JPH11204123A - Water treating apparatus for fuel cell power generating facilities - Google Patents

Water treating apparatus for fuel cell power generating facilities

Info

Publication number
JPH11204123A
JPH11204123A JP10007753A JP775398A JPH11204123A JP H11204123 A JPH11204123 A JP H11204123A JP 10007753 A JP10007753 A JP 10007753A JP 775398 A JP775398 A JP 775398A JP H11204123 A JPH11204123 A JP H11204123A
Authority
JP
Japan
Prior art keywords
water
fuel cell
gas
heat
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10007753A
Other languages
Japanese (ja)
Inventor
Munehiko Nanri
旨彦 南利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10007753A priority Critical patent/JPH11204123A/en
Publication of JPH11204123A publication Critical patent/JPH11204123A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus for fuel cell power generating facilities in which no cooler for cooling water to be treated is required at a pre-stage of an ion-exchange resin and an exhaust heat recovery quantity is large. SOLUTION: Water 9 to be treated, which is composed of recovery water 7A from an exhaust gas cooler 7 combined with blow-down water 8 from a gas-liquid separator 4, is supplied to a heat-resistant type ion-exchange resin 13. The heat-resistant type ion-exchange resin 13 can be operated at temperatures of at least 90 deg.C is adapted to subject the water 9 to be treated as it is not cooled but kept at a high temperature for treatment with super pure water, and then to supply resultant supplementary water 15 to the gas- liquid separator 4. Since a cooler at the front stage of the heat resistant type ion exchange resin 13 is not required, it is possible to reduce the initial cost, and furthermore, since no cooling is conducted, exhaust heat recovery quantity is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池発電設
備用水処理装置に関するものである。
The present invention relates to a water treatment device for a fuel cell power generation facility.

【0002】[0002]

【従来の技術】図5は、例えば特開平5−129027
号公報に示された従来の燃料電池発電設備用水処理装置
における水処理のフローを示すブロック図であり、図に
おいて、1は燃料とスチームを反応させることにより水
素を生成する改質器、2は改質器1で生成された水素リ
ッチな改質ガス中の水素と空気中の酸素から直流電力を
得る燃料電池、3は改質器1へ燃焼用空気3Aを、また
燃料電池2へ反応用空気3Bを供給する空気ブロワ、4
は燃料電池2が発電する際に発する熱を回収し、その熱
でスチームを発生させて、改質器1および排熱利用設備
5へスチームを供給する気液分離器、6は燃料電池2へ
冷却水を送る電池冷却水循環ポンプ、7は改質器1から
の燃焼排ガス1Aと、燃料電池2からの空気極オフガス
2Aを冷却し、回収水7Aを得る排ガス冷却器、8は気
液分離器4の水質維持のためのブローダウン水、9は回
収水7Aとブローダウン水8を合わせた被処理水、10
は送水ポンプ、11は被処理水9を所定の温度まで冷却
する被処理水冷却器、12は被処理水冷却器11で冷却
された被処理水9をイオン交換して超純水を得るイオン
交換樹脂で、40℃以下の低温域で動作が可能である。
14は超純水になった補給水15を気液分離器4へ送る
高圧ポンプである。
2. Description of the Related Art FIG.
FIG. 1 is a block diagram showing a flow of water treatment in a conventional water treatment device for a fuel cell power generation facility shown in Japanese Patent Application Publication No. H10-207, in which 1 is a reformer that generates hydrogen by reacting fuel and steam, and 2 is a reformer. A fuel cell for obtaining DC power from hydrogen in the hydrogen-rich reformed gas generated in the reformer 1 and oxygen in the air, 3 for combustion air 3A to the reformer 1 and reaction for the fuel cell 2 Air blower for supplying air 3B, 4
Is a gas-liquid separator that collects heat generated when the fuel cell 2 generates power, generates steam using the heat, and supplies steam to the reformer 1 and the waste heat utilization facility 5. A battery cooling water circulation pump that sends cooling water, 7 is an exhaust gas cooler that cools the combustion exhaust gas 1A from the reformer 1 and the air electrode off-gas 2A from the fuel cell 2 to obtain recovered water 7A, and 8 is a gas-liquid separator 4 is blowdown water for maintaining water quality, 9 is treated water obtained by combining recovered water 7A and blowdown water 8, 10
Denotes a water pump, 11 denotes a water cooler for cooling the water 9 to a predetermined temperature, and 12 denotes an ion for ion-exchanging the water 9 cooled by the water cooler 11 to obtain ultrapure water. The exchange resin enables operation in a low temperature range of 40 ° C. or less.
Reference numeral 14 denotes a high-pressure pump that sends the replenishment water 15 that has become ultrapure water to the gas-liquid separator 4.

