JPH1126002A - Protection control device for fuel cell - Google Patents

Protection control device for fuel cell

Info

Publication number
JPH1126002A
JPH1126002A JP9178287A JP17828797A JPH1126002A JP H1126002 A JPH1126002 A JP H1126002A JP 9178287 A JP9178287 A JP 9178287A JP 17828797 A JP17828797 A JP 17828797A JP H1126002 A JPH1126002 A JP H1126002A
Authority
JP
Japan
Prior art keywords
output
inverter
current
limit
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9178287A
Other languages
Japanese (ja)
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9178287A priority Critical patent/JPH1126002A/en
Publication of JPH1126002A publication Critical patent/JPH1126002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Protection Of Static Devices (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device capable of generating the necessary electric power or the maximum power near it at all times and safely by setting the limiting current for the output command in advance, multiplying the actual stack voltage during an operation, the limiting current, and the inverter efficiency to calculate the inverter limit output, and controlling the inverter output with the inverter limit output used as an upper limit value. SOLUTION: Even if the stack voltage temporarily experiences drops for some reason, the inverter output is controlled with the inverter limit output Wi corresponding to the dropped actual stack voltage Va and the limiting current I limit used as the upper limit value, and the DC current is suppressed to the limiting I limit or below by this protection control device 10. If the limiting current I limit is set in advance in a range safe from the ordinary planned current for the output command P, the taking out of the current above the safe range is suppressed, a voltage drop is controlled, and a plant trip can be prevented beforehand.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶融炭酸塩型燃料電池に
係わり、更に詳しくは、溶融炭酸塩型燃料電池の保護制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell, and more particularly, to a protection control device for a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、図4に模式的
に示すように、薄い平板状の電解質板(タイル)1を燃
料極(アノード)2と空気極(カソード)3の2枚の電
極で挟んで単セル4が構成され、更に複数のセル4と導
電性のバイポーラプレート(セパレータ)5を交互に積
層して高電圧を発生する積層電池(スタック)が構成さ
れる。
2. Description of the Related Art As shown schematically in FIG. 4, a molten carbonate fuel cell comprises a thin flat electrolyte plate (tile) 1 composed of a fuel electrode (anode) 2 and an air electrode (cathode) 3. A single cell 4 is sandwiched between the above electrodes, and a plurality of cells 4 and conductive bipolar plates (separators) 5 are alternately stacked to form a stacked battery (stack) that generates a high voltage.

【0003】上述した燃料電池のV−I特性は、図5
(A)に示すように、電流を取り出さないOCV(Open
Circuit Voltage)において電圧Vが最大Vmax となり、
電流Iを増すにつれて内部抵抗等の影響で右下がりの傾
向を示す。更に、燃料電池のW−I特性は、図5(B)
に示すように、ある電流値Ia で最大出力Wmax を示
す。
[0003] The VI characteristics of the fuel cell described above are shown in FIG.
As shown in (A), the OCV (Open
The Circuit Voltage) maximum V max becomes a voltage V in,
As the current I increases, it tends to the right due to the influence of internal resistance and the like. Further, the WI characteristic of the fuel cell is shown in FIG.
As shown in the figure, the maximum output Wmax is shown at a certain current value Ia.

【0004】[0004]

【発明が解決しようとする課題】燃料電池で発電した直
流電流は、インバータ(直交変換器)により交流出力に
変換され、外部に出力される。インバータは逆変換装置
により制御され、出力指令に応じて燃料電池から取り出
す電流を制御して、所望の出力を得るようになってい
る。
The DC current generated by the fuel cell is converted into an AC output by an inverter (quadrature converter) and output to the outside. The inverter is controlled by an inverter and controls a current taken out of the fuel cell in accordance with an output command to obtain a desired output.

【0005】従って、燃料電池が図5に実線で示す所定
の性能を保持している場合には、かかる出力制御は、図
5(B)の矢印で示す範囲で行われ、電流を増すほど出
力が増大し、必要な出力を常に維持することができる。
Therefore, when the fuel cell has the predetermined performance shown by the solid line in FIG. 5, such output control is performed in the range shown by the arrow in FIG. And the required output can always be maintained.

