JPH11251495A - Electronic circuit device - Google Patents

Electronic circuit device

Info

Publication number
JPH11251495A
JPH11251495A JP5308698A JP5308698A JPH11251495A JP H11251495 A JPH11251495 A JP H11251495A JP 5308698 A JP5308698 A JP 5308698A JP 5308698 A JP5308698 A JP 5308698A JP H11251495 A JPH11251495 A JP H11251495A
Authority
JP
Japan
Prior art keywords
heat
chip carrier
heat transfer
semiconductor element
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5308698A
Other languages
Japanese (ja)
Inventor
Takashi Osanawa
尚 長縄
Ryoji Okada
亮二 岡田
Mitsuaki Haneda
光明 羽田
Keiji Taguchi
啓二 田口
Yukiko Ikeda
由紀子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5308698A priority Critical patent/JPH11251495A/en
Publication of JPH11251495A publication Critical patent/JPH11251495A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow all semiconductor elements or chip carriers to appropriately adhere to a single cooling member, even if the height of the semiconductor elements or the chip carries scatters and components undulate initially and to allow a component member to be appropriately adhered, even if it is deformed due to the heat generated at operation. SOLUTION: A heat transfer member 7 where a plurality of metal small- gauge wires are formed and grease containing silver fine particles between a semiconductor element or a chip carrier 2 and a cooling member, and the semiconductor element or the chip carrier 2 and the cooling member 3 are allowed to adhere by filling a grease containing silver fine particles into the heat transfer member 7, thus achieving a satisfactory heat-transfer structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子を高密度
に実装した電子回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic circuit device on which semiconductor elements are mounted at a high density.

【0002】[0002]

【従来の技術】近年、電子回路装置に用いられる半導体
素子の高速演算・高密度化が急速に進んでいる。この結
果、半導体素子のマルチ化が進むとともに外部接続端子
が増加し、さらに半導体実装基板への高密度実装が必要
とされてきている。
2. Description of the Related Art In recent years, high-speed operation and high-density semiconductor devices used in electronic circuit devices have been rapidly advanced. As a result, the number of external connection terminals increases as the number of semiconductor elements increases, and high-density mounting on a semiconductor mounting substrate is required.

【0003】この要求に応えるべく、電子回路装置を構
成するモジュールには、半導体素子もしくはチップキャ
リアの電極端子上に付設した電極を介して半導体実装基
板へ機械的,電気的に接合する方法が採用されている。
しかしながら、この方法では、半導体素子と実装基板と
の接触面積が小さくなるために、半導体素子と実装基板
との間の熱抵抗が増し、消費電力の大きい半導体素子の
場合、実装基板以外の放熱経路を特設する必要があっ
た。
In order to meet this demand, a method of mechanically and electrically bonding a module constituting an electronic circuit device to a semiconductor mounting substrate via an electrode provided on an electrode terminal of a semiconductor element or a chip carrier is adopted. Have been.
However, in this method, since the contact area between the semiconductor element and the mounting board is reduced, the thermal resistance between the semiconductor element and the mounting board is increased. Had to be specially provided.

【0004】そこで、半導体素子の背面に放熱部材を密
着させ、新たな放熱経路を作り出す方法が考案された。
しかしながら、単一の放熱部材を密着させる方式では、
次に示す課題が見いだされた。
Therefore, a method has been devised in which a heat radiating member is brought into close contact with the back surface of the semiconductor element to create a new heat radiating path.
However, in a method in which a single heat radiation member is closely attached,
The following issues were found.

【0005】先ず、半導体素子もしくはチップキャリア
の高さのばらつきである。電子回路装置では多数の半導
体素子もしくはチップキャリアが実装されるため、半導
体素子の電極端子に付設した電極(以下、突起電極と記
述)の高さのばらつきや、半導体素子の厚みのばらつき
が原因で、配線基板上に接合された半導体素子面の高さ
や傾きがばらつき、単一の平面を形成することはない。
First, there is a variation in height of a semiconductor element or a chip carrier. Since a large number of semiconductor elements or chip carriers are mounted in an electronic circuit device, variations in the height of electrodes (hereinafter referred to as “protruding electrodes”) attached to the electrode terminals of the semiconductor elements and variations in the thickness of the semiconductor elements may occur. In addition, the height and inclination of the surface of the semiconductor element bonded on the wiring substrate vary, and a single plane is not formed.

