JPH11218437A - 微量液量判別装置 - Google Patents

微量液量判別装置

Info

Publication number
JPH11218437A
JPH11218437A JP3537598A JP3537598A JPH11218437A JP H11218437 A JPH11218437 A JP H11218437A JP 3537598 A JP3537598 A JP 3537598A JP 3537598 A JP3537598 A JP 3537598A JP H11218437 A JPH11218437 A JP H11218437A
Authority
JP
Japan
Prior art keywords
light
container
sample
amount
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3537598A
Other languages
English (en)
Inventor
Takayuki Ushida
牛田高行
Fumio Aida
合田文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisen Sangyo Co Ltd
Mitsubishi Kagaku Bio-Clinical Laboratories Inc
Original Assignee
Daisen Sangyo Co Ltd
Mitsubishi Kagaku Bio-Clinical Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisen Sangyo Co Ltd, Mitsubishi Kagaku Bio-Clinical Laboratories Inc filed Critical Daisen Sangyo Co Ltd
Priority to JP3537598A priority Critical patent/JPH11218437A/ja
Publication of JPH11218437A publication Critical patent/JPH11218437A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

(57)【要約】 【課題】従来目視で行われていた判別作業を自動化する
こと。自動化に当たっては、検体をプレートに入れたま
ま判別できること。さらに、装置原価が低廉であるこ
と。 【解決手段】微量液量判別装置の容器10の底面材質を
透明にするとともに、前記容器10の底面を底部に向か
うにつれて断面積が小さくなる形状にし、前記容器10
の中心を通る鉛直線上に光源20を配置する一方、前記
容器10に前記検体30が溜まっているときの集光点近
傍に受光素子40を配置し、受光素子の受光量の多寡に
よって検体量を判別する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は臨床用の自動化学
分析装置に関し、特に分析対象となる液体(以下検体と
いう)が分析に必要な量だけ容器に入っているか否かを
判別する装置に関する。
【0002】
【従来の技術】臨床用の自動化学分析装置では、容器1
0を横方向に多数集合した図1の11に示すような構造
体(以下プレートという)を用い、この各容器に入って
いる検体を分析する。このプレートに検体を分け入れる
(以下分注という)のには分注機と呼ばれる装置を使用
する。しかし、分注機は常に適切な量の検体をプレート
に分け入れられるわけではない。多数の分注に際して
は、サンプルの多寡や質、それに分注機の動作精度の影
響で検体の量が少なすぎる場合や検体が全く分け入れら
れない場合もある。このような検体をそのまま自動化学
分析装置で分析すると誤った結果が出る。そこで、分注
された検体の体積が少なすぎないか分析前に判別する作
業(以下判別という)が必要になる。従来、この判別作
業は人間が目視で行うことが多かった。目視判別は簡便
だからである。一方、自動化する場合はたとえば特開昭
60−86439号公報に記載されているような微量定
量装置を使用することも考えられる。この公報に記載さ