【0006】しかし、スタック電圧がなんらかの原因
(系統の変動、CO2濃度の変動)で一時的に下降する
と、これを受けてインバータは交流電力を維持しようと
してスタックからの直流電流を増加させ、これによっ
て、燃料利用率は上昇し、これが更に電圧を降下させる
要因となり、最終的にプラントトリップに至ることがあ
る。
However, if the stack voltage temporarily drops for some reason (system fluctuations, CO2 concentration fluctuations), the inverter responds to this by increasing the DC current from the stack in an attempt to maintain AC power. As a result, the fuel utilization increases, which causes a further voltage drop, which may eventually lead to a plant trip.

【0007】特に、燃料電池が劣化すると、図5に破線
で示すような特性に変化するため、性能劣化等で電圧が
低下し、必要電力を取り出すために大きな電流が必要と
なり、それが図5(B)の電流値Ia ′を越えると、電
流を増しても出力が増大せず、また電圧を下げる要因と
なり崩壊的に電流が増加、電圧が低下し、最終的に電池
をトリップさせて劣化を更に加速してしまう問題点があ
った。
In particular, when the fuel cell is deteriorated, the characteristics change as shown by the broken line in FIG. 5, so that the voltage drops due to performance degradation or the like, and a large current is required to extract the required power. When the current value exceeds the current value I a ′ of (B), the output does not increase even if the current is increased, and the voltage decreases, which causes the current to increase and the voltage to decrease, eventually causing the battery to trip. There is a problem that deterioration is further accelerated.

【0008】劣化時の特性は、時々刻々変化し、最大出
力Wmax 、及び最大出力が得られる電流値Ia ′も、全
く予測ができないため、従来かかる現象を防止すること
が困難であり、劣化した電池の制御は、経験と勘を頼り
に運転員が常時(24時間)監視する以外に対応策がな
く、その自動化が強く要望されていた。
The characteristics at the time of deterioration change every moment, and the maximum output W max and the current value I a ′ at which the maximum output is obtained cannot be predicted at all. Therefore, it is difficult to prevent such a phenomenon conventionally. The control of a deteriorated battery has no countermeasure except for the operator always monitoring (24 hours) based on experience and intuition, and there has been a strong demand for automation.

【0009】本発明は、かかる問題を解決するために創
案されたものである。すなわち本発明の目的は、燃料電
池の出力及び電流を自動的に制御し、常に安全に必要電
力或いはそれに近い最大出力を発電制御できる燃料電池
の保護制御装置を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a fuel cell protection control device that can automatically control the output and current of a fuel cell and always safely and safely generate and control required power or a maximum output close thereto.

【0010】[0010]

【課題を解決するための手段】本発明によれば、出力
指令に対する制限電流Ilimit を予め設定し、運転中
の実スタック電圧Vaと前記制限電流Ilimit との積W
limit を演算し、これにインバータ効率ηをかけてイ
ンバータ制限出力Wiを演算し、該インバータ制限出
力Wiを上限値としてインバータ出力を制御する、こと
を特徴とする燃料電池の保護制御装置が提供される。
According to the present invention, a limit current Ilimit for an output command is set in advance, and a product W of the actual stack voltage Va during operation and the limit current Ilimit is set.
A fuel cell protection control device is provided, which calculates a limit, calculates an inverter limit output Wi by multiplying the limit by an inverter efficiency η, and controls the inverter output with the inverter limit output Wi as an upper limit. You.

【0011】上記本発明の燃料電池の保護制御装置によ
れば、スタック電圧がなんらかの原因で一時的に下降し
ても、低下した実スタック電圧Vaと制限電流Ilimit
に相当するインバータ制限出力Wiを上限値としてイン
バータ出力が制御されるため、直流電流は制限電流Ili
mit 以下に抑制される。従って、制限電流Ilimit を出
力指令に対する正常時の計画電流より安全範囲に設定し
ておけば、それ以上の電流の取出しが抑制され、これに
より燃料利用率の上昇も抑えられ、電圧降下を抑制し、
プラントトリップを未然に防止することができる。
According to the fuel cell protection control apparatus of the present invention, even if the stack voltage temporarily drops for some reason, the reduced actual stack voltage Va and the limit current Ilimit
The inverter current is controlled with the inverter limited output Wi corresponding to the upper limit as the upper limit value.
It is suppressed below mit. Therefore, if the limit current Ilimit is set within a safe range from the normal planned current for the output command, the extraction of a further current is suppressed, thereby suppressing an increase in fuel utilization and suppressing a voltage drop. ,
Plant trips can be prevented beforehand.