【0006】その結果、単一の放熱部材によって個々の
半導体素子を冷却しようとする場合、全ての半導体素子
が放熱部材に密着しない。その中で半導体素子の高さが
低い場合、すき間が生じて伝熱性が悪くなり、半導体素
子は十分な冷却がなされない。逆に半導体素子の高さが
高すぎる場合、放熱部材の押しつけによって過大な力が
加わり、前記の突起電極が変形,破壊する可能性が生じ
る。
As a result, when individual semiconductor elements are to be cooled by a single heat radiating member, all the semiconductor elements do not adhere to the heat radiating member. If the height of the semiconductor element is low, a gap is generated and the heat conductivity is deteriorated, and the semiconductor element is not sufficiently cooled. Conversely, if the height of the semiconductor element is too high, an excessive force is applied due to the pressing of the heat radiating member, and there is a possibility that the protruding electrode is deformed or broken.

【0007】他の課題として、稼働時における半導体装
置の熱変形が考えられる。半導体素子は、電源が投入さ
れることにより発熱する。半導体素子のオン・オフの繰
り返しによる温度変化によって、半導体装置の構成部品
に熱変形が生じる。この際、単一の放熱部材に密着する
個々の半導体素子もしくはチップキャリアに付設した伝
熱部材の剛性が高い場合、半導体素子もしくは突起電極
に、圧縮・引張りの応力が生じ、長期間の稼働によって
は、半導体素子もしくは突起電極が破壊する可能性があ
る。
As another problem, thermal deformation of the semiconductor device during operation may be considered. The semiconductor element generates heat when the power is turned on. Due to the temperature change due to the repeated on / off of the semiconductor element, the components of the semiconductor device undergo thermal deformation. At this time, if the rigidity of the individual semiconductor element or the heat transfer member attached to the chip carrier that is in close contact with the single heat radiation member is high, compressive / tensile stress is generated in the semiconductor element or the protruding electrode, resulting in long-term operation. The semiconductor element or the protruding electrode may be broken.

【0008】これらの課題を解決するために以下の冷却
構造が考案された。高さのばらつく半導体素子の接触面
に、複数本の金属細線を介して放熱部材に接触させる方
法が特開平7−297327 号公報に開示されている。これ
は、複数本の金属細線のたわみがクッションとして作用
し、半導体素子の高さのばらつきをキャンセルするもの
である。
The following cooling structure has been devised to solve these problems. Japanese Patent Application Laid-Open No. 7-297327 discloses a method in which a contact surface of a semiconductor element having a variable height is brought into contact with a heat radiating member through a plurality of thin metal wires. This is because the bending of the plurality of fine metal wires acts as a cushion, and cancels the height variation of the semiconductor element.

【0009】[0009]

【発明が解決しようとする課題】特開平7−297327 号公
報に記載の構造は、複数の金属細線の端部を放熱部材に
接触させ、半導体素子の熱を放熱部材に伝えるものであ
るが、金属細線の接触部の面積が小さいため、より高発
熱の半導体素子の場合は、熱を十分に伝えることができ
ない。
The structure described in Japanese Patent Application Laid-Open No. 7-297327 is such that the ends of a plurality of fine metal wires are brought into contact with a heat dissipating member and the heat of the semiconductor element is transmitted to the heat dissipating member. Since the area of the contact portion of the thin metal wire is small, heat cannot be sufficiently transmitted in the case of a semiconductor element having higher heat generation.

【0010】本発明の目的は、半導体素子の冷却面もし
くは伝熱面と、放熱部材との間に熱伝導性を有し、かつ
変形を吸収する伝熱部材を配置して、半導体素子の高さ
のばらつき及び稼働時の熱変形に対応するものであり、
半導体素子の発熱量が増加した場合でも、半導体素子の
熱を十分に放熱部材へと伝え、かつ稼働時の熱変形を吸
収できる電子回路装置を提供することにある。
An object of the present invention is to dispose a heat transfer member having thermal conductivity and absorbing deformation between a cooling surface or a heat transfer surface of a semiconductor element and a heat radiating member, thereby improving the height of the semiconductor element. It corresponds to the variation of the height and the thermal deformation during operation,
It is an object of the present invention to provide an electronic circuit device capable of sufficiently transmitting heat of a semiconductor element to a heat radiating member and absorbing thermal deformation during operation even when the amount of heat generated by the semiconductor element increases.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するため、以下のいずれかの構造を用いた。
In order to achieve the above object, the present invention employs any one of the following structures.