【0003】次に動作について説明する。改質器1は天
然ガス等の炭化水素とスチームを原料として水素リッチ
な改質ガスをつくる。この改質ガスは燃料電池2の燃料
極側に供給される。一方、燃料電池2の空気極側には空
気ブロワ3から反応用空気3Bが供給され、直流電力が
発生する。電池反応は発熱反応なので、気液分離器4か
ら加圧水を電池冷却水循環ポンプ6で燃料電池2へ供給
して冷却する。この時、気液分離器4は熱が余った状態
になり、その熱はスチームとして燃料電池2系外へ取り
出され、排熱利用設備5にて熱利用される。
Next, the operation will be described. The reformer 1 produces a hydrogen-rich reformed gas using hydrocarbons such as natural gas and steam as raw materials. This reformed gas is supplied to the fuel electrode side of the fuel cell 2. On the other hand, reaction air 3B is supplied from the air blower 3 to the air electrode side of the fuel cell 2, and DC power is generated. Since the battery reaction is an exothermic reaction, pressurized water is supplied from the gas-liquid separator 4 to the fuel cell 2 by the battery cooling water circulation pump 6 to be cooled. At this time, the gas-liquid separator 4 has excess heat, and the heat is taken out of the fuel cell system 2 as steam, and is used by the exhaust heat utilization equipment 5.

【0004】また、改質器1からの燃焼排ガス1Aと燃
料電池2からの空気極オフガス2Aは、排ガス冷却器7
で十分に冷却され、排ガス中の水分を凝縮させる。その
凝縮水は回収水7Aとして水処理装置へ供給される。水
処理装置はこの回収水7Aを含む被処理水9を超純水に
処理する装置であり、低温域(40℃以下)にて動作す
るイオン交換樹脂12を使用している。被処理水9の水
温は50℃〜80℃程度であり、低温域で動作するイオ
ン交換樹脂12に供給する前に、被処理水冷却器11に
より40℃以下の温度まで冷却する。イオン交換樹脂1
2で作られた超純水は、高圧ポンプ14により補給水1
5として気液分離器4へ供給される。
Further, the combustion exhaust gas 1A from the reformer 1 and the air electrode off-gas 2A from the fuel cell 2 are supplied to an exhaust gas cooler 7A.
To sufficiently condense the water in the exhaust gas. The condensed water is supplied to the water treatment device as recovered water 7A. The water treatment apparatus is an apparatus that treats the water 9 to be treated including the recovered water 7A into ultrapure water, and uses the ion exchange resin 12 that operates in a low temperature range (40 ° C. or lower). The water temperature of the water 9 to be treated is about 50 ° C. to 80 ° C., and is cooled to a temperature of 40 ° C. or lower by the water cooler 11 before being supplied to the ion exchange resin 12 operating in a low temperature range. Ion exchange resin 1
The ultrapure water made in 2 is supplied with high pressure pump 14
5 is supplied to the gas-liquid separator 4.

【0005】[0005]

【発明が解決しようとする課題】従来の燃料電池発電設
備用水処理装置では、上記のように低温域で動作するイ
オン交換樹脂を用いて超純水を得ているので、イオン交
換樹脂へ送られる被処理水の温度をそのイオン交換樹脂
に適した温度まで下げねばならず、イオン交換樹脂の前
段に被処理水冷却器を設ける必要があった。また、被処
理水冷却器を設けることにより、ここで熱交換する分、
排熱回収量が減少するという問題があった。この発明は
上記のような問題点を解決するためになされたものであ
り、イオン交換樹脂へ送る被処理水の冷却を不要にし
て、イオン交換樹脂の前段に被処理水冷却器の設置が不
要で、かつ排熱回収量が大きい燃料電池発電設備用水処
理装置を得ることを目的とする。
In the conventional water treatment apparatus for a fuel cell power generation facility, since ultrapure water is obtained by using the ion exchange resin operating in the low temperature region as described above, it is sent to the ion exchange resin. The temperature of the water to be treated had to be lowered to a temperature suitable for the ion exchange resin, and it was necessary to provide a water cooler before the ion exchange resin. In addition, by providing a water cooler to be treated, heat exchange is performed here,
There is a problem that the amount of exhaust heat recovery decreases. The present invention has been made in order to solve the above-mentioned problems, and makes it unnecessary to cool the water to be treated to be sent to the ion exchange resin, thereby eliminating the need for installing a water cooler in front of the ion exchange resin. It is another object of the present invention to obtain a water treatment apparatus for a fuel cell power generation facility having a large amount of waste heat recovery.