【0012】また、電池の劣化を見込んだ範囲で制限電
流Ilimit の設定を行うことにより、燃料電池が劣化し
ても、性能劣化等に対応する範囲で必要電力を取り出す
ことができ、かつ制限電流Ilimit (図5(B)の電流
値Ia ′)を越える電流取出しを防止でき、崩壊的な電
流増加を防止することができる。
Further, by setting the limit current Ilimit in a range in which the deterioration of the battery is anticipated, even if the fuel cell is deteriorated, necessary power can be taken out in a range corresponding to the performance deterioration and the like. Current extraction exceeding Ilimit (current value Ia 'in FIG. 5B) can be prevented, and a destructive current increase can be prevented.

【0013】[0013]

【発明の実施の形態】以下に本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し重複した説明を省略す
る。図1は、本発明の保護制御装置を備えた燃料電池発
電設備の構成図である。この図において、6は燃料電
池、7はインバータ回路、8は出力制御装置であり、出
力制御装置8により出力指令に応じた出力指令Pとイン
バータ出力指令Iを出力し、出力指令Pにより燃料電池
の発電出力を制御するようになっている。かかる構成
は、従来と同様である。
Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a configuration diagram of a fuel cell power plant equipped with the protection control device of the present invention. In this figure, 6 is a fuel cell, 7 is an inverter circuit, 8 is an output control device, which outputs an output command P and an inverter output command I according to an output command by the output control device 8, and outputs the fuel cell according to the output command P. The power generation output is controlled. Such a configuration is the same as the conventional one.

【0014】また、本発明の保護制御装置10は、燃料
電池6の実スタック電圧Vaと実直流電流Iaを常時計
測し、この計測値からインバータ制限出力Wiをインバ
ータ回路7に出力してインバータの出力を制御するよう
になっている。
Further, the protection control device 10 of the present invention constantly measures the actual stack voltage Va and the actual DC current Ia of the fuel cell 6, outputs an inverter limited output Wi to the inverter circuit 7 from the measured values, and outputs the inverter limited output Wi to the inverter circuit 7. The output is controlled.

【0015】図2は、出力制御装置8の制御回路図であ
り、図3は保護制御装置10の制御回路図である。図2
及び図3において、11a〜11dは入力設定器、12
a〜12eは定値設定器、13a〜13bは切換器、1
4a〜14dは上限設定器、15aは下限設定器、16
aは上下限設定器、17aは制限器、18aは差分回
路、19a〜19cは演算器、20a〜20cは積算器
である。
FIG. 2 is a control circuit diagram of the output control device 8, and FIG. 3 is a control circuit diagram of the protection control device 10. FIG.
3 and 11a to 11d, input setting devices, 12a
a to 12e are constant value setting devices, 13a to 13b are switching devices, 1
4a to 14d are upper limiters, 15a is lower limiter, 16
a is an upper / lower limiter, 17a is a limiter, 18a is a difference circuit, 19a to 19c are arithmetic units, and 20a to 20c are integrators.

【0016】図2において、aは電池切断時(解列
時)、bは電池使用時を示している。また、図2におけ
る上段は発電出力指令Pを出力し、下段はインバータ出
力指令Iを出力するようになっている。発電出力指令P
とインバータ出力指令Iは、それぞれ燃料電池の定格出
力に対する比率(%)であり、両者ともインバータ後の
出力である。従って、通常の場合には、発電出力指令P
とインバータ出力指令Iは同一の値となる。
In FIG. 2, a indicates when the battery is cut (disconnected), and b indicates when the battery is used. The upper stage in FIG. 2 outputs a power generation output command P, and the lower stage outputs an inverter output command I. Power generation output command P
And the inverter output command I are each a ratio (%) to the rated output of the fuel cell, and both are outputs after the inverter. Therefore, in a normal case, the power generation output command P
And the inverter output command I have the same value.