【0012】高さの異なる複数の半導体素子もしくはチ
ップキャリアと、これらに対して共通の単一の放熱部材
との間に、銀微粒子を含有したグリースもしくはオイル
を充填した伝熱部材を付設し、その伝熱部材を介して半
導体素子もしくはチップキャリアと伝熱部材とを密着さ
せる構造とした。
[0012] A heat transfer member filled with grease or oil containing silver fine particles is provided between a plurality of semiconductor elements or chip carriers having different heights and a single heat radiation member common thereto. The semiconductor element or the chip carrier and the heat transfer member were brought into close contact with each other via the heat transfer member.

【0013】上記の伝熱部材は、複数の金属細線の一端
を束ねて固着し、これを2個用いて金属細線の自由端側
を向かい合わせて一組とした構造とした。
The above-described heat transfer member has a structure in which one end of a plurality of thin metal wires is bundled and fixed, and two sets of the thin metal wires are used to face the free ends of the thin metal wires.

【0014】半導体素子もしくはチップキャリアの放熱
面に低融点金属を被覆して形成した低融点金属層は、そ
の厚みを半導体素子もしくはチップキャリアの高さばら
つきや構成部品の初期のうねりに応じた厚さ,形状と
し、伝熱部材を所定の位置に付設する役割を果たす。
The low-melting-point metal layer formed by coating the heat-dissipating surface of the semiconductor element or the chip carrier with the low-melting-point metal has a thickness corresponding to the height variation of the semiconductor element or the chip carrier and the initial undulation of the components. It has a shape and serves to attach the heat transfer member to a predetermined position.

【0015】グリースもしくはオイルを充填した伝熱部
材は、稼働時に生じる熱変形を吸収する。また充填する
グリースもしくはオイルは、形成された金属細線に密着
し、接触熱抵抗を低減させ、良好な伝熱状態とする。
The heat transfer member filled with grease or oil absorbs thermal deformation generated during operation. The grease or oil to be filled is in close contact with the formed fine metal wire to reduce the contact thermal resistance and to make a good heat transfer state.

【0016】[0016]

【発明の実施の形態】本発明の一実施例を図を用いて以
下に説明する。図1は本発明の斜視概略図であり、内部
の構造を説明するため一部構成部品をカットしている。
1は本発明の電子回路装置を構成するモジュールであ
り、チップキャリア2,放熱部材3,配線基板4等から
構成される。チップキャリア2は配線基板4上に格子状
に複数配置されている。5は配線基板4の四辺に接合さ
れているフレームである。本実施例ではチップキャリア
2は熱伝導性に優れる窒化アルミ,フレーム5は鉄−ニ
ッケル合金で製作した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view of the present invention, in which some components are cut away to explain the internal structure.
Reference numeral 1 denotes a module that constitutes the electronic circuit device of the present invention, and includes a chip carrier 2, a heat radiation member 3, a wiring board 4, and the like. A plurality of chip carriers 2 are arranged on the wiring substrate 4 in a grid pattern. Reference numeral 5 denotes a frame joined to four sides of the wiring board 4. In this embodiment, the chip carrier 2 is made of aluminum nitride having excellent thermal conductivity, and the frame 5 is made of an iron-nickel alloy.

【0017】6は配線基板4のチップキャリア2搭載面
の背面に設けられた連結ピンであり、配線基板内を通り
チップキャリア2と連結されている。連結ピン6を大基
板(図示せず)に差込むことによって、モジュール1を
電気的,機械的に連結接続する。放熱部材3は腐食防止
のためニッケル−めっきを施した銅で構成され、内部に
冷却材の流路3aを有し、上面に冷却材の流入出口3b
が設けられている。
Reference numeral 6 denotes a connecting pin provided on the rear surface of the chip carrier 2 mounting surface of the wiring board 4, and is connected to the chip carrier 2 through the inside of the wiring board. The module 1 is electrically and mechanically connected by inserting the connecting pins 6 into a large substrate (not shown). The heat dissipating member 3 is made of nickel-plated copper for corrosion prevention, has a coolant passage 3a inside, and a coolant inflow / outlet 3b on the upper surface.
Is provided.