【0006】[0006]

【課題を解決するための手段】この発明に係る燃料電池
発電設備用水処理装置は、被処理水を処理するイオン交
換樹脂を高温イオン交換樹脂としたものである。さら
に、ブローダウン水の熱により回収水中の炭酸ガスを加
熱脱気する加熱脱気装置を有するものである。また、空
気を送ることにより回収水中の炭酸ガスを空気脱気する
空気脱気装置を有するものである。さらに、ブローダウ
ン水から補給水へ熱を回収する熱回収器を有するもので
ある。
A water treatment apparatus for a fuel cell power generation facility according to the present invention uses a high-temperature ion exchange resin as an ion exchange resin for treating water to be treated. Furthermore, it has a heating deaerator for heating and degassing the carbon dioxide gas in the recovered water by the heat of the blowdown water. Further, it has an air deaerator for sending air to degas carbon dioxide gas in the recovered water. Furthermore, it has a heat recovery unit that recovers heat from blowdown water to makeup water.

【0007】[0007]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1の燃料電池発電設備用水処理装置におけ
る水処理のフローを示すブロック図であり、図におい
て、1は天然ガス等の炭化水素ガスとスチームとを反応
させて水素を生成し、水素リッチな改質ガスを得る改質
器、2は改質器1で生成された改質ガス中の水素と空気
中の酸素とを反応させて直流電力を得る燃料電池で、水
冷式になっている。3は改質器1へ燃焼用空気3Aを送
るとともに燃料電池2へ反応用空気3Bを送る空気ブロ
ワ、4は燃料電池2で発生する熱を回収し、その熱でス
チームを発生させて改質器1および排熱利用設備5へス
チームを供給する気液分離器、6は燃料電池2へ冷却水
を送る電池冷却水循環ポンプ、7は改質器1からの燃焼
排ガス1Aと、燃料電池2からの空気極オフガス2Aを
冷却して回収水7Aを得る排ガス冷却器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 1 of the present invention. In the drawing, reference numeral 1 denotes a reaction between a hydrocarbon gas such as natural gas and steam. A reformer that generates hydrogen and obtains a hydrogen-rich reformed gas is a fuel cell that obtains a DC power by reacting hydrogen in the reformed gas generated in the reformer 1 with oxygen in the air. , Water-cooled. 3 is an air blower that sends combustion air 3A to the reformer 1 and sends reaction air 3B to the fuel cell 2. 4 collects heat generated in the fuel cell 2 and generates steam using the heat to reform. -Liquid separator for supplying steam to the steam generator 1 and the waste heat utilization equipment 5, 6 for a battery cooling water circulation pump for sending cooling water to the fuel cell 2, 7 for the combustion exhaust gas 1A from the reformer 1, and for the fuel cell 2 This is an exhaust gas cooler that cools the air electrode off-gas 2A to obtain recovered water 7A.

【0008】8は気液分離器4の水質維持のために水処
理へ回すブローダウン水、9は回収水7Aとブローダウ
ン水8とを合わせた被処理水、10は被処理水9を送水
する送水ポンプ、13は被処理水9をイオン交換処理し
て超純水を得る耐熱型イオン交換樹脂である。この明細
書では、耐熱型イオン交換樹脂とは、少なくとも90℃
の温度に耐えて動作するイオン交換樹脂を指し、そのよ
うな材料として、例えば特開平4−349941号公報
に、複数個の炭化水素基を有するアニオン交換体が示さ
れている。14は処理されて超純水になった補給水15
を気液分離器4へ送る高圧ポンプである。
[0008] Reference numeral 8 denotes blowdown water which is sent to water treatment to maintain the water quality of the gas-liquid separator 4, 9 denotes water to be treated which is a combination of the recovered water 7A and blowdown water 8, and 10 denotes water to be treated. The water supply pump 13 is a heat-resistant ion exchange resin that obtains ultrapure water by subjecting the water 9 to be subjected to ion exchange treatment. In this specification, a heat-resistant ion exchange resin is at least 90 ° C.
An anion exchanger having a plurality of hydrocarbon groups is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 4-34941. 14 is a make-up water 15 which has been treated and turned into ultrapure water.
Is a high-pressure pump that sends the gas to the gas-liquid separator 4.