【0017】すなわち、図2の上段において、電池使用
時bには、入力設定器11aによる交流出力目標値
(%)が、入力設定器11bによる出力変化率で制限さ
れ(制限器17aによる)、上下限設定器16aで上限
値と下限値を制限されて、出力指令(%)として出力さ
れる。この回路構成により、交流出力目標値に対して、
所定の出力変化率と所定の出力制限の下で徐々に出力指
令値Pを増減することができる。
That is, in the upper part of FIG. 2, when the battery is used, the AC output target value (%) by the input setting device 11a is limited by the output change rate by the input setting device 11b (by the limiter 17a), The upper limit value and the lower limit value are limited by the upper / lower limiter 16a and output as an output command (%). With this circuit configuration, the AC output target value
The output command value P can be gradually increased or decreased under a predetermined output change rate and a predetermined output limit.

【0018】また、図2の下段において、2つの電池電
圧の低い方を上限値とし(14aによる)、これから最
低電圧(12cによる)を差分した電圧から演算器19
aで電池出力(%)を求め、この出力と上段からの出力
指令P(%)の小さい方を上限値とし(14bによ
る)、更に定値設定器12dで設定されたインバータの
下限との大きい方をインバータ出力指令I(%)として
出力する。従って、この回路構成により、実際の電池電
圧を用いかつインバータの最低条件を満たしてインバー
タ出力指令(%)が設定される。
In the lower part of FIG. 2, the lower one of the two battery voltages is set as an upper limit (according to 14a).
The battery output (%) is obtained by a, and the smaller of this output and the output command P (%) from the upper stage is set as the upper limit value (by 14b), and the larger of the lower limit of the inverter set by the constant value setting unit 12d. As an inverter output command I (%). Therefore, with this circuit configuration, the inverter output command (%) is set using the actual battery voltage and satisfying the minimum condition of the inverter.

【0019】図3(A)は図2で出力されたインバータ
出力指令I(%)を更に制限する保護制御回路である。
この図において、演算器19bは、図3(B)に示すよ
うに、出力指令と制限電流Ilimit との関係である。出
力指令に対するこの制限電流Ilimit は、出力指令に対
する正常時の計画電流より、電池の劣化を見込んだ範囲
で安全範囲に設定しておく。また、演算器19cは、図
3(C)に示すように、出力指令に対するインバータ効
率ηの関係である。この保護回路により、予め設定した
出力指令に対する制限電流Ilimit とインバータの直流
電流設定値との小さい方を上限設定器14cで設定し、
この電流値と、平均電圧とセル積層数をかけた運転中の
実スタック電圧Vaとの積Wlimit を積算器20bで演
算し、これにインバータ効率ηをかけてインバータ制限
出力Wiを演算し、このインバータ制限出力Wiを上限
値としてインバータ出力を制御することができる。
FIG. 3A shows a protection control circuit for further limiting the inverter output command I (%) output in FIG.
In this figure, as shown in FIG. 3B, the calculator 19b has a relationship between the output command and the limit current Ilimit. The limit current Ilimit for the output command is set to a safe range within a range in which battery deterioration is expected from the normal planned current for the output command. Further, as shown in FIG. 3C, the arithmetic unit 19c has a relationship between the output command and the inverter efficiency η. With this protection circuit, the smaller of the limit current Ilimit for the preset output command and the DC current set value of the inverter is set by the upper limit setter 14c,
The product Wlimit of the current value, the average voltage and the actual stack voltage Va in operation obtained by multiplying the average cell number by the number of stacked cells is calculated by the integrator 20b. The inverter output can be controlled with the inverter limited output Wi as the upper limit.