【0018】7は伝熱部材であり、チップキャリア2と
放熱部材3との間に付設される。放熱部材3とフレーム
5とはボルト締結され(図示せず)、モジュール1を構
成する。なお、ここでは液体冷却を例に取り図示してい
るが、空冷の場合は放熱部材3をアルミニウム等で構成
された放熱フィンとすればよく、本発明は冷却方法に制
限されるものではない。
Reference numeral 7 denotes a heat transfer member, which is provided between the chip carrier 2 and the heat radiation member 3. The heat dissipating member 3 and the frame 5 are bolted (not shown) to form the module 1. Here, liquid cooling is taken as an example, but in the case of air cooling, the heat radiating member 3 may be a heat radiating fin made of aluminum or the like, and the present invention is not limited to a cooling method.

【0019】図2は詳細構造を示すチップキャリア2を
含んだ拡大縦断面図である。但し、煩雑さを避けるため
チップキャリア2の断面を示していない。図中8はチッ
プキャリア2と配線基板4とを接続する突起電極であ
り、チップキャリア2と配線基板4との接合面に多数配
列されている。通常、突起電極8ははんだで構成されて
おり、チップキャリア2内の半導体素子(図示せず)と
配線基板4との電気的な接続を行い、さらに配線基板4
上にチップキャリア2を機械的に固定する役割を果た
す。
FIG. 2 is an enlarged vertical sectional view including a chip carrier 2 showing a detailed structure. However, a cross section of the chip carrier 2 is not shown to avoid complexity. In the drawing, reference numeral 8 denotes protruding electrodes for connecting the chip carrier 2 and the wiring board 4, and many are arranged on the joint surface between the chip carrier 2 and the wiring board 4. Usually, the protruding electrode 8 is made of solder, and electrically connects a semiconductor element (not shown) in the chip carrier 2 to the wiring board 4.
It plays a role of mechanically fixing the chip carrier 2 thereon.

【0020】伝熱部材7には複数の金属細線7aが形成
されている。伝熱部材7は熱伝導性のよい窒化アルミで
構成され、金属細線7aの形成面が対向する配置関係
で、低融点金属9によって、一方がチップキャリア2
に、一方が放熱部材3に固着されている。伝熱部材7に
形成された金属細線7aの間には、熱伝導性に優れたグ
リース(図示せず)が充填されている。
The heat transfer member 7 is formed with a plurality of fine metal wires 7a. The heat transfer member 7 is made of aluminum nitride having a good thermal conductivity, and one of the chip carriers 2 is formed by the low-melting-point metal 9 in an arrangement relationship in which the forming surfaces of the metal wires 7a face each other.
One is fixed to the heat radiation member 3. Grease (not shown) having excellent thermal conductivity is filled between the thin metal wires 7 a formed on the heat transfer member 7.

【0021】グリースは金属に比較して熱伝導性に劣る
ため、熱伝導性を高めるには銀,銅,アルミニウム等の
金属微粒子、もしくは炭素,窒化アルミ,酸化亜鉛,二
酸化シリコン等の非金属微粒子からなる高熱伝導性微粒
子を分散させねばならない。
Since grease is inferior in heat conductivity to metal, in order to enhance the heat conductivity, fine particles of metal such as silver, copper and aluminum, or fine particles of non-metal such as carbon, aluminum nitride, zinc oxide and silicon dioxide are used. Must be dispersed.

【0022】しかしながら、微粒子を過多に分散する
と、剛体となり弾性が失われる。本実施例では熱伝導性
が優れた鱗片状の微細な銀微粒子をグリースに分散,含
有している。このため、良好な弾性特性を維持しつつ、
優れた熱伝導性を有する。充填したグリースは、対向配
置の伝熱部材7間同士の熱的な密着性を高め、接触熱抵
抗を低減する。
However, if the fine particles are excessively dispersed, they become rigid and lose elasticity. In the present embodiment, fine flake-like silver fine particles having excellent thermal conductivity are dispersed and contained in grease. For this reason, while maintaining good elastic properties,
Has excellent thermal conductivity. The filled grease enhances the thermal adhesion between the opposed heat transfer members 7 and reduces the contact thermal resistance.