【0009】次に、動作について説明する。天然ガス等
の炭化水素と気液分離器4からのスチームを改質器1へ
供給し、これらを原料として加熱して水素を生成させ、
水素リッチな改質ガスを得る。燃料電池2の燃料極側へ
この改質ガスを供給するとともに、燃料電池2の空気極
側へ空気ブロワ3から反応用空気3Bを供給して、直流
電力を発生させる。燃料電池2における反応は発熱反応
であるので、気液分離器4から加圧水を電池冷却水循環
ポンプ6で燃料電池2へ送り、これを冷却する。この
時、気液分離器4では熱が余った状態になり、その熱は
スチームとして燃料電池2系外へ取り出し、排熱利用設
備5にて熱利用する。
Next, the operation will be described. Hydrocarbon such as natural gas and steam from the gas-liquid separator 4 are supplied to the reformer 1 and heated using these as raw materials to generate hydrogen,
A hydrogen-rich reformed gas is obtained. The reformed gas is supplied to the fuel electrode side of the fuel cell 2 and the reaction air 3B is supplied from the air blower 3 to the air electrode side of the fuel cell 2 to generate DC power. Since the reaction in the fuel cell 2 is an exothermic reaction, pressurized water is sent from the gas-liquid separator 4 to the fuel cell 2 by the cell cooling water circulation pump 6 and cooled. At this time, heat is left in the gas-liquid separator 4, and the heat is taken out of the fuel cell 2 system as steam and is used in the exhaust heat utilization equipment 5.

【0010】また、改質器1で改質ガスを得るための原
料を加熱するためのバーナ部(図示せず)から出る燃焼
排ガス1Aと、燃料電池2からの空気極オフガス2A
は、排ガス冷却器7で十分に冷却し、これら排ガス中の
水分を凝縮させる。この凝縮水は、回収水7Aとして水
処理装置へ供給する。一方、気液分離器4の水質を維持
するため、水の一部をブローダウン水8として水処理へ
回す。回収水7Aとブローダウン水8とを合わせた被処
理水9を送水ポンプ10で耐熱型イオン交換樹脂13へ
送りイオン交換処理をする。被処理水9の水温は50℃
〜80℃程度であるが、耐熱型イオン交換樹脂13を用
いているので、動作可能な温度内である。したがって、
図5における被処理水冷却器11のような装置は不要で
あり、被処理水9を冷却せず直接、耐熱型イオン交換樹
脂13へ送って処理できる。イオン交換処理して作った
超純水は、高圧ポンプ14で補給水15として気液分離
器4へ供給する。このように、耐熱型イオン交換樹脂1
3は高温でも動作させることができるので、被処理水冷
却器が不要となって初期費用が低減し、また、補給水を
高温のまま気液分離器へ供給できるので排熱回収量が増
加して燃料電池発電設備の排熱回収効率が高くなる。
Further, a combustion exhaust gas 1A from a burner section (not shown) for heating a raw material for obtaining a reformed gas in the reformer 1 and an air electrode off-gas 2A from a fuel cell 2
Is sufficiently cooled by the exhaust gas cooler 7 to condense the moisture in the exhaust gas. This condensed water is supplied to the water treatment device as recovered water 7A. On the other hand, in order to maintain the water quality of the gas-liquid separator 4, a part of the water is sent to the water treatment as blowdown water 8. The to-be-processed water 9 obtained by combining the recovered water 7A and the blowdown water 8 is sent to the heat-resistant ion exchange resin 13 by the water supply pump 10 to perform ion exchange processing. The water temperature of the water to be treated 9 is 50 ° C.
The temperature is about 8080 ° C., but is within the operable temperature since the heat-resistant ion exchange resin 13 is used. Therefore,
A device such as the water cooler 11 in FIG. 5 is unnecessary, and the water 9 can be directly sent to the heat-resistant ion exchange resin 13 without cooling without being cooled. The ultrapure water produced by the ion exchange treatment is supplied to the gas-liquid separator 4 as the makeup water 15 by the high-pressure pump 14. Thus, the heat-resistant ion exchange resin 1
3 can be operated at a high temperature, so that a water cooler to be treated becomes unnecessary and the initial cost is reduced, and since the makeup water can be supplied to the gas-liquid separator at a high temperature, the amount of waste heat recovery increases. As a result, the exhaust heat recovery efficiency of the fuel cell power generation equipment is increased.

【0011】実施の形態2.図2は、この発明の実施の
形態2の燃料電池発電設備用水処理装置における水処理
のフローを示すブロック図であり、図において、16は
ブローダウン水8の熱を利用した加熱脱気装置、16A
はそのスチーム放出部であり、回収水7Aとブローダウ
ン水8を加熱脱気装置16へ送り、加熱脱気装置16か
ら被処理水9を送水ポンプ10で耐熱型イオン交換樹脂
13へ送るようになっている。その他は実施の形態1の
場合と同様であるので説明を省略する。
Embodiment 2 FIG. 2 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 2 of the present invention. In the drawing, reference numeral 16 denotes a heating deaerator using heat of blowdown water 8, 16A
Is a steam discharge section, which sends recovered water 7A and blowdown water 8 to a heating and deaerator 16 and sends water to be treated 9 from the heating and deaerator 16 to a heat-resistant ion exchange resin 13 by a water supply pump 10. Has become. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

【0012】次に、動作について説明する。排ガス冷却
装置7からの回収水7Aを加熱脱気装置16へ送るとと
もに、ブローダウン水8を加熱脱気装置16へ供給して
加熱脱気のための熱源とし、炭酸ガスが殆ど溶存出来な
い90℃程度の水温になるようにブローダウン水8の流
量を調整する(耐熱型イオン交換樹脂13の耐熱度によ
り、例えば100℃に水温を上げてもよい)。加熱脱気
装置16では、発生したスチームをスチーム放出部16
Aを通して大気へ放出する際に回収水7Aと気液接触さ
せることにより、脱気の効果を大きくしている。脱気さ
れた回収水7Aとブローダウン水8を合わせて処理水9
として送り出す。被処理水9は90℃程度の水温になっ
ているが、そのまま耐熱型イオン交換樹脂13で処理を
行う。その動作は実施の形態1の場合と同様であるので
説明を省略する。この実施の形態では、ブローダウン水
8の熱を利用して回収水7A中に溶存する炭酸ガスを脱
気するので、耐熱型イオン交換樹脂13での負荷が軽減
し、燃料電池発電設備用水処理装置の運転費用が低下す
る。
Next, the operation will be described. The recovered water 7A from the exhaust gas cooling device 7 is sent to the heating and degassing device 16, and the blowdown water 8 is supplied to the heating and degassing device 16 to serve as a heat source for heating and degassing. The flow rate of the blowdown water 8 is adjusted so that the water temperature becomes about ℃ (the water temperature may be raised to, for example, 100 ℃, depending on the heat resistance of the heat-resistant ion exchange resin 13). In the heating deaerator 16, the generated steam is transferred to the steam discharge section 16.
By bringing the recovered water 7A into gas-liquid contact when releasing it to the atmosphere through A, the degassing effect is enhanced. The deaerated recovered water 7A and blowdown water 8 are combined to treat water 9
Send out as. Although the water 9 to be treated has a water temperature of about 90 ° C., it is treated with the heat-resistant ion exchange resin 13 as it is. The operation is the same as that of the first embodiment, and the description is omitted. In this embodiment, since the carbon dioxide gas dissolved in the recovered water 7A is degassed by utilizing the heat of the blowdown water 8, the load on the heat-resistant ion exchange resin 13 is reduced, and the water treatment for the fuel cell power generation equipment is performed. The operating costs of the device are reduced.

【0013】実施の形態3.図3は、この発明の実施の
形態3の燃料電池発電設備用水処理装置における水処理
のフローを示すブロック図であり、図において、17は
空気ブロワ3からの空気を利用した空気脱気装置、17
Aはその空気放出部、3Cは空気ブロワ3から空気脱気
装置17へ供給する脱気用空気である。その他は実施の
形態1の場合と同様であるので説明を省略する。
Embodiment 3 FIG. 3 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 3 of the present invention. In the drawing, reference numeral 17 denotes an air deaerator using air from the air blower 3; 17
A is an air discharging portion, and 3C is deaeration air supplied from the air blower 3 to the air deaerator 17. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

【0014】次に、動作について説明する。排ガス冷却
装置7からの回収水7Aを空気脱気装置17へ送るとと
もに、空気用ブロワ3から脱気用空気3Cを空気脱気装
置17へ送る。供給された脱気用空気3Cを空気放出部
17Aを通して大気へ放出する際に回収水7Aと気液接
触させることにより、脱気の効果をあげている。例えば
綿状の物や小粒状の固体を充填した空間に、一方から回
収水7Aを、そして他方から脱気用空気3Cを送り込む
ことにより両者の接触面積を大きくできる。また、ブロ
ーダウン水8を空気脱気装置17へ供給し、脱気された
回収水7Aと合わせて水温50℃〜60℃程度となった
処理水9を、耐熱型イオン交換樹脂13へ送って処理す
る。その他の動作は実施の形態1の場合と同様であるの
で説明を省略する。この実施の形態では、空気ブロワ3
からの脱気用空気3Cを利用して回収水中に溶存する炭
酸ガスを脱気するので、耐熱型イオン交換樹脂13での
負荷が軽減し、運転費用が低下する。
Next, the operation will be described. The recovered water 7A from the exhaust gas cooling device 7 is sent to the air deaerator 17 and the air for deaeration 3C is sent from the air blower 3 to the air deaerator 17. When the supplied deaeration air 3C is discharged into the atmosphere through the air discharge part 17A, the deaeration effect is improved by bringing the recovered water 7A into gas-liquid contact. For example, by feeding recovered water 7A from one side and degassing air 3C from the other into a space filled with flocculent material or small granular solids, the contact area between the two can be increased. Further, the blowdown water 8 is supplied to the air deaerator 17, and the treated water 9 having a water temperature of about 50 ° C. to 60 ° C. is sent to the heat-resistant ion exchange resin 13 together with the deaerated recovered water 7A. To process. Other operations are the same as those in the first embodiment, and a description thereof will not be repeated. In this embodiment, the air blower 3
Since the carbon dioxide dissolved in the recovered water is degassed by using the degassing air 3C, the load on the heat-resistant ion exchange resin 13 is reduced, and the operating cost is reduced.

【0015】実施の形態4.図4は、この発明の実施の
形態4の燃料電池発電設備用水処理装置における水処理
のフローを示すブロック図であり、図において、18は
ブローダウン水8から補給水15へ熱を回収するブロー
ダウン水熱回収器である。耐熱型イオン交換樹脂13で
処理された補給水15は、ブローダウン水熱回収器18
で、170℃程度の高温のブローダウン水8から熱を回
収した後、気液分離器4へ供給する。ブローダウン水8
は、ブローダウン水熱回収器18を経由して空気脱気装
置17へ供給する。その他は実施の形態3の場合と同様
であるので説明を省略する。この実施の形態では、回収
水7Aの脱気により耐熱型イオン交換樹脂13での負荷
が軽減するとともに、ブローダウン水から補給水への熱
回収により排熱回収量が増加する。
Embodiment 4 FIG. 4 is a block diagram showing a flow of water treatment in a water treatment apparatus for a fuel cell power generation facility according to Embodiment 4 of the present invention. In the drawing, reference numeral 18 denotes a blow for recovering heat from blowdown water 8 to makeup water 15. It is a down water heat recovery unit. The makeup water 15 treated with the heat-resistant ion exchange resin 13 is supplied to a blowdown water heat recovery unit 18.
After recovering heat from the blowdown water 8 having a high temperature of about 170 ° C., the heat is supplied to the gas-liquid separator 4. Blowdown water 8
Is supplied to the air deaerator 17 via the blowdown water heat recovery unit 18. Other configurations are the same as those in the third embodiment, and a description thereof will be omitted. In this embodiment, the load on the heat-resistant ion exchange resin 13 is reduced by degassing the recovered water 7A, and the amount of exhaust heat recovered is increased by recovering heat from blowdown water to makeup water.