れている微量定量装置は図9のような構成になってい
る。すなわち、サンプリングノズル51の中にある検体
30を光源54で横から照明し、1次元撮像デバイス5
5を用いて検体と上部空気52との接点と、検体と下部
空気53との接点を検知し、検体の長さを認識するもの
である。検体の長さがわかれば、これにサンプリングノ
ズルの断面積を乗じて検体の体積が計算できる。検体の
体積がわかれば正確な判別ができる。
【0003】
【発明が解決しようとする課題】しかし、一般にプレー
トに分注される検体の量は10μl(マイクロリット
ル)内外である。この量では検体を直径7mmの丸底容
器に入れた場合、検体深さがわずか1mmにしかならな
い。このため、目視で検体量を推し量るのは容易でな
い。特に検体の着色が少ない場合は検体の有無すら認識
するのが困難で、判別は熟練を要する作業であった。し
かも判別は正確かつ迅速に行う必要がある上、臨床用の
自動化学分析は24時間任意の時刻に実施されることが
多い。これらの事情から、近年特に判別の自動化の要請
が強い。一方、特開昭60−86439号公報に記載さ
れたような微量定量装置をこの判別に転用するには、以
下のような課題を解決する必要がある。第1に、この公
報に記載された微量定量装置は、検体の上下を空気層で
挟まなければならない。しかし、自動化学分析用プレー
トの容器は直径7mm程度あり、この太さでは空気層で
挟むのは困難である。第2に、この公報に記載された微
量定量装置は、容器の横に光源や1次元撮像デバイスを
設置する必要がある。このため、多数の容器が横方向に
集積されているプレートに検体を入れたまま判別するこ
とができない。第3に、1次元撮像デバイスやその駆動
回路は高価であるため、この公報に記載された装置原価
は高い。判別作業自身の付加価値はさほど高くなく、こ
れを自動化した装置も原価が低廉であることが求められ
る。
【0004】
【課題を解決するための手段】微量液量判別装置の容器
10の底面材質を透明にするとともに、前記容器10の
底面を底部に向かうにつれて断面積が小さくなる形状に
し、前記容器10の中心を通る鉛直線上に光源20を配
置する一方、前記容器10に前記検体30が溜まってい
るときの集光点近傍に受光素子40を配置し、受光素子
の受光量の多寡によって検体量を判別する。
【0005】
【発明の実施の形態】図1に本発明の実施形態を示す。
10は底面材質が透明で底面形状が底部に向かうにつれ
て断面積が小さくなっている容器である。底面形状が底
部に向かうにつれて断面積が小さくなっている形状には
断面がU字型のいわゆる丸底の容器や試験管、さらには
図2のような断面がV字型の容器が含まれる。11は上
記容器が横方向に集積されたプレートで、96ケの容器
が9mmピッチで集積されたいわゆるマイクロプレート
や、40ケの容器がやや広い間隔で集積されたいわゆる
40穴プレートが含まれる。20は光源である。本実施
形態では波長800nmの近赤外光を発光するLEDが
用いられている。光源には白熱灯、放電灯、レーザーな
どの実光源の他、これらの光をレンズやファイバーで導
いた図8のような間接的な光源も含まれる。30は検体
で、血液、血清、尿など各種自動化学分析装置の検査対
象物が含まれる。40は受光素子で、フォトダイオー
ド、フォトトランジスタ、光電子倍増管などのように直
接光電変換を行う素子の他、図8のようにこれらの素子
に光を導くレンズやファイバーも含まれる。
【0006】以下、図3から図5を用いて、本発明の作
用を説明する。図3は容器10に検体が入っていない場
合の光線の振る舞いを表したものである。光源は容器上
端から20mm上の位置に配置されている。容器は屈折
率1.49のアクリル樹脂でできており、容器内側高さ
20mm、内側直径7mm、底厚0.8mmである。容
器の底面は内側半径3.5mm、外側半径4.3mmの
半球でできている。受光素子は容器底面下18mmに配
置されており、受光径は直径5mmである。光源を出た
光は容器の丸い底面で屈折し、図3のように発散するこ
とがわかる。すなわち、容器内側は凹レンズとして働
き、容器外側は凸レンズとして働くため両者の働きはほ
ぼ相殺され、容器全体としては焦点距離のきわめて長い
レンズとして働き、光を集める作用はほとんどない。計
算によると、光源から光軸と±5.7°以内で出射した
光の内、0.6%が受光素子に入射する。次に、図4は
容器に屈折率1.33の検体が5μl入っている場合の
光線の振る舞いを示したものである。検体は容器の中で
0.7mmの深さに溜まり、表面の直径はφ4.2mm
になる。この部分に入射した光は液体と容器で屈折さ
れ、図4に示したような光路を通って受光素子40に入
射する。すなわち容器内側の凹面は検体との屈折率差が
少ないため凹レンズ作用が小さくなり、全体として小さ
な平凸レンズの作用をする。計算によると、光源から光
軸と±5.7°で出射した光の内、28%が受光素子に
入射する。次に、図5は容器に屈折率1.33の検体が
80μl入っている場合の光線の振る舞いを示したもの
である。検体は容器の中で3.2mmの深さに溜まり、
表面の直径はφ7mmになる。この部分に入射した光は
液体と容器で屈折され、図5に示したような光路を通っ
て受光素子40に入射する。つまり平凸レンズの口径は
大きくなる。計算によると、光源から光軸と±5.7°
で出射した光の内、78%が受光素子に入射する。
【0007】このように、検体の量が多くなると検体の
表面の直径が大きくなり、受光素子に入射する光量が増
える。すなわち、本発明は検体と容器によって作られる
レンズの次の性質を利用したものである。第1に、レン
ズの焦点距離はレンズを形成する物質の屈折率とその曲
率半径だけによって決定され、レンズの口径には無関係
である。従って、容器に入る検体の量に関わりなく光源
から出た光の集光点は一定で、受光素子をここに配置す
ることによって受光素子には常にレンズを通った全ての
光が入射することになる。第2にレンズによって集めら
れる光の量はレンズの口径の自乗に比例する。従って検
体の体積が増加して検体の表面の面積が増大すれば受光
素子に入射する光量が増す。図6は容器が直径7mmの
丸底の場合に、検体の体積と受光素子に入射する光量の
関係を計算したものである。これに見られる通り、検体
量が0〜80μlまで増加するにつれて受光量も増す。
このため、たとえば自動化学分析装置に必要な検体の最
低量が5μlの場合、相対光量35%のところに閾値を
設定しておけば自動判別が可能になる。本発明によれば
検体が80μlになって容器底部の細くなった部分(半
球部)を満たすまで、検体量と光量の相関関係が維持さ
れる。図1に示したような丸底の容器は、検体量が少な
い領域で急速に光量が増加し、図2に示したようなV底
の容器は、比較的検体量が多い領域まで光量の変化が大
きい。
【0008】さて、図7を用いて実施例を詳しく説明す
る。本実施例では光源20として、中心波長800nm
のLED21と、レンズ22を用いる。検体が血清の場
合、透明な血清の他に血球中のヘモグロビンが溶出した
血清もある。この場合、可視光全域の光を使用するとヘ
モグロビンが溶出した血清の方が光の透過率が悪いた
め、受光素子に入射する光量が減少し、判定誤差を生じ
る。しかし、波長を赤から近赤外域に選べば血液が溶け
ていても透過率の差はほとんど無い。このため近赤外領
域の波長800nmのLEDを用いたのである。LED
21を出射した光はレンズ22で±5.7°のゆるやか
な発散光に変換される。これによって光源を出た光を効
率よく受光素子に入射させることができる。容器10の
中には検体30が溜まっており、検体の表面に入射した
光は検体と容器で形成される凸レンズ作用で受光素子に
集光する。一方、検体に入射しなかった光は容器の屈折
作用で発散し、受光素子に入射しない。受光素子上部に
はフィルター41が設置されている。このフィルターは
波長800nmの光だけを透過し、他の光をカットする
ものである。これによって受光素子にはLED21から
出た光だけが入射し、室内光など外乱光はほとんど入射
しない。これによって外乱光の影響を最低限に抑えてい
る。なお、本実施例では容器の上に光源を配置し、容器
の下に受光素子を配置したが、容器の下に光源を配置
し、容器の上に受光素子を配置してもかまわない。ま
た、受光素子は容器に検体が入っている際の集光位置に
配置するのが好ましいが、受光素子や集光径がある程度
の大きさを持つため、実際には多少集光位置から離れて
いても判別に支障はない。本実施例では検体が血清であ
ったので近赤外光を用いたが、検体の種類によって適切
な波長を選択するのが望ましい。たとえば検体が尿の場
合は、尿によって波長400〜500nmの透過率にバ
ラツキがあるので、これより長波長域の光を用いるのが
望ましい。
【0009】さて、再び図1を用いて判別全体の流れを
説明する。プレート11には前工程の分注機で検体が分
注されている。本判別機でプレートは図1の矢印方向に
搬送される。このプレートには搬送方向と直交方向に8
ケの容器が並んでおり、これに合わせて光源20と受光
素子40も8ケずつ設置されている。プレートの搬送と
同期して光源が点灯され、受光素子40の出力が監視さ
れる。各受光素子の出力が閾値に達しない場合は検体の
量が規定値未満であると判断される。このようにして搬
送とともにプレート上のすべての容器の判別が行われ
る。このデータは次工程の自動化学分析装置に渡され、
分析の誤判断防止と効率化に貢献する。尚、プレートに
はプレート成形時に生じる「ヒケ」と呼ばれる部分変形
や汚れの付着等がある場合がある。このためプレートに
検体を分注する前に予めプレート単体での透過光量を測
定記録し、分注後の透過光量を補正することもできる。
さらに、分注後のプレートを本発明にかかる微量液量判
別装置で判別する前に振盪装置にかけることもできる。
分注機は必ずしも検体を容器中央に吐出できないが、振
盪装置でプレートを揺すると検体は容器中の最低部すな
わち中央に移動するからである。これによって、容器中
で検体が偏ることに起因する判定誤差を防止することが
できる。
【0010】図8は他の実施例を示している。ランプ2
4から出た光はレンズ25で光ファイバー23の入射面
に集光される。この場合、光ファイバー23の出射面は
光源20として機能する。一方、本実施例では受光素子
40として光ファイバー43の入射端が使用されてい
る。光はフィルター41を透過した後、光ファイバー4
3によって光電子倍増管44まで伝送され、光量が認識
される。本実施例のように、光源と受光素子は光ファイ
バーと組み合わされた光源と受光素子で代用することが
できる。
【0011】
【発明の効果】以上詳細に説明した通り、従来人間の目
で行ってきた判別を自動化できることで本発明は以下の
効果を有する。第1に本発明では検体の屈折作用を利用
しているので、目視では判別が困難な無着色の検体であ
っても判別が正確に行える。第2に本発明では受光素子
で光量を測定するだけで微量検体の量が判断できるの
で、極めて迅速な判別を実現できる。第3に本発明によ
る装置は完全自動化が可能なので、24時間いつでも稼
動することができる。次に、本発明は特開昭60−86
439号公報に記載されたような微量定量装置と比較し
て以下の効果を有する。第1に、本発明は検体を細いノ
ズルに入れる必要も検体の上下を空気層で挟む必要もな
い。従って検体をマイクロプレートに入れたまま判別を
行うことができる。第2に、この公報に記載された微量
定量装置は、容器の横に光源や1次元撮像デバイスを設
置する必要がある。このため、多数の容器が横方向に集
積されているマイクロプレートに検体を入れたまま判別
することができない。しかし、本発明は容器の上下に光
源と受光素子を設置すれば足りるので、マイクロプレー
トに検体を入れたまま判別することができる。第3に、
1次元撮像デバイスやその駆動回路は高価であるため、
この公報に記載された装置原価は高い。しかし、本発明
は安価な光源と受光素子を使うだけなので、装置原価を
低廉にできる。
【図面の簡単な説明】
【図1】本発明による判別装置の全体を表す図である。
【図2】V字型の底を有する容器の例である。
【図3】容器に検体が入っていない場合の光路図であ
る。
【図4】容器に検体が5μl入っている場合の光路図で
ある。
【図5】容器に検体が80μl入っている場合の光路図
である。
【図6】検体量と受光素子に入射する光量の関係を表し
たグラフである。
【図7】実施例の断面詳細図である。
【図8】光源と受光素子に光ファイバーを用いた例であ
る。
【図9】従来の微量定量装置の例である。
【符号の説明】
10 容器 11 プレート 20 光源 30 検体 40 受光素子 41 フィルター

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】容器10に入れられた検体30の量を判別
    する装置であって、前記容器10の底面材質を透明にす
    るとともに、前記容器10の底面を底部に向かうにつれ
    て断面積が小さくなる形状にし、前記容器10の中心を
    通る鉛直線上に光源20を配置する一方、前記容器10
    に前記検体30が溜まっているときの集光点近傍に受光
    素子40を配置したことを特徴とする微量液量判別装
    置。
JP3537598A 1998-02-03 1998-02-03 微量液量判別装置 Pending JPH11218437A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3537598A JPH11218437A (ja) 1998-02-03 1998-02-03 微量液量判別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3537598A JPH11218437A (ja) 1998-02-03 1998-02-03 微量液量判別装置

Publications (1)

Publication Number Publication Date
JPH11218437A true JPH11218437A (ja) 1999-08-10

Family

ID=12440162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3537598A Pending JPH11218437A (ja) 1998-02-03 1998-02-03 微量液量判別装置

Country Status (1)

Country Link
JP (1) JPH11218437A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520963A (ja) * 2005-12-21 2009-05-28 テカン・トレーディング・アクチェンゲゼルシャフト 液体移送を点検する方法と装置
JP2010096754A (ja) * 2008-09-22 2010-04-30 Ngk Insulators Ltd ウェル検査装置、それに用いる部品及び液体注入ガイドシステム
JP2011158258A (ja) * 2010-01-29 2011-08-18 Hitachi High-Technologies Corp 分析装置
JP2016165424A (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 計測システム、計測方法及び計測プログラム
JP2016179093A (ja) * 2015-03-24 2016-10-13 富士フイルム株式会社 測定方法及び測定装置及びプログラム
KR20220121448A (ko) * 2021-02-25 2022-09-01 주식회사 코엠에스 투광성 용기의 액체유무 확인 검사장치
US12115528B2 (en) 2017-05-15 2024-10-15 Eppendorf Se Pipette auxiliary system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520963A (ja) * 2005-12-21 2009-05-28 テカン・トレーディング・アクチェンゲゼルシャフト 液体移送を点検する方法と装置
JP2010096754A (ja) * 2008-09-22 2010-04-30 Ngk Insulators Ltd ウェル検査装置、それに用いる部品及び液体注入ガイドシステム
JP2011158258A (ja) * 2010-01-29 2011-08-18 Hitachi High-Technologies Corp 分析装置
JP2016165424A (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 計測システム、計測方法及び計測プログラム
WO2016143515A1 (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 計測システム、計測方法及び計測プログラム
US10724892B2 (en) 2015-03-10 2020-07-28 Fujifilm Corporation Measurement system, measurement method, and measurement program
JP2016179093A (ja) * 2015-03-24 2016-10-13 富士フイルム株式会社 測定方法及び測定装置及びプログラム
US12115528B2 (en) 2017-05-15 2024-10-15 Eppendorf Se Pipette auxiliary system
KR20220121448A (ko) * 2021-02-25 2022-09-01 주식회사 코엠에스 투광성 용기의 액체유무 확인 검사장치

Similar Documents

Publication Publication Date Title
KR100219252B1 (ko) 극소량의 샘플 검출용 수단을 구비한 분석 시스템
JP2916637B2 (ja) 拡散分光反射率の測定装置
US7869009B2 (en) Method for determining an analyte concentration in a fluid
EP0170376B1 (en) Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US4420566A (en) Method and apparatus for detecting sample fluid on an analysis slide
CA1179524A (en) Light guide reflectometer
EP0924509A2 (en) Method and apparatus for detecting liquid and gas segment flow through a tube
JPH08304287A (ja) 光ファイバ拡散光反射率センサ
US6894778B2 (en) Low detection limit turbidimeter
JP5990185B2 (ja) 液体試料を測光的又は分光的に検査する装置
CN105074426B (zh) 用于集成复用光度测定模块的系统和方法
US7978325B2 (en) Biochemical analyzer
US20070081159A1 (en) Apparatus and methods for evaluating an optical property of a liquid sample
EP0087466A1 (en) METHOD AND DEVICE FOR DETECTING SAMPLE LIQUIDS.
JP7449046B2 (ja) 液体ハンドリングシステムおよびチップの状態を分析するための方法
JPH11218437A (ja) 微量液量判別装置
US4853547A (en) System for radiation detection using a graded index optic element
KR20190023438A (ko) 광섬유를 이용한 유세포 분석 시스템
JP2017146226A (ja) 自動分析装置
US5742382A (en) Refractometer
CN115950863A (zh) 单分子荧光检测系统
JP2548383B2 (ja) 液状試料中の気泡の検出方法及びその装置
JPS59109844A (ja) 反射光測定装置
RU70577U1 (ru) Планшетный микроколориметр
JP2007127448A (ja) 分析光学装置