【0023】本発明におけるチップキャリアの高さのば
らつき及び構成部品の初期のうねりに対する一実施例を
図3及び図4を用いて説明する。チップキャリアが実装
される配線基板4上のうねりや、チップキャリア単体の
寸法のばらつき、さらには組み立て誤差により、組み付
けた際にチップキャリアの高さにばらつきが生じる。本
実施例におけるチップキャリアと伝熱部材7との距離は
目標2.12mm に対して2.05mmから2.21mmの範囲
でばらつく。そこで、チップキャリアの熱を伝熱部材7
を介して放熱部材3へと伝える方式であるため、チップ
キャリアと放熱部材3との間の熱抵抗をできるだけ小さ
くする必要がある。
One embodiment of the present invention for the variation in the height of the chip carrier and the initial undulation of the components will be described with reference to FIGS. 3 and 4. FIG. Due to undulations on the wiring board 4 on which the chip carrier is mounted, variations in the dimensions of the chip carrier alone, and assembly errors, variations in the height of the chip carrier when assembled are caused. In this embodiment, the distance between the chip carrier and the heat transfer member 7 varies from 2.05 mm to 2.21 mm with respect to the target of 2.12 mm. Therefore, the heat of the chip carrier is transferred to the heat transfer member 7.
Therefore, it is necessary to reduce the thermal resistance between the chip carrier and the heat radiating member 3 as much as possible.

【0024】図3は詳細構造を示すチップキャリア2
a,2b,2cを含む縦断面図である。但し、チップキ
ャリア2a,2b,2cは断面を示していない。
FIG. 3 shows a chip carrier 2 showing a detailed structure.
It is a longitudinal section containing a, 2b and 2c. However, the cross sections of the chip carriers 2a, 2b, 2c are not shown.

【0025】対向配置した伝熱部材7間に充填したグリ
ース(図示せず)は、低融点金属9に比較して熱伝導性
に劣るため、接触熱抵抗がある値以下になるような相対
距離で伝熱部材7を設置する。このときに生じるチップ
キャリアと放熱部材3との距離の違いは、伝熱部材7の
固着のために用いる低融点金属9の形成厚さを変えるこ
とによって調整している。これにより、チップキャリア
2a,2b,2cの高さのばらつきが生じていても、各
チップキャリアの熱を効率よく放熱部材3へと伝えるこ
とができる。なお、本発明例ではパッケージ内の部品の
酸化防止のため窒素ガスを封入し、フレーム5の溝に設
置したOリング10で密閉性を保持し、長期的な信頼性
を高めている。
The grease (not shown) filled between the opposed heat transfer members 7 is inferior in thermal conductivity as compared with the low melting point metal 9, so that the relative distance at which the contact heat resistance becomes a certain value or less. The heat transfer member 7 is installed. The difference in the distance between the chip carrier and the heat radiating member 3 which occurs at this time is adjusted by changing the thickness of the low melting point metal 9 used for fixing the heat transfer member 7. Thus, even if the height of the chip carriers 2a, 2b, 2c varies, the heat of each chip carrier can be efficiently transmitted to the heat radiation member 3. In the example of the present invention, nitrogen gas is sealed to prevent oxidation of the components in the package, and the O-ring 10 installed in the groove of the frame 5 maintains the hermeticity to enhance long-term reliability.

【0026】図4は低融点金属9で伝熱部材7とチップ
キャリア2との固着状態、及び、低融点金属9で伝熱部
材7と放熱部材3との固着状態を示す接触部断面図の概
念図であり、説明のため面のうねりを強調して図示して
いる。伝熱部材7は一端が自由端の金属細線を複数本固
着した構造になっており、金属細線7aの形成面を向か
い合わせて対向配置し、一組の伝熱部材とした。低融点
金属9が固着されるチップキャリア2,放熱部材3及び
伝熱部材7の表面は滑らかではあるが、微視的には平坦
ではなく、微少にうねりが生じている。これらのうねり
も、低融点金属9で埋め合わせることができ、伝熱部材
7を介して各チップキャリアの熱を効率よく放熱部材3
へと伝えることができる。
FIG. 4 is a sectional view of a contact portion showing a fixed state between the heat transfer member 7 and the chip carrier 2 with the low melting point metal 9 and a fixed state between the heat transfer member 7 and the heat radiating member 3 with the low melting point metal 9. It is a conceptual diagram, and swelling of a surface is emphasized for explanation. The heat transfer member 7 has a structure in which a plurality of thin metal wires having one free end are fixed, and the heat transfer members 7 are arranged facing each other with the forming surfaces of the thin metal wires 7a facing each other to form a set of heat transfer members. Although the surfaces of the chip carrier 2, the heat dissipating member 3, and the heat transfer member 7 to which the low melting point metal 9 is fixed are smooth, they are not microscopically flat but slightly undulated. These undulations can be compensated for by the low melting point metal 9, and the heat of each chip carrier can be efficiently radiated through the heat transfer member 7.
Can be communicated to

【0027】本発明における稼働時の熱変形に対する実
施例を図5及び図6を用いて説明する。図5及び図6は
伝熱部材7及びグリース11の構造を示す接触部縦断面
の概念図で、図5が稼働前、図6が稼働中である。図5
のように金属細線7aの形成面を向かい合わせた伝熱部
材7の隙間にグリース11を充填し、グリース11には
鱗片状の銀微粒子11aがほぼ均一に分散されている。
チップキャリア(図示せず)からの熱は、伝熱部材7,
金属細線7a及び充填したグリース11を介して、放熱
部材3(図示せず)へと伝えることができる。この状態
でチップキャリアに電源を投入することにより半導体素
子が発熱し、モジュールを構成する各部品が熱によって
変形し、図6のように伝熱部材7の金属細線7aの形成
面の平行度が保たれなくなる。
An embodiment of the present invention for thermal deformation during operation will be described with reference to FIGS. FIGS. 5 and 6 are conceptual views of the longitudinal section of the contact portion showing the structure of the heat transfer member 7 and the grease 11, wherein FIG. 5 is before operation and FIG. 6 is in operation. FIG.
Grease 11 is filled in the gap between the heat transfer members 7 facing the formation surface of the thin metal wire 7a as described above, and the grease 11 has flake-like silver fine particles 11a dispersed almost uniformly.
The heat from the chip carrier (not shown) is
The heat can be transmitted to the heat radiating member 3 (not shown) via the thin metal wire 7a and the filled grease 11. When the power is supplied to the chip carrier in this state, the semiconductor element generates heat, and each component constituting the module is deformed by the heat. As shown in FIG. Will not be maintained.

【0028】本実施例では、構成部品に変形が生じた場
合でも、チップキャリア(図示せず)からの熱は、伝熱部
材7に形成した金属細線7a及び充填した銀微粒子11
a含有のグリース11を介して、放熱部材(図示せず)
へと伝えることができる。グリース11は良好な粘性特
性を有しており、適度の結合力があるためグリースが流
れ出ることがなく、グリース11の必要量を長期間、保
持することができる。その結果、長期的にも高い信頼性
が得られる。
In this embodiment, even when the components are deformed, the heat from the chip carrier (not shown) is transferred to the fine metal wires 7 a formed on the heat transfer member 7 and the filled silver fine particles 11.
Heat dissipation member (not shown) via grease 11 containing a
Can be communicated to The grease 11 has good viscous properties and has an appropriate bonding force, so that the grease does not flow out, and the required amount of the grease 11 can be held for a long time. As a result, high reliability can be obtained even in the long term.

【0029】[0029]

【発明の効果】本発明によれば、高さにばらつきのある
半導体素子を単一の放熱部材に熱的に接続して冷却する
ことができ、さらに稼働時においても、半導体チップと
放熱部材は熱的に接続しているため、信頼性の高い電子
回路装置を提供することができる。
According to the present invention, a semiconductor element having a height variation can be thermally connected to a single heat dissipating member for cooling. Further, even during operation, the semiconductor chip and the heat dissipating member can be cooled. Because of the thermal connection, a highly reliable electronic circuit device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である電子回路装置モジュー
ルの一部切断面を含む概略斜視図。
FIG. 1 is a schematic perspective view including a partially cut surface of an electronic circuit device module according to an embodiment of the present invention.

【図2】本発明の一実施例であるチップキャリアを含む
縦断面図。
FIG. 2 is a longitudinal sectional view including a chip carrier according to one embodiment of the present invention.

【図3】本発明の一実施例であるチップキャリアを含む
モジュール全体の縦断面図。
FIG. 3 is a longitudinal sectional view of an entire module including a chip carrier according to one embodiment of the present invention.

【図4】図3に示す伝熱部材の接触状態を示す縦断面の
概念図。
FIG. 4 is a conceptual diagram of a longitudinal section showing a contact state of the heat transfer member shown in FIG.

【図5】伝熱部材間に充填したグリースの状態を示す接
触部縦断面の熱変形前の概念図。
FIG. 5 is a conceptual diagram of a vertical section of a contact portion before thermal deformation showing a state of grease filled between heat transfer members.

【図6】図5に示す構成部品の熱変形の状態を示す接触
部縦断面の概念図。
FIG. 6 is a conceptual diagram of a vertical section of a contact portion showing a state of thermal deformation of the components shown in FIG.

【符号の説明】[Explanation of symbols]

1…モジュール、2…チップキャリア、3…放熱部材、
3a…流路、3b…流入出口、4…配線基板、5…フレ
ーム、6…連結ピン、7…伝熱部材、7a…金属細線、
8…突起電極、9…低融点金属、10…Oリング、11
…グリース、11a…銀微粒子。
DESCRIPTION OF SYMBOLS 1 ... Module, 2 ... Chip carrier, 3 ... Heat dissipation member,
3a: flow path, 3b: inflow / outlet, 4: wiring board, 5: frame, 6: connecting pin, 7: heat transfer member, 7a: thin metal wire,
8 ... projecting electrode, 9 ... low melting point metal, 10 ... O-ring, 11
... Grease, 11a ... Silver fine particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 啓二 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 池田 由紀子 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Keiji Taguchi 502 Kandachicho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi Ltd. Inside the mechanical laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体素子もしくはそのチップキャリアを
複数個搭載した配線基板と、放熱部材を有する電子回路
装置において、複数の金属細線を有した伝熱部材が向か
い合って付設され、さらに熱伝導性微粒子を含有したグ
リースもしくはオイルが該伝熱部材間に充填され、該半
導体素子もしくはそのチップキャリアと、該放熱部材が
接触することを特徴とする電子回路装置。
An electronic circuit device having a heat dissipation member and a wiring board on which a plurality of semiconductor elements or chip carriers thereof are mounted, and a heat transfer member having a plurality of fine metal wires are provided to face each other. An electronic circuit device, wherein a grease or an oil containing Ni is filled between the heat transfer members, and the semiconductor element or a chip carrier thereof is in contact with the heat dissipation member.
JP5308698A 1998-03-05 1998-03-05 Electronic circuit device Pending JPH11251495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5308698A JPH11251495A (en) 1998-03-05 1998-03-05 Electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5308698A JPH11251495A (en) 1998-03-05 1998-03-05 Electronic circuit device

Publications (1)

Publication Number Publication Date
JPH11251495A true JPH11251495A (en) 1999-09-17

Family

ID=12932983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5308698A Pending JPH11251495A (en) 1998-03-05 1998-03-05 Electronic circuit device

Country Status (1)

Country Link
JP (1) JPH11251495A (en)

Similar Documents

Publication Publication Date Title
US5528456A (en) Package with improved heat transfer structure for semiconductor device
CA1228173A (en) Cooling system for electronic circuit device
US6354485B1 (en) Thermally enhanced packaged semiconductor assemblies
JP2548350B2 (en) Heat dissipation interconnect tape used for tape self-bonding
US10978371B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP3281220B2 (en) Circuit module cooling system
JPS596565A (en) Heat conductive structure
JP2008060172A (en) Semiconductor device
JP2856193B2 (en) Multi-chip module mounting structure
JPS6132819B2 (en)
JPH1154673A (en) Semiconductor device
JP2853666B2 (en) Multi-chip module
JPH11121662A (en) Cooling structure for semiconductor device
JPH0864731A (en) Heat conducting member and cooler and electronic apparatus employing the same
JPH04291750A (en) Head radiating fin and semiconductor integrated circuit device
JP2018195717A (en) Semiconductor module, semiconductor module base plate and semiconductor device manufacturing method
JPH0637217A (en) Semiconductor device
JPH08186200A (en) Semiconductor device
US6111315A (en) Semiconductor package with offset die pad
JPH11251495A (en) Electronic circuit device
JPH11111897A (en) Multi-chip semiconductor device
CN115249666A (en) Chip packaging structure and electronic equipment
JPH06252299A (en) Semiconductor device and board mounted therewith
JP5120320B2 (en) Package structure, printed circuit board on which the package structure is mounted, and electronic apparatus having the printed circuit board
JPH05315480A (en) Radiator