【0016】[0016]

【発明の効果】以上のように、この発明に係る燃料電池
発電設備用水処理装置によれば、耐熱型イオン交換樹脂
を用いて被処理水を処理するようにしたので、被処理水
を高温のままで処理することができ、したがって被処理
水冷却器が不要となって初期費用が低減し、また、排熱
回収量が増加して排熱回収効率が高くなる。さらに、ブ
ローダウン水の熱を利用して回収水中の炭酸ガスを脱気
することにより、あるいは空気を用いて回収水中の炭酸
ガスを脱気することにより、イオン交換樹脂での負荷が
軽減し、運転費用が低下する。さらに、ブローダウン水
から補給水への熱回収により、排熱回収量が増加する。
As described above, according to the water treatment apparatus for a fuel cell power generation facility according to the present invention, since the water to be treated is treated by using a heat-resistant ion exchange resin, the water to be treated is heated to a high temperature. The treatment can be carried out as it is, and therefore, a water cooler to be treated becomes unnecessary, and the initial cost is reduced, and the amount of exhaust heat recovery is increased to increase the efficiency of exhaust heat recovery. Furthermore, the load on the ion exchange resin is reduced by degassing the carbon dioxide gas in the recovered water using the heat of the blowdown water, or by degassing the carbon dioxide gas in the recovered water using air, Operating costs are reduced. Further, the heat recovery from the blowdown water to the makeup water increases the waste heat recovery amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の燃料電池発電設備
用水処理装置における水処理のフローを示すブロック図
である。
FIG. 1 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2の燃料電池発電設備
用水処理装置における水処理のフローを示すブロック図
である。
FIG. 2 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3の燃料電池発電設備
用水処理装置における水処理のフローを示すブロック図
である。
FIG. 3 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 3 of the present invention.

【図4】 この発明の実施の形態4の燃料電池発電設備
用水処理装置における水処理のフローを示すブロック図
である。
FIG. 4 is a block diagram showing a flow of water treatment in a water treatment device for a fuel cell power generation facility according to Embodiment 4 of the present invention.

【図5】 従来の燃料電池発電設備用水処理装置におけ
る水処理のフローを示すブロック図である。
FIG. 5 is a block diagram showing a flow of water treatment in a conventional water treatment device for a fuel cell power generation facility.

【符号の説明】[Explanation of symbols]

1 改質器、1A 燃焼排ガス、2 燃料電池、2A
空気極オフガス、3C 脱気用空気、4 気液分離器、
7 排ガス冷却器、7A 回収水、8 ブローダウン
水、9 被処理水、13 耐熱型イオン交換樹脂、15
補給水、16 加熱脱気装置、17 空気脱気装置、
18 ブローダウン水熱回収器。
1 reformer, 1A flue gas, 2 fuel cell, 2A
Air electrode off gas, 3C deaeration air, 4 gas-liquid separator,
7 Exhaust gas cooler, 7A recovered water, 8 blowdown water, 9 treated water, 13 heat-resistant ion exchange resin, 15
Makeup water, 16 heating deaerator, 17 air deaerator,
18 Blowdown water heat recovery unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料とスチームとを反応させて水素を含
む改質ガスを得る改質器、上記改質ガス中の水素と空気
中の酸素とを反応させて直流電流を得る水冷式の燃料電
池、上記改質器へのスチームと上記燃料電池への冷却水
を供給する気液分離器、および上記改質器からの燃焼排
ガスと上記燃料電池からの空気極オフガスとを冷却して
回収水を得る排ガス冷却器を有する燃料電池発電設備に
対して、上記気液分離器からのブローダウン水と上記排
ガス冷却器からの回収水とを合わせた被処理水をイオン
交換樹脂によりイオン交換処理した補給水を供給する水
処理装置において、上記イオン交換樹脂として耐熱型イ
オン交換樹脂を用いたことを特徴とする燃料電池発電設
備用水処理装置。
1. A reformer for producing a reformed gas containing hydrogen by reacting a fuel and steam, and a water-cooled fuel for producing a direct current by reacting hydrogen in the reformed gas with oxygen in the air. A battery, a gas-liquid separator for supplying steam to the reformer and cooling water to the fuel cell, and cooling water collected by cooling combustion exhaust gas from the reformer and air electrode off-gas from the fuel cell. For fuel cell power generation equipment having an exhaust gas cooler for obtaining, water to be treated combining the blowdown water from the gas-liquid separator and the recovered water from the exhaust gas cooler was subjected to ion exchange treatment with an ion exchange resin. A water treatment apparatus for supplying fuel water, wherein a heat-resistant ion exchange resin is used as the ion exchange resin.
【請求項2】 ブローダウン水の熱により回収水中の炭
酸ガスを加熱脱気する加熱脱気装置を有し、この加熱脱
気装置へ上記ブローダウン水と回収水とを送るようにし
たことを特徴とする請求項1記載の燃料電池発電設備用
水処理装置。
2. A heating and degassing device for heating and degassing carbon dioxide gas in recovered water by the heat of blowdown water, and the blowdown water and the recovered water are sent to the heating and degassing device. The water treatment device for a fuel cell power generation facility according to claim 1, wherein
【請求項3】 空気を送ることにより回収水中の炭酸ガ
スを空気脱気する空気脱気装置を有することを特徴とす
る請求項1記載の燃料電池発電設備用水処理装置。
3. The water treatment apparatus for a fuel cell power generation facility according to claim 1, further comprising an air deaerator for degassing carbon dioxide gas in the recovered water by sending air.
【請求項4】 燃料電池発電設備に供給する補給水へ、
ブローダウン水から熱を回収する熱回収器を有すること
を特徴とする請求項3記載の燃料電池発電設備用水処理
装置。
4. To make-up water supplied to a fuel cell power generation facility,
The water treatment apparatus for a fuel cell power generation facility according to claim 3, further comprising a heat recovery unit that recovers heat from the blowdown water.
JP10007753A 1998-01-19 1998-01-19 Water treating apparatus for fuel cell power generating facilities Pending JPH11204123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10007753A JPH11204123A (en) 1998-01-19 1998-01-19 Water treating apparatus for fuel cell power generating facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10007753A JPH11204123A (en) 1998-01-19 1998-01-19 Water treating apparatus for fuel cell power generating facilities

Publications (1)

Publication Number Publication Date
JPH11204123A true JPH11204123A (en) 1999-07-30

Family

ID=11674466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10007753A Pending JPH11204123A (en) 1998-01-19 1998-01-19 Water treating apparatus for fuel cell power generating facilities

Country Status (1)

Country Link
JP (1) JPH11204123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203189A (en) * 2004-01-14 2005-07-28 Sanyo Electric Co Ltd Polymer electrolyte fuel cell
DE112006002694T5 (en) 2005-10-17 2008-09-25 J. Morita Mfg. Corp. Medical digital X-ray imaging device and medical and digital X-ray sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203189A (en) * 2004-01-14 2005-07-28 Sanyo Electric Co Ltd Polymer electrolyte fuel cell
DE112006002694T5 (en) 2005-10-17 2008-09-25 J. Morita Mfg. Corp. Medical digital X-ray imaging device and medical and digital X-ray sensor
DE112006002694B4 (en) 2005-10-17 2023-02-23 J. Morita Mfg. Corp. Medical digital x-ray imaging device and medical digital x-ray sensor

Similar Documents

Publication Publication Date Title
JP2009513829A (en) Electrolysis
JP5496494B2 (en) Power generation system
US6692854B2 (en) Fuel cell generator system and method for operating same
EP1168476B1 (en) Fuel cell power generating system and operation method
JPH11204123A (en) Water treating apparatus for fuel cell power generating facilities
JPH10328699A (en) Supercritical hydroxylation reactor
KR101367807B1 (en) Fuel processor for fuel cell
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2002008690A (en) Fuel cell power generation system and its running method
JP2914665B2 (en) Fuel cell water treatment equipment
JP2002100382A (en) Fuel cell power generator
JP2002053305A (en) Method for vaporizing kerosene fuel for fuel cell
JPS6280970A (en) Power generating method of fuel cell
JP2001035520A (en) Waste heat recovering apparatus for fuel cell generating apparatus
JPH04138671A (en) Fuel cell
JP4660888B2 (en) Fuel cell power generation system and operation method thereof
JP2000294262A (en) Fuel cell power generating device
JP2763043B2 (en) Fuel cell with thermosiphon steam generator
JPH05126315A (en) Method of water supply and water drainage of deaerator in waste heat recovery boiler and device thereof
JP2000106207A (en) Fuel cell generating system
JP4161264B2 (en) Fuel cell power generator
JPH0221571A (en) Water treatment unit of fuel cell
JP3099407B2 (en) Water treatment system for phosphoric acid fuel cells
JP3461333B2 (en) Integrated system for waste plastic and fuel cell power generation
JPS6332867A (en) Fuel cell power generating system