【0020】上述した本発明の燃料電池の出力制御装置
10によれば、スタック電圧がなんらかの原因で一時的
に下降しても、低下した実スタック電圧Vaと制限電流
Ilimit に相当するインバータ制限出力Wiを上限値と
してインバータ出力が制御されるため、直流電流は制限
電流Ilimit 以下に抑制される。従って、制限電流Ili
mit を出力指令に対する正常時の計画電流より安全範囲
に設定しておけば、それ以上の電流の取出しが抑制さ
れ、これにより燃料利用率の上昇も抑えられ、電圧降下
を抑制し、プラントトリップを未然に防止することがで
きる。
According to the fuel cell output control apparatus 10 of the present invention described above, even if the stack voltage temporarily drops for some reason, the reduced actual stack voltage Va and the inverter limit output Wi corresponding to the limit current Ilimit. Is controlled as an upper limit, the DC current is suppressed to the limit current Ilimit or less. Therefore, the limiting current Ili
If mit is set within a safe range from the planned current in the normal state for the output command, further extraction of current will be suppressed, thereby suppressing an increase in fuel utilization, suppressing voltage drop, and reducing plant trip. It can be prevented beforehand.

【0021】また、電池の劣化を見込んだ範囲で制限電
流Ilimit の設定を行うことにより、燃料電池が劣化し
ても、性能劣化等に対応する範囲で必要電力を取り出す
ことができ、かつ制限電流Ilimit (図5(B)の電流
値Ia ′)を越える電流取出しを防止でき、崩壊的な電
流増加を防止することができる。
Further, by setting the limit current Ilimit within a range in which the deterioration of the battery is anticipated, even if the fuel cell deteriorates, the required power can be taken out within a range corresponding to the performance deterioration and the like. Current extraction exceeding Ilimit (current value Ia 'in FIG. 5B) can be prevented, and a destructive current increase can be prevented.

【0022】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

【0023】[0023]

【発明の効果】上述したように、本発明の燃料電池の出
力制御装置は、燃料電池の出力及び電流を自動的に制御
し、常に安全に必要電力或いはそれに近い最大出力を発
電制御できる、等の優れた効果を有する。
As described above, the output control device for a fuel cell according to the present invention automatically controls the output and current of the fuel cell so that the required power or the maximum output close to the required power can always be safely controlled. Has an excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の保護制御装置を用いた燃料電池発電設
備の構成図である。
FIG. 1 is a configuration diagram of a fuel cell power generation facility using a protection control device of the present invention.

【図2】出力制御装置の制御回路図である。FIG. 2 is a control circuit diagram of the output control device.

【図3】本発明の保護制御装置の制御回路図である。FIG. 3 is a control circuit diagram of the protection control device of the present invention.

【図4】燃料電池の模式的構成図である。FIG. 4 is a schematic configuration diagram of a fuel cell.

【図5】燃料電池の特性図である。FIG. 5 is a characteristic diagram of a fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質板(タイル) 2 燃料極(アノード) 3 空気極(カソード) 4 単セル 5 バイポーラプレート(セパレータ) 6 燃料電池 7 インバータ回路 8 出力制御装置 10 保護装置 11a〜11d 入力設定器 12a〜12e 定値設定器 13a〜13b 切換器 14a〜14d 上限設定器 15a 下限設定器 16a 上下限設定器 17a 制限器 18a 差分回路 19a〜19c 演算器 20a〜20c 積算器 Reference Signs List 1 electrolyte plate (tile) 2 fuel electrode (anode) 3 air electrode (cathode) 4 single cell 5 bipolar plate (separator) 6 fuel cell 7 inverter circuit 8 output control device 10 protection device 11a to 11d input setting device 12a to 12e fixed value Setting device 13a-13b Switching device 14a-14d Upper limiter 15a Lower limiter 16a Upper / lower limiter 17a Limiter 18a Difference circuit 19a-19c Arithmetic unit 20a-20c Integrator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 出力指令に対する制限電流Ilimit を予
め設定し、運転中の実スタック電圧Vaと前記制限電流
Ilimit との積Wlimit を演算し、これにインバータ効
率ηをかけてインバータ制限出力Wiを演算し、該イン
バータ制限出力Wiを上限値としてインバータ出力を制
御する、ことを特徴とする燃料電池の保護制御装置。
1. A limit current Ilimit for an output command is set in advance, a product Wlimit of an actual stack voltage Va during operation and the limit current Ilimit is calculated, and an inverter limit output Wi is calculated by multiplying the product Wlimit by an inverter efficiency η. A protection control device for a fuel cell, wherein the inverter output is controlled with the inverter limited output Wi as an upper limit value.
JP9178287A 1997-07-03 1997-07-03 Protection control device for fuel cell Pending JPH1126002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9178287A JPH1126002A (en) 1997-07-03 1997-07-03 Protection control device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9178287A JPH1126002A (en) 1997-07-03 1997-07-03 Protection control device for fuel cell

Publications (1)

Publication Number Publication Date
JPH1126002A true JPH1126002A (en) 1999-01-29

Family

ID=16045838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9178287A Pending JPH1126002A (en) 1997-07-03 1997-07-03 Protection control device for fuel cell

Country Status (1)

Country Link
JP (1) JPH1126002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117885A (en) * 2000-09-25 2002-04-19 Sulzer Hexis Ag Operating method of fuel cell
KR20030069622A (en) * 2002-02-22 2003-08-27 현대자동차주식회사 Apparatus for stack safety on fuel cell hybrid power system
WO2005013401A1 (en) * 2003-08-01 2005-02-10 Shindengen Electric Manufacturing Co.,Ltd. Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
WO2009066587A1 (en) * 2007-11-21 2009-05-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9034495B2 (en) 2007-02-05 2015-05-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117885A (en) * 2000-09-25 2002-04-19 Sulzer Hexis Ag Operating method of fuel cell
KR20030069622A (en) * 2002-02-22 2003-08-27 현대자동차주식회사 Apparatus for stack safety on fuel cell hybrid power system
WO2005013401A1 (en) * 2003-08-01 2005-02-10 Shindengen Electric Manufacturing Co.,Ltd. Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
EP1650820A1 (en) * 2003-08-01 2006-04-26 Shindengen Electric Manufacturing Company, Limited Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
KR100670491B1 (en) * 2003-08-01 2007-01-16 신덴겐코교 가부시키가이샤 Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
EP1650820A4 (en) * 2003-08-01 2009-06-03 Shindengen Electric Mfg Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
US7767328B2 (en) 2003-08-01 2010-08-03 Shindengen Electric Manufacturing Co., Ltd. Fuel cell optimum operation point tracking system in power supply device using fuel cell and power supply device provided with this fuel cell optimum operation point tracking system
US9034495B2 (en) 2007-02-05 2015-05-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2009066587A1 (en) * 2007-11-21 2009-05-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2009129639A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Fuel cell system
JP4591721B2 (en) * 2007-11-21 2010-12-01 トヨタ自動車株式会社 Fuel cell system
US8722266B2 (en) 2007-11-21 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
US8221911B2 (en) Method for operating redox flow battery and redox flow battery cell stack
US8217624B2 (en) Power storage system
JP5717172B2 (en) Power supply system
US8837179B2 (en) Alternating current power supply device and method of controlling same
US7083017B2 (en) Fuel cell vehicle
US20130187465A1 (en) Power management system
JP2000173636A (en) Fuel cell system
US8027759B2 (en) Fuel cell vehicle system
US11309557B2 (en) Method to control maximum current for a fuel cell
JP2016186938A (en) Offset control structure and method for controlling voltage value in fuel cell system
JPH1126002A (en) Protection control device for fuel cell
JP3893603B2 (en) Protection control device when battery performance deteriorates
WO2012111410A1 (en) Electric cell system
JP2007059359A (en) Operation control method of solid oxide fuel cell system
JPS6398710A (en) Voltage control circuit for fuel cell
CN114243738A (en) Detection control method for medium-voltage direct-hanging energy storage system
US11855465B1 (en) Full current balancing method of state of charge for energy storage system
KR20160069114A (en) Marine propulsion network and method for controling marine propulsion network
CN110661315A (en) Active equalization device and method for energy storage power station battery
CN103078124A (en) Output control system for fuel battery emergency electric power source startup and control method
KR102424731B1 (en) Fuel cell activation system and method
US20230081860A1 (en) Energy storage system
CN102255522B (en) DC (direct current) power supply system control method adapted to deficient output power of three-phase AC (alternating current) power grid
EP4050685A1 (en) Electricity storage device and method for controlling charge and discharge
JP2021153031A (en) Fuel battery system and method for manufacturing fuel battery system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees