curable resin functioning as a binder and its curing agent are likely to shrink or volatilize during drying and firing and to generate cracks, etc., in general, an amorphous refractory resin is used. Cannot be diverted to floc formation.
【0009】そこで、本発明は、実用上十分な緻密性を
有するとともに、気孔分布のバラツキもなく、高耐用な
マスブロックやガス吹き用プラグなどの構成に適する不
定形耐火ブロックの形成方法を提供することを目的とす
る。Accordingly, the present invention provides a method for forming an irregular-shaped refractory block which has a sufficient density for practical use, has no variation in pore distribution, and is suitable for the construction of a highly durable mass block or a gas blowing plug. The purpose is to do.
【0010】[0010]
【課題を解決するための手段】請求項1の発明は、内壁
面側の平均気孔径が 1〜30μm の多硬質成形型に混練し
た不定形耐火物を流し込む工程と、前記多硬質成形型の
気孔を減圧化し、かつ振動を与えて流し込んだ不定形耐
火物を充填ブロック化する工程とを有することを特徴と
する不定形耐火ブロックの形成方法である。The invention according to claim 1 comprises a step of pouring an amorphous refractory kneaded into a multi-hard mold having an average pore diameter of 1 to 30 μm on the inner wall side, and Depressurizing the pores and applying vibration to form a refractory block into a filled block, thereby forming a refractory block.
【0011】請求項2の発明は、請求項1記載の不定形
耐火ブロックの形成方法において、多硬質成形型が合成
樹脂製であることを特徴とする。According to a second aspect of the present invention, in the method for forming an irregular shaped refractory block according to the first aspect, the multi-hard mold is made of a synthetic resin.
【0012】請求項3の発明は、請求項1記載の不定形
耐火ブロックの形成方法において、多硬質成形型がセラ
ミックス製であることを特徴とする。According to a third aspect of the present invention, in the method for forming an irregularly shaped refractory block according to the first aspect, the multi-hard mold is made of ceramics.
【0013】すなわち、本発明は、内壁面側の平均気孔
径が 1〜30μm の多硬質体製の成形型を使用すること、
この成形型に流し込んだ不定形耐火物を、成形型の多硬
質体を介して減圧・吸引すること、成形型に流し込んだ
不定形耐火物に、さらに振動を与え充填・緻密化を図る
ことなどを骨子としている。That is, the present invention uses a multi-hard mold having an average pore diameter of 1 to 30 μm on the inner wall side.
Depressurizing and sucking the irregular-shaped refractory poured into this mold through the multi-hard body of the mold, and applying further vibration to the irregular-shaped refractory poured into the mold to achieve filling and densification. Is the main point.
【0014】図1は本発明の実施態様の概略を模式的に
示す断面図であり、たとえば振動台1の上面に、内壁面
側の平均気孔径が 1〜30μm の多硬質体製の成形型2を
載置(装着・セット)し、この多硬質体製の成形型2内
に、不定形耐火物ブロック形成用の原料(素材)3を流
し込み(注入)する。FIG. 1 is a sectional view schematically showing the outline of an embodiment of the present invention. For example, a mold made of a multi-hard body having an average pore diameter of 1 to 30 μm on the inner wall surface is provided on the upper surface of a vibrating table 1. 2 is placed (attached / set), and a raw material (raw material) 3 for forming an amorphous refractory block is poured (injected) into the molding die 2 made of a multi-hard body.
【0015】ここで、成形型2を構成する多硬質体の材
質は、合成樹脂(レジン)類、セラミックス類、耐火物
類、石膏類などが挙げられるが、耐久性やコストなどの
点から合成樹脂(レジン)類やセラミックス類が好まし
い。また、多硬質型の成形型2の内壁面側が、平均気孔
径 1〜30μm と選択・設定されるのは、平均気孔径が1
μm 未満の場合、成形型1に流し込んだ不定形耐火物3
に対する減圧・脱泡効果が小さく、結果的に、緻密な不
定形耐火ブロックを形成できない。一方、平均気孔径が
30μm を超えた場合は、成形型1に流し込んだ不定形耐
火物3に対して十分な減圧・脱泡効果を呈するが、片
や、気孔の目詰まりを招来し易く、結果的に、緻密な不
定形耐火ブロックを形成できない。Here, examples of the material of the multi-hard body constituting the molding die 2 include synthetic resins (resins), ceramics, refractories, gypsum and the like. Resins (resins) and ceramics are preferred. Also, the inner wall surface side of the multi-hard mold 2 is selected and set to have an average pore diameter of 1 to 30 μm because the average pore diameter is 1 μm.
If it is less than μm, the irregular refractory 3 poured into the mold 1
The depressurization and defoaming effect on the surface is small, and as a result, a dense amorphous refractory block cannot be formed. On the other hand, the average pore diameter is
When the thickness exceeds 30 μm, a sufficient depressurizing and defoaming effect is exerted on the amorphous refractory 3 poured into the mold 1, but clogging of pieces and pores is likely to occur, and as a result, Unable to form irregular refractory blocks.
【0016】一方、不定形耐火ブロックの形成に使用す
る原料(素材)3としては、たとえばマスブロック、ガ
ス吹きプラグなどの形成に使用される高アルミナ質、ア
ルミナ−スピネル質、アルミナ−マグネシア質、アルミ
ナ−カーボン質などが挙げられる。なお、使用する原料
(不定形耐火物)3については、緻密で低水分量の成形
体を形成出来、強度の向上も期待できるので、耐蝕性向
上のため、不定形耐火物3中のアルミナセメント量を低
減することが望ましい。また、これら不定形耐火物3の
多硬質型の成形型2への流し込み量は、不定形耐火物3
の粘性や成形型の形状によっても異なるが、1回当たり
厚さ 300mm程度以内の流し込み量とすることが好まし
い。On the other hand, the raw material (raw material) 3 used for forming the amorphous refractory block includes, for example, high alumina, alumina-spinel, alumina-magnesia, and the like used for forming a mass block, a gas blowing plug, and the like. Alumina-carbon and the like can be mentioned. As for the raw material (amorphous refractory) 3 to be used, a compact having a low moisture content can be formed and the strength can be expected to be improved. Therefore, to improve the corrosion resistance, the alumina cement in the amorphous refractory 3 is used. It is desirable to reduce the amount. The amount of the irregular-shaped refractory 3 to be poured into the multi-hard mold 2 is determined by the irregular-shaped refractory 3.
Although it differs depending on the viscosity of the mold and the shape of the molding die, it is preferable that the casting amount is about 300 mm or less per operation.
【0017】さらに、多硬質型の成形型2は、流し込ん
だ不定形耐火物3を減圧化できる機能を保持することが
前提となるので、流し込んだ不定形耐火物3が接触する
内壁面以外の面を、たとえば耐水性の膜4で被覆してお
くことが好ましい。Further, since it is premised that the multi-hard mold 2 has a function of reducing the pressure of the cast refractory 3, it is necessary to maintain a function other than the inner wall surface with which the cast refractory 3 comes into contact. Preferably, the surface is coated with a water-resistant film 4, for example.
【0018】また、流し込んだ不定形耐火物3の減圧化
は、たとえば真空ポンプ(図示省略)などによって行わ
れるが、多硬質型の成形型2を減圧系領域にセット、あ
るいは多硬質型の成形型2の外側壁面部を適宜減圧系に
接続するなどの態様が採られる。そして、前記振動台1
の駆動による成形型2への振動付与と、成形型2の減圧
化とによって、効率よく脱泡や余分な水分が除かれ、緻
密な充填が進行する。The pressure of the cast refractory 3 is reduced by, for example, a vacuum pump (not shown). The multi-hard mold 2 is set in the pressure-reducing system region, or the multi-hard mold is formed. A mode in which the outer wall surface of the mold 2 is appropriately connected to a decompression system is adopted. And the shaking table 1
By applying vibration to the molding die 2 by the driving of and the depressurization of the molding die 2, defoaming and excess moisture are efficiently removed, and dense filling proceeds.
【0019】すなわち、成形型2内に流し込んだ不定形
耐火物3中の気泡の一部が上昇し、成形型2の開口部か
ら除去される一方、成形型2に対する振動および減圧の
協奏的な作用によって、流し込んだ不定形耐火物3中の
気泡および過剰な水分の移動性が向上・促進される。し
たがって、気泡や過剰な水分が容易に除去され、緻密
で、気孔分布も一様な不定形耐火ブロック(施工体)が
形成される。なお、上記成形型2への振動付与、換言す
ると成形型2内に流し込んだ不定形耐火物3に対する振
動付与は、たとえば棒状のバイブレーターなどによって
も行うこともできる。That is, some of the bubbles in the amorphous refractory 3 poured into the mold 2 rise and are removed from the opening of the mold 2, while the vibration and pressure reduction of the mold 2 are coordinated. By the action, the mobility of bubbles and excess moisture in the cast refractory 3 is improved and promoted. Therefore, air bubbles and excessive moisture are easily removed, and a dense, uniform-shaped refractory block (uniform refractory block) having a uniform pore distribution is formed. It should be noted that the application of vibration to the molding die 2, in other words, the application of vibration to the amorphous refractory 3 poured into the molding die 2, can also be performed by, for example, a rod-shaped vibrator.
【0020】上記成型手順で、不定形耐火ブロック(施
工体)の形成後、成形型2から形成した不定形耐火ブロ
ックの脱型は、特に、限定されないが、次ぎのように行
うことが好ましい。すなわち、成形型2内に若干の水分
を添加し、たとえばコンプレッサーなどによって、成形
型2内の不定形耐火ブロックを外側から加圧すると、成
形型2内壁面の離型剤処理を省略しても、前記不定形耐
火ブロック容易に脱型できる。なお、脱型後の乾燥に当
たっては、形成した不定形耐火ブロックが緻密でクラッ
クなど発生し易いので、取扱に十分注意することが望ま
しい。After the formation of the irregular-shaped refractory block (constructed body) in the molding procedure, the removal of the irregular-shaped refractory block formed from the mold 2 is not particularly limited, but is preferably performed as follows. That is, when a small amount of water is added into the mold 2 and the irregular refractory block in the mold 2 is pressed from the outside by, for example, a compressor or the like, even if the mold release agent treatment on the inner wall surface of the mold 2 is omitted. The irregular shaped refractory block can be easily removed. In the drying after removal from the mold, the formed refractory block is dense and easily generates cracks.
【0021】[0021]
【発明の実施の形態】試料寸法40×40× 160mmの成形体
を鋳型形成できる成形型を9種類用意した。すなわち、
平均気孔 3μm のレジン製成形型(成形型A)、平均気
孔 7μm のレジン製成形型(成形型B)、平均気孔20μ
m のレジン製成形型(成形型C)、平均気孔 0.5μm の
レジン製成形型(成形型a)、平均気孔35μm のレジン
製成形型(成形型b)、平均気孔 7μm の石膏製成形型
(成形型D)、平均気孔 3μmの石膏製成形型(成形型
E)、鉄製成形型(成形型c)をそれぞれ用意した。な
お、多孔質製の成形型(A,B,C,D,E,a,b)
のうち、実施例8で使用する成形型E以外に、予め耐水
性コーティング処理を施しておいた。BEST MODE FOR CARRYING OUT THE INVENTION Nine types of molds capable of forming a molded body having a sample size of 40 × 40 × 160 mm were prepared. That is,
Resin mold with average pore size of 3 μm (mold A), resin mold with average pore size of 7 μm (mold B), average pore size of 20 μm
m resin mold (mold C), resin mold with average pores of 0.5 μm (mold a), resin mold with average pores of 35 μm (mold b), gypsum mold with average pores of 7 μm (mold A mold D), a gypsum mold (mold E) having an average pore size of 3 μm, and an iron mold (mold c) were prepared. In addition, a porous mold (A, B, C, D, E, a, b)
Among them, in addition to the mold E used in Example 8, a water-resistant coating treatment was performed in advance.
【0022】一方、表1および表2にそれぞれ示す組成
(重量%)の高アルミナ質、アルミナ−スピネル質、ア
ルミナ−マグネシア質の不定形耐火物に、外添加 2重量
%の清浄水を加え、容量5000mlの卓上ミキサーで混練・
調製する。この調製に引き続いて、上記用意しておいた
成形型内にそれぞれ流し込み(注入し)、成形型をその
外壁面側から真空ポンプで減圧化する一方、振動台上で
加振成形をそれぞれ行った。なお、鉄製成形型(成形型
c)を使用する成形の場合(比較例)は、成形型の減圧
を省略し、また、不定形耐火物の混練・調製や加振の態
様などを変更している。これらの各成形条件、各成形型
の繰り返し使用可能な回数も表1および表2に示す。On the other hand, to a high-alumina, alumina-spinel, or alumina-magnesia amorphous refractory having a composition (% by weight) shown in Tables 1 and 2, 2% by weight of externally added clean water was added. Kneading with a 5000ml tabletop mixer
Prepare. Subsequent to this preparation, each mold was poured (injected) into the prepared mold, and the mold was evacuated from the outer wall surface side by a vacuum pump, while being subjected to vibration molding on a vibrating table. . In the case of molding using an iron mold (mold c) (comparative example), depressurization of the mold was omitted, and kneading / preparation of the refractory of irregular shape and the mode of vibration were changed. I have. Tables 1 and 2 also show these molding conditions and the number of times each mold can be used repeatedly.
【0023】上記混練・調製した不定形耐火物を、それ
ぞれ成形型内に充填後、室温下に24時間放置・養生して
から、多孔質製の成形型をしようした場合は、少量の水
を成形型内に加える一方、成形型の外周面側からコンプ
レッサー圧を加えながら、それぞれ脱型を行った。この
脱型した充填成形体を 110℃×24時間乾燥、さらに、15
00℃×24時間焼結を行った各時点で、それらの嵩比重、
見掛け気孔率(%)、曲げ強さ(MPa )を測定・評価し
た結果を表1および表2に併せて示す。After filling each of the kneaded and prepared irregular-shaped refractories in a mold, leave and cure at room temperature for 24 hours, when a porous mold is used, a small amount of water is used. While being added into the mold, the mold was demolded while applying compressor pressure from the outer peripheral surface side of the mold. The demolded filled molded body was dried at 110 ° C. for 24 hours, and further dried for 15 minutes.
At each point of time when sintering was performed at 00 ° C. for 24 hours, their bulk specific gravity,
The results of measuring and evaluating the apparent porosity (%) and the bending strength (MPa) are shown in Tables 1 and 2.
【0024】また、上記体 110℃×24時間乾燥した充填
成形体(40×40× 160mm)について、侵食・浸潤試験
(試料の切断面から侵食・浸潤量測定)を行った結果
も、表1および表2に併せて示す。なお、この侵食・浸
潤試験は、誘導炉ディップ法で、侵食剤を合成スラグ
( C/S=2)、試験温度を1650℃として行った。ここで侵
食指数および浸潤指数は、実施例1の侵食指数および浸
潤指数を、それぞれ 100とした値に対する相対値であ
り、値が小さいほど耐侵食性、耐浸潤性がすぐれてい
る。The results of the erosion / infiltration test (measurement of erosion / infiltration from the cut surface of the sample) for the molded body (40 × 40 × 160 mm) dried at 110 ° C. × 24 hours are shown in Table 1. And Table 2 together. The erosion and infiltration test was performed by an induction furnace dipping method using an erosion agent of synthetic slag (C / S = 2) and a test temperature of 1650 ° C. Here, the erosion index and the infiltration index are relative values to the values obtained by setting the erosion index and the infiltration index of Example 1 to 100, respectively, and the smaller the value, the better the erosion resistance and the infiltration resistance.
【表1】 [Table 1]
【表2】 上記、各試験・評価からも分かるように、実施例に係る
不定形耐火物ブロックの場合は、比較例の不定形耐火物
ブロックに比べて、気孔径のバラツキも少なく、かつ気
孔率も大幅に減少しており、すぐれた機械的強度および
耐食性を呈する。たとえば、平均気孔 7μm のレジン製
成形型(成形型F)を使用し、上記実施例 に準じた減
圧・振動付与を行って、実機形状のポーラスプラグアウ
ターリング(材質:アルミナ質、径80/径 200× 300m
m)を充填成形(実施例8)した。また、比較のため、
上記鉄製成形型(成形型c)を使用し、上記比較例に準
じた減圧・振動付与を行って、実機形状のポーラスプラ
グアウターリング(材質:アルミナ質、径80/径 200×
300mm)を充填成形(比較例7)した。[Table 2] As can be seen from the above-described tests and evaluations, in the case of the amorphous refractory block according to the example, the variation in the pore diameter is smaller and the porosity is significantly larger than the amorphous refractory block of the comparative example. Reduced, exhibiting excellent mechanical strength and corrosion resistance. For example, using a resin molding die (molding die F) having an average pore size of 7 μm and applying pressure reduction and vibration in accordance with the above-described embodiment, the actual shape of the porous plug outer ring (material: alumina, diameter: 80 / diameter) 200 × 300m
m) was filled (Example 8). Also, for comparison,
Using the iron mold (mold c), pressure reduction and vibration were applied in accordance with the comparative example, and a porous plug outer ring (material: alumina, diameter 80 / diameter 200 ×
(Comparative Example 7).
【0025】上記両充填成形体を 110℃×24時間乾燥
後、その乾燥成形体を上部、中央上部、中央下部、下部
に4区分化し、各区分領域の気孔率をそれぞれ測定した
結果を、それぞれ表3に示す。なお、この実施例の場合
は比較例に比べて、 5mm前後の大口径の気孔が存在しな
いだけでなく、気孔率の低減および気孔率のバラツキも
低減していた。After drying both of the above compacts at 110 ° C. for 24 hours, the dried compacts were divided into four sections: an upper part, an upper central part, a lower central part, and a lower part. It is shown in Table 3. In addition, in the case of this example, as compared with the comparative example, not only the large-diameter pore of about 5 mm did not exist, but also the porosity was reduced and the porosity variation was reduced.
【0026】[0026]
【表3】 なお、本発明は上記実施例に限定されるものでなく、発
明の趣旨を逸脱しない範囲で、いろいろの変形を採るこ
とができる。たとえば、成形型の形状や寸法、不定形耐
火物の組成・材質なども用途などに対応して選択でき
る。[Table 3] Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the shape and dimensions of the mold, the composition and material of the refractory, and the like can be selected according to the application.
【0027】[0027]
【発明の効果】本発明によれば、各種工業窯炉におい
て、耐久性にすぐれた耐火性構造部材を容易に、かつ歩
留まりよく提供することが可能となる。すなわち、本発
明に係る不定形耐火物ブロックの形成方法によれば、た
とえばマスブロックやポーラスプラグアウターリングな
どの溶鋼取鍋、あるいはタンディシュの構成に適する、
緻密質で気孔分布のバラツキも少なくて、耐侵食・浸潤
性および機械的な強度などのすぐれた不定形耐火物ブロ
ックを量産的、かつ歩留まりよく提供することができ
る。According to the present invention, in various industrial kilns, fire-resistant structural members having excellent durability can be easily provided with a high yield. That is, according to the method for forming an irregular-shaped refractory block according to the present invention, for example, suitable for the configuration of a molten steel ladle such as a mass block or a porous plug outer ring, or a tundish.
It is possible to provide an amorphous refractory block which is dense and has a small variation in pore distribution, is excellent in erosion resistance / infiltration property, mechanical strength, and the like, in a mass-production manner and with a high yield.
【図1】この発明の基本的な実施態様を模式的に示す断
面図。FIG. 1 is a sectional view schematically showing a basic embodiment of the present invention.
1……振動台 2……多孔質製の成形型 3……不定形耐火物ブロック形成用素材 4……耐水性膜 DESCRIPTION OF SYMBOLS 1 ... Shaking table 2 ... Porous molding die 3 ... Material for forming an amorphous refractory block 4 ... Water resistant film
Claims (3)
に、混練した不定形耐火物を流し込む工程と、 前記多硬質成形型の気孔を減圧化し、かつ振動を与えて
流し込んだ不定形耐火物を充填・ブロック化する工程
と、を有することを特徴とする不定形耐火ブロックの形
成方法。1. A step of pouring a kneaded amorphous refractory into a multi-hard mold having an average pore diameter of 1 to 30 μm, and reducing the pressure of the pores of the multi-hard mold and applying a vibration to the irregular mold. Filling the refractory with a refractory and blocking the refractory.
特徴とする請求項1記載の不定形耐火ブロックの形成方
法。2. The method according to claim 1, wherein the multi-hard mold is made of a synthetic resin.
とを特徴とする請求項1記載の不定形耐火ブロックの形
成方法。3. The method according to claim 1, wherein the multi-hard mold is made of ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10097452A JPH11291213A (en) | 1998-04-09 | 1998-04-09 | Method for forming castable refractory block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10097452A JPH11291213A (en) | 1998-04-09 | 1998-04-09 | Method for forming castable refractory block |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11291213A true JPH11291213A (en) | 1999-10-26 |
Family
ID=14192710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10097452A Withdrawn JPH11291213A (en) | 1998-04-09 | 1998-04-09 | Method for forming castable refractory block |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11291213A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100913156B1 (en) | 2002-12-24 | 2009-08-19 | 주식회사 포스코 | A method of manufacturing castable block |
JP4596082B1 (en) * | 2009-09-01 | 2010-12-08 | 明宣 八田 | Prototype for ceramic molding with hill |
CN102581923A (en) * | 2012-02-28 | 2012-07-18 | 淄博市新材料研究所 | Sample forming method for detecting phosphate castable or plastic refractory |
-
1998
- 1998-04-09 JP JP10097452A patent/JPH11291213A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100913156B1 (en) | 2002-12-24 | 2009-08-19 | 주식회사 포스코 | A method of manufacturing castable block |
JP4596082B1 (en) * | 2009-09-01 | 2010-12-08 | 明宣 八田 | Prototype for ceramic molding with hill |
JP2011051326A (en) * | 2009-09-01 | 2011-03-17 | Akinobu Hatta | Master mold for molding footed pottery |
CN102581923A (en) * | 2012-02-28 | 2012-07-18 | 淄博市新材料研究所 | Sample forming method for detecting phosphate castable or plastic refractory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5775112B2 (en) | Cast body, castable composition, and production method thereof | |
JPH11291213A (en) | Method for forming castable refractory block | |
JPH0663684A (en) | Production of ceramic core for casting | |
JP2022063147A (en) | Method for producing ceramic molded body | |
JP2654999B2 (en) | Precision suction mold | |
RU2080987C1 (en) | Method of complex-shaped pieces moulding out of dispersed masses | |
RU2713049C1 (en) | Method of making ceramic melting crucibles | |
JPH0723248B2 (en) | Method for manufacturing ceramic molded body | |
RU2122534C1 (en) | Method of manufacturing molded steel-tapping refractory parts | |
JP3224645B2 (en) | Ceramics molding method | |
JP3175455B2 (en) | Ceramics molding method | |
Lidman et al. | An Investigation of the Slip-casting Mechanism as Applied to Stainless Steel Powder | |
JPH04182102A (en) | Manufacture of powder molded item | |
JPH0223321B2 (en) | ||
JPS606203B2 (en) | Casting method for non-plastic powder | |
JPH0899306A (en) | Casting molding method of ceramics | |
JPH04265283A (en) | Method for press-molding castable refractory | |
JPH0124842B2 (en) | ||
RU2203247C1 (en) | Method for manufacturing unfired refractory metallurgy-usable products | |
JPS61217208A (en) | Manufacture of ceramics | |
SU1359054A1 (en) | Method of making casting moulds | |
JPH09150408A (en) | Manufacture of fireproof block | |
JPH0722931B2 (en) | Forming method of powder sintering precursor | |
JPH04312801A (en) | Manufacture of refractory block | |
JPH0344405A (en) | Casting forming method for powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |