JPH11188636A - Base disk type grinding wheel - Google Patents

Base disk type grinding wheel

Info

Publication number
JPH11188636A
JPH11188636A JP36949697A JP36949697A JPH11188636A JP H11188636 A JPH11188636 A JP H11188636A JP 36949697 A JP36949697 A JP 36949697A JP 36949697 A JP36949697 A JP 36949697A JP H11188636 A JPH11188636 A JP H11188636A
Authority
JP
Japan
Prior art keywords
base disk
grinding wheel
grinding
grindstone
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36949697A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Fujii
剛志 藤井
Kenji Ito
健二 伊藤
Takeshi Nonokawa
岳司 野々川
Yoshiharu Terada
好晴 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP36949697A priority Critical patent/JPH11188636A/en
Publication of JPH11188636A publication Critical patent/JPH11188636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize the high peripheral speed grinding at high accuracy by providing a base disk comprising a core and an outer circumferential layer, setting the coefficient of thermal expansion and the specific gravity of the core to be not more than the specified values, and forming the outer circumferential layer of carbon fiber reinforced plastic to reduce the distortion of a grinding wheel caused by the centrifugal force and the temperature change. SOLUTION: An outer circumferential layer 1 is fitted and adhered to a core 2 having a hole 20 for a rotary shaft. The core is <=18×10<-6> / deg.C in coefficient of thermal expansion, and <=4 g/cm<3> in specific gravity, and formed of aluminum-based composite material reinforced by ceramic particles or ceramic fiber, or aluminum alloy containing >=20 wt.% silicon. The material of the outer circumferential layer 1 is carbon fiber reinforced plastic. Even when the base disk is used at high peripheral speed, the deviation of the elongation of the base disk, and the deviation of the radial elongation in the magnet width direction (the direction of the rotary shaft) are small, and the grinding at high accuracy can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研削面に砥粒層を
接合した回転研削用のベース円盤型研削砥石に関し、特
にダイヤモンド、CBN(立方晶窒化ホウ素)等の超砥
粒層を接合した高周速回転研削用のベース円盤型研削砥
石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base disk-type grinding wheel for rotary grinding in which an abrasive layer is bonded to a ground surface, and particularly to a superabrasive layer such as diamond or CBN (cubic boron nitride). The present invention relates to a base disk-type grinding wheel for high peripheral speed rotary grinding.

【0002】[0002]

【従来の技術】従来、回転研削用の砥石としては、金属
製のベース円盤に超砥粒層を接着したものが一般的であ
り、ベース円盤の材質としては、鋼、鋳鉄、アルミニウ
ム合金などが用いられている。超砥粒を用いた研削砥石
は、砥粒自体が一般の砥粒に比して非常に硬質であるた
め、砥石摩耗が少ない。そのため、摩耗による寸法変化
やバラツキが少なく、高精度の研削加工が可能となる。
それ故、超砥粒砥石は主として難削材の研削に使用され
ている。また、高周速研削によって研削の高能率化及び
砥石の高寿命化が可能である。ところで、80m/sを
超える高周速研削を行うにあたり、超砥粒自体の機械的
強度は十分であるが、ベース円盤の材料については従来
の周速下では問題とならなかった特性が要求されること
となる。
2. Description of the Related Art Conventionally, as a grinding wheel for rotary grinding, a superabrasive layer is generally bonded to a metal base disk, and steel, cast iron, aluminum alloy, etc. are used as the material of the base disk. Used. Grinding stones using superabrasives have less abrasive wear because the abrasives themselves are much harder than general abrasives. Therefore, dimensional changes and variations due to wear are small, and high-precision grinding can be performed.
Therefore, superabrasive grinding wheels are mainly used for grinding difficult-to-cut materials. In addition, the high peripheral speed grinding can increase the efficiency of grinding and extend the life of the grinding wheel. By the way, in performing high peripheral speed grinding exceeding 80 m / s, the mechanical strength of the superabrasive grains themselves is sufficient, but the material of the base disk is required to have characteristics that have not been a problem under the conventional peripheral speed. The Rukoto.

【0003】そこで、高周速研削用砥石のベース円盤材
料として、特開平3−234474号公報、特開平6−
91541号公報には、機械的・熱的強度に優れ比重の
軽い繊維強化プラスチックの採用が提案されている。特
開平3−256674号公報には、金属マトリックス中
にセラミックス繊維又は粒子を分散させた複合材料が提
案されている。特開平6−91542号公報には、ベー
ス円盤の材料費を低減し取付面の精度向上を図る目的
で、ベース円盤の外周部素材のみに繊維強化プラスティ
ックを採用し、内周部(心材部)の素材として安価で加
工性の良い金属を用いる技術が提案されている。また、
特開平7−9347号公報には、基台の外径側部材と内
径側部材を、砥石の使用回転時における外径側部材内径
と内径側部材外径の変位の差以上の締め代で嵌合して一
体化したことを特徴とし、内径側部材としてジュラルミ
ン(0〜100℃の熱膨張率α=24×10-6/℃)、
外径側部材として密度1.6g/cm3、円周方向弾性
率19,000kg/mm2の円周巻きCFRPを用い
たビトリファイボンドCBN砥石が開示されている。
Accordingly, as a base disk material for a grinding wheel for high peripheral speed grinding, Japanese Patent Application Laid-Open Nos.
JP 91541 proposes the use of a fiber reinforced plastic having excellent mechanical and thermal strength and a low specific gravity. Japanese Patent Application Laid-Open No. 3-256677 proposes a composite material in which ceramic fibers or particles are dispersed in a metal matrix. Japanese Patent Application Laid-Open No. 6-91542 discloses that, for the purpose of reducing the material cost of the base disk and improving the accuracy of the mounting surface, fiber-reinforced plastic is used only for the outer peripheral material of the base disk, and the inner peripheral portion (core portion). There has been proposed a technique of using a metal which is inexpensive and has good workability as a raw material of the material. Also,
Japanese Patent Application Laid-Open No. 7-9347 discloses that an outer diameter side member and an inner diameter side member of a base are fitted with an interference that is equal to or larger than the difference between the displacement of the outer diameter side member inner diameter and the inner diameter side member outer diameter during use rotation of the grindstone. Duralumin (coefficient of thermal expansion α = 24 × 10 −6 / ° C. at 0 to 100 ° C.) as the inner diameter side member,
A vitrify bond CBN grindstone using a circumferentially wound CFRP having a density of 1.6 g / cm 3 and a circumferential elastic modulus of 19,000 kg / mm 2 as an outer diameter side member is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、第1
に、特開平3−234474号公報又は特開平6−91
541号公報に提案された繊維強化プラスチック製のベ
ース円盤は、優れた物性値を有する反面価格的に高価で
あり、しかもベース円盤が大きく厚いものは伸びの偏差
による歪みが発生することがあり、特に外径500mm
以上または厚みが50mm以上のものは製造が困難であ
るという問題を有する。
However, the first problem is to be solved.
JP-A-3-234474 or JP-A-6-91
The base disk made of fiber reinforced plastic proposed in Japanese Patent No. 541 has excellent physical properties, but is expensive in price, and a large and thick base disk may be distorted due to deviation in elongation. Especially outer diameter 500mm
Those having a thickness of 50 mm or more have a problem that production is difficult.

【0005】第2に、特開平3−256674号公報に
提案された金属マトリックス中にセラミックス繊維また
は粒子を分散させた複合材料からなるベース円盤は、繊
維強化プラスティック製のベース円盤と同じくサイズが
大きい場合には製造安定性に問題がある。
Second, a base disk made of a composite material in which ceramic fibers or particles are dispersed in a metal matrix proposed in Japanese Patent Application Laid-Open No. 3-256677 is as large as a base disk made of fiber-reinforced plastic. In this case, there is a problem in manufacturing stability.

【0006】第3に、特開平6−91542号公報に提
案されたベース円盤の外周部に繊維強化プラスチックを
採用し、内周部の心材には安価で加工性の良い金属(ジ
ュラルミン:熱膨張係数24×10-6程度)を使用する
ベース円盤形砥石によれば、フィラメントワインディン
グ炭素繊維強化プラスチック等で心材の外周部を巻き込
むことで、外径500mm以上または厚みが50mm以
上のものも製造が可能となる。しかしながら、高周速研
削時(60m/s以上)、特に80m/s以上の超高周
速研削時、砥石幅方向(砥石回転軸方向)における回転
半径方向への砥石伸びの差が拡大すると考えられ、一様
な高精度の研削が困難であるという問題がある。また、
さらなる回転研削の高周速化を図る上で、このような大
きな伸びは安全上問題である。また、特開平7−934
7号公報に係る発明によれば、基台(ベース円盤)の外
径側部材と内径側部材を、砥石の使用回転時における外
径側部材内径と内径側部材外径の変位の差以上の締め代
で嵌合して一体化することにより、高速回転時における
基台内径側と外径側の変位差の減少を図っているが、依
然として上述の問題らが完全には解消されていない。ま
た、砥石設計が複雑となり、外径側と内径側素材の選択
自由度が低くなるという問題が生じる。
Third, a fiber reinforced plastic is used for the outer periphery of the base disk proposed in Japanese Patent Application Laid-Open No. Hei 6-91542, and a metal (duralumin: thermal expansion) which is inexpensive and has good workability is used for the inner core. According to the base disc-shaped grindstone using a coefficient of about 24 × 10 −6 ), it is possible to manufacture even those having an outer diameter of 500 mm or more or a thickness of 50 mm or more by winding the outer periphery of the core material with filament wound carbon fiber reinforced plastic or the like. It becomes possible. However, during high peripheral speed grinding (60 m / s or more), particularly at an ultra-high peripheral speed grinding of 80 m / s or more, the difference in grinding wheel elongation in the radius direction of rotation in the grinding wheel width direction (grinding wheel rotation axis direction) is considered to increase. Therefore, there is a problem that uniform high-precision grinding is difficult. Also,
In order to further increase the peripheral speed of rotary grinding, such a large elongation is a safety problem. Also, Japanese Patent Application Laid-Open No. 7-934
According to the invention according to Japanese Patent Publication No. 7, the outer diameter side member and the inner diameter side member of the base (base disk) are set to have a difference equal to or larger than the difference between the displacement of the outer diameter side member inner diameter and the inner diameter side member outer diameter during use rotation of the grindstone. Although the displacement difference between the inner diameter side and the outer diameter side of the base at the time of high-speed rotation is reduced by fitting and integrating with the interference, the above-mentioned problems have not been completely solved yet. Further, the design of the grindstone becomes complicated, and there is a problem that the degree of freedom in selecting the material on the outer diameter side and the inner diameter side is reduced.

【0007】本発明は上記事情に鑑み、特にセンターレ
ス砥石などの幅広砥石において顕著にあらわれる遠心力
と温度変化による砥石の歪みが小さく、高精度の高周速
研削加工を可能とするベース円盤型研削砥石を提供しよ
うとするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has a base disk type which is capable of performing high-precision high peripheral speed grinding, in which the distortion of the grinding stone due to centrifugal force and temperature change, which is remarkable in a wide grinding stone such as a centerless grinding stone, is small. It is intended to provide a grinding wheel.

【0008】[0008]

【課題を解決するための手段】本発明の概要を説明す
る。本発明者らの知見によれば、一般砥石に比べ超砥粒
砥石は元々摩耗しにくい特性があり、砥石自体に少しの
振れや歪みが発生しても、それが加工する被削材に転写
され研削作業に著しい精度不良や不能率を来たす恐れが
ある。例えば、心材がジュラルミン製、外周層がCFR
P製の2重構造ベース円盤を用いても、周速度が60m
/sを超えるような高周速研削、更には80m/sを超
えるような超高周速研削を行う場合、ベース円盤の局所
的な変形(歪み)により、加工精度が低下することがあ
る。特に、砥石幅が50mmを超える砥石では歪みが拡
大され、加工精度の低下が著しくなる。
An outline of the present invention will be described. According to the knowledge of the present inventors, superabrasive grindstones originally have a characteristic that they are less likely to be worn than ordinary grindstones, and even if a slight runout or distortion occurs in the grindstone itself, it is transferred to a work material to be processed. There is a possibility that the precision of the grinding operation may be remarkably poor or the rate of failure may be caused. For example, the core material is made of duralumin, and the outer layer is CFR
Even if a P-type double structure base disk is used, the peripheral speed is 60m
In the case of performing high peripheral speed grinding at more than 80 m / s or ultrahigh peripheral speed grinding at more than 80 m / s, the processing accuracy may be reduced due to local deformation (distortion) of the base disk. In particular, with a grindstone having a grindstone width of more than 50 mm, the distortion is increased and the processing accuracy is significantly reduced.

【0009】これは、高周速故に研削盤の砥石軸への負
荷の増大とともにモーターや軸受け部分での発熱量が大
きくなり、これらの熱がベース円盤にも伝熱し伸びや歪
みが大きくなるためと考えられる。また、このような歪
みは特に砥石幅に比例して増加する傾向にある。更に特
徴的な熱的歪み発生要因として、大型砥石においては、
熱伝導の時間差や、研削部と砥石穴径部等の発生熱源と
の遠近関係により砥石各部で温度差が生ずることが予見
される。これによって、特にセンターレス研削等用の幅
広砥石ではその作業性に顕著な問題を生じる。
This is because, because of the high peripheral speed, the load on the grinding wheel shaft of the grinding machine increases and the amount of heat generated in the motor and the bearing portion increases, and the heat is transferred to the base disk to increase elongation and distortion. it is conceivable that. Further, such distortion tends to increase particularly in proportion to the width of the grindstone. In addition, as a characteristic thermal distortion generation factor, in large wheels,
It is foreseen that a temperature difference will occur in each part of the grindstone due to the time difference of heat conduction and the distance between the grinding part and the generated heat source such as the diameter of the grindstone hole. This causes a significant problem in workability especially in a wide grinding wheel for centerless grinding or the like.

【0010】また、従来のベース円盤を用いる場合、砥
石を形状修正するためのツルーイングも、作業時の温度
近傍で行わなければ、温度変化による熱膨脹によりツル
ーイング終了時と使用時では砥石形状が異なると考えら
れるため、砥石管理作業の煩わしさが生ずる。また、空
調設備等が無く1日の温度変化が大きな作業環境では、
周速度が80m/sを超えるような超高周速研削でなく
とも砥石に大きな温度変化が生じることにより、被削材
の研削品質管理が困難となると考えられる。
In addition, when a conventional base disk is used, truing for correcting the shape of a grindstone is not performed near the temperature at the time of operation. Since it is conceivable, the trouble of whetstone management work occurs. In a work environment where there is no air conditioning equipment and the temperature change is large in one day,
Even if it is not super-high peripheral speed grinding in which the peripheral speed exceeds 80 m / s, it is considered that a large temperature change occurs in the grindstone, so that it becomes difficult to control the grinding quality of the work material.

【0011】以上の知見に基づき、本発明者は下記のよ
うな特徴を有する回転研削砥石を探求した。(1)高周
速下の遠心力に対する十分な安全強度を有すること。
(2)上記遠心力による伸びや変形が砥石の各部分で均
等で歪みが少ないこと。(3)高周速研削時に発生しや
すい温度上昇による伸びや歪みが少なく均等であるこ
と。(4)上記特性に大きく寄与するベース円盤材料の
比重が小さいこと。
Based on the above findings, the present inventor has searched for a rotary grinding wheel having the following features. (1) Have sufficient safety strength against centrifugal force under high peripheral speed.
(2) Elongation and deformation due to the centrifugal force are uniform in each part of the grindstone and distortion is small. (3) Elongation and distortion due to temperature rise that are likely to occur during high peripheral speed grinding are small and uniform. (4) The specific gravity of the base disk material that greatly contributes to the above characteristics is small.

【0012】その結果、本発明者らは、超砥粒層が接着
されたベース円盤を備えた回転研削用の研削砥石におい
て、ベース円盤を心材と心材を取り囲む外周層から構成
し、心材の熱膨脹係数を18×10-6以下、比重4g/
cm3以下、かつ好ましくは引張強度を200MPa以
上とし、外周層を炭素繊維強化プラスチック(以下「C
FRP」と記す)とすることにより、高周速下において
使用しても熱膨脹が小さく伸びの小さい超砥粒を用いた
回転研削用の砥石を得ることができることを見出し、さ
らに本発明に到達したものである。
As a result, the present inventors have developed a grinding wheel for rotary grinding provided with a base disk to which a superabrasive layer is adhered, wherein the base disk is composed of a core material and an outer peripheral layer surrounding the core material, and thermal expansion of the core material is achieved. Coefficient of 18 × 10 -6 or less, specific gravity 4g /
cm 3 or less, and preferably a tensile strength of 200 MPa or more, and the outer peripheral layer is made of carbon fiber reinforced plastic (hereinafter referred to as “C
FRP "), it has been found that even when used under a high peripheral speed, it is possible to obtain a grindstone for rotary grinding using superabrasive grains having small thermal expansion and small elongation, and further reached the present invention. Things.

【0013】本発明は第1の視点において下記の要素を
含む。すなわち、ベース円盤の心材は熱膨脹係数が18
×10-6/℃以下かつ比重が4g/cm3以下の特性を有す
る。ベース円盤の外周層の材質は繊維強化プラスチック
である。
The present invention includes the following elements in a first aspect. That is, the core material of the base disk has a coefficient of thermal expansion of 18
It has characteristics of not more than × 10 −6 / ° C. and a specific gravity of not more than 4 g / cm 3 . The material of the outer peripheral layer of the base disk is fiber reinforced plastic.

【0014】前記第1の視点に基づくベース円盤は、熱
膨脹が少なく、特に高周速回転時に砥石本体の温度が上
昇した際の伸びが従来品に比して少なく、かつ砥石幅方
向の偏差を著しく少なくすることが可能となる。このた
め、特に歪みが大きくなりやすい砥石幅が50mm以上
の幅広砥石の場合にはツルーイング時や研削作業時の砥
石回転数や温度変化による砥石幅方向の偏差の絶対量を
効果的に抑えることができる。また、第1の視点に基づ
く心材は、通常のアルミニウム合金等で製作した従来の
金属製心材に比べ、その比弾性率(弾性率/比重)が大
きいものが選択され、ベース円盤の回転時伸びが従来品
に比して小さくなる。
[0014] The base disk based on the first viewpoint has a small thermal expansion, especially when the temperature of the grinding wheel body rises during high peripheral speed rotation, the expansion is smaller than that of the conventional product, and the deviation in the grinding wheel width direction is reduced. It is possible to significantly reduce it. For this reason, especially in the case of a wide grindstone having a grindstone width of 50 mm or more, in which distortion tends to increase, it is possible to effectively suppress the absolute amount of deviation in the grindstone width direction due to a change in the grindstone rotation speed or temperature during truing or grinding work. it can. Further, a core material based on the first viewpoint is selected to have a higher specific elastic modulus (elastic modulus / specific gravity) than a conventional metal core material made of a normal aluminum alloy or the like, and to elongate the base disk during rotation. Is smaller than conventional products.

【0015】また、比重は4g/cm3以下と十分に低
いものを用いるため、遠心力によるベース円盤の伸びや
変形が小さくなり、研削砥石の回転に伴うモーターへの
負荷、砥石軸への負荷も小さく、これらにおける発熱量
が少ない。そのため、ベース円盤への伝熱量が少なく、
研削砥石の熱膨張も一層少なくなり、高精度の研削を行
うことができる。
In addition, since a material having a specific gravity of 4 g / cm 3 or less is used, elongation and deformation of the base disk due to centrifugal force are reduced, and a load on a motor and a load on a grinding wheel shaft accompanying rotation of a grinding wheel are reduced. And the calorific value of these is small. Therefore, the amount of heat transfer to the base disk is small,
The thermal expansion of the grinding wheel is further reduced, and highly accurate grinding can be performed.

【0016】また、本発明は第2の視点において下記の
要素を含む。ベース円盤の心材の材質は、セラミックス
質粒子ないしセラミック質繊維により強化されたアルミ
ニウム基複合材料である。第3の視点において下記の要
素を含む。心材の材質はアルミニウム合金である。第4
の視点において下記の要素を含む。心材の材質は、シリ
コン20wt%以上を含有するアルミニウム合金であ
る。第5の視点において下記の要素を含む。ベース円盤
外周層の材質は炭素繊維強化プラスチックである。第6
の視点において下記の要素を含む。砥石幅が50mm以
上である。第7の視点において下記の要素を含む。高周
速回転研削時(特に周速80m/s以上)、砥石幅方向
に沿ったベース円盤中心部の半径と円盤端部の半径の差
が10μm以下である。
Further, the present invention includes the following elements from a second viewpoint. The core material of the base disk is an aluminum-based composite material reinforced with ceramic particles or ceramic fibers. The third aspect includes the following elements. The material of the core is an aluminum alloy. 4th
Including the following elements from the viewpoint of The material of the core material is an aluminum alloy containing 20% by weight or more of silicon. The fifth aspect includes the following elements. The material of the outer peripheral layer of the base disk is carbon fiber reinforced plastic. Sixth
Including the following elements from the viewpoint of The grindstone width is 50 mm or more. The seventh aspect includes the following elements. At the time of high peripheral speed rotary grinding (especially at a peripheral speed of 80 m / s or more), the difference between the radius of the center portion of the base disk and the radius of the end portion of the disk along the wheel width direction is 10 μm or less.

【0017】[0017]

【発明の実施の形態】以下、本発明の好ましい一実施の
形態を説明する。ベース円盤の内周層を構成する心材の
熱膨張率α(0〜100℃)は、18×10-6℃以下が
好ましく、さらに16×10-6℃以下、14×10-6
以下が好ましい。αの範囲としては12〜15×10-6
℃が好ましい。少なくとも、熱膨張率が24×10-6
程度であるジュラルミンより低熱膨張率の材料を用い
る。心材の比重は4g/cm3以下が好ましく、さらに
3g/cm3以下、2g/cm3以下が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described. The thermal expansion coefficient α (0 to 100 ° C.) of the core material constituting the inner peripheral layer of the base disk is preferably 18 × 10 −6 ° C. or less, more preferably 16 × 10 −6 ° C. or less, and 14 × 10 −6 ° C.
The following is preferred. The range of α is 12 to 15 × 10 -6
C is preferred. At least the coefficient of thermal expansion is 24 × 10 -6 ° C
A material having a lower coefficient of thermal expansion than duralumin is used. The specific gravity of the core is preferably 4 g / cm 3 or less, more preferably 3 g / cm 3 or less, and 2 g / cm 3 or less.

【0018】上記心材の物性値に適する材料として、ア
ルミニウム基複合材料があげられ、アルミニウム合金マ
トリックス(母材)中にセラミックスの繊維又は粒子を
分散させたもので、FRM、MMCなどと称されている
ものである。上記セラミックスとしては、アルミナ、シ
リコンカーバイト、ボロン、シリカ、カーボン、チタン
酸カリウム、チタン酸バリウムなどを用いることができ
る。また、心材中に、上記セラミックス繊維又は粒子は
10〜70wt%含有されることが好ましい。10%以
上で回転時の伸びが小さくなり、一方70%以下で製品
としての安定性が高くなる傾向があるからである。ま
た、セラミックスの繊維は、直径1〜300μmのもの
を用いることが好ましく、セラミックスの粒子は、粒径
0.1〜300μmのものを用いることが好ましい。
An example of a material suitable for the physical properties of the core material is an aluminum-based composite material, which is obtained by dispersing ceramic fibers or particles in an aluminum alloy matrix (base material), and is referred to as FRM, MMC, or the like. Is what it is. As the above ceramics, alumina, silicon carbide, boron, silica, carbon, potassium titanate, barium titanate, or the like can be used. Further, the core material preferably contains the ceramic fibers or particles in an amount of 10 to 70 wt%. If it is 10% or more, the elongation at the time of rotation tends to be small, while if it is 70% or less, the stability as a product tends to be high. The ceramic fibers preferably have a diameter of 1 to 300 μm, and the ceramic particles preferably have a particle diameter of 0.1 to 300 μm.

【0019】また、上記心材の物性値に適する材料とし
てシリコン20wt%以上を含むアルミニウム合金があげ
られる。合金中、シリコンは20〜40wt%含有される
ことが好ましい。20wt%以上で熱膨脹係数が小さく
なり、40%以下で製品としての安定性(強度及び靭
性)が高くなる傾向があるからである。
As a material suitable for the physical properties of the core material, there is an aluminum alloy containing 20% by weight or more of silicon. The alloy preferably contains 20 to 40% by weight of silicon. If the content is 20 wt% or more, the thermal expansion coefficient tends to be small, and if it is 40% or less, the stability (strength and toughness) as a product tends to be high.

【0020】ベース円盤の外周層を構成する繊維強化プ
ラスチック層としては、炭素繊維強化プラスチック(C
FRP)が好ましい。CFRPは、プラスチック(母
材)中に炭素繊維を分散させたものであり、母材中に3
0〜70vol%含有することが好ましい。30vol
%以上で回転時の伸びが小さくなり、70vol%以下
で製品としての安定性が高くなる傾向があるからであ
る。また、炭素繊維をベース円盤の円周方向に巻いて積
層したフィラメントワインディングCFRP(以下「F
WCFRP」と記す)を用いることが好ましい。好まし
くは、繊維を円周方向に対して45゜以下の角度で巻
く。他の型式のCFPR、例えば、砥石厚み方向(砥石
回転軸方向)に炭素繊維を積層したものを用いることも
できる。また、回転砥石半径方向の弾性率が15GPa
以上、熱膨張率(0〜100℃)が50×10-6以下と
なるように、繊維を巻くことが好ましい。
As the fiber reinforced plastic layer constituting the outer peripheral layer of the base disk, carbon fiber reinforced plastic (C
FRP) is preferred. CFRP is obtained by dispersing carbon fibers in plastic (base material).
It is preferable to contain 0 to 70 vol%. 30vol
% Or more tends to decrease the elongation during rotation, and 70% or less tends to increase the stability as a product. Further, a filament winding CFRP (hereinafter referred to as “F”) in which carbon fibers are wound in the circumferential direction of the base disk and laminated.
WCFRP "). Preferably, the fibers are wound at an angle of 45 ° or less with respect to the circumferential direction. It is also possible to use another type of CFPR, for example, one obtained by laminating carbon fibers in a grinding wheel thickness direction (grinding wheel rotation axis direction). In addition, the elastic modulus of the rotating grindstone in the radial direction is 15 GPa.
As described above, it is preferable to wind the fiber so that the coefficient of thermal expansion (0 to 100 ° C.) is 50 × 10 −6 or less.

【0021】また、ベース円盤と砥粒層の接着に当たっ
ては、エポキシ樹脂などの種々の接着剤を用いることが
できる。砥粒として、ダイヤモンドやCBN等の超砥粒
を用いることにより、本発明によって得られる利点がよ
り生かされるが、アルミナ・炭化珪素などの一般砥粒を
用いてもよい。砥粒層における砥粒の結合にはビトリフ
ァイドボンド、レジノイドボンド、メタルボンド又は電
着などにより行うことができる。特に好ましくはビトリ
ファイボンドで結合された超砥粒高周速研削用砥石に本
発明を適用する。
For bonding the base disk and the abrasive layer, various adhesives such as epoxy resin can be used. By using superabrasive grains such as diamond and CBN as abrasive grains, the advantages obtained by the present invention can be further utilized, but general abrasive grains such as alumina and silicon carbide may be used. The bonding of the abrasive grains in the abrasive grain layer can be performed by vitrified bond, resinoid bond, metal bond, electrodeposition, or the like. Particularly preferably, the present invention is applied to a super-abrasive high peripheral speed grinding wheel bonded by vitrify bond.

【0022】本発明は、特に砥石幅(厚み、回転軸方向
の長さ)が50mm以上の回転研削用砥石に好適に適用
される。砥石幅50mm以上(研削時間が短縮される)
の回転研削用砥石を用いる場合、そのベース円盤の熱膨
張係数が高く比重も大きいと、砥石幅方向の偏差(遠心
力により砥石が鼓状に膨らむ)が砥石幅の小さいものに
比べて格段に大きくなり、ツルーイングや研削の精度が
低下するからであるまた、本発明は、幅広に形成される
センタレース砥石に好適に適用されるが、他形態の砥石
にも適用される。また、本発明に基づく回転研削砥石は
周速度60m/s以上の高周速度研削、さらには80m
/s以上、100m/s以上の超高周速研削に好適に適
用される。
The present invention is suitably applied particularly to a grinding wheel for rotary grinding having a grinding wheel width (thickness, length in the direction of the rotating shaft) of 50 mm or more. Grinding stone width 50mm or more (grinding time is shortened)
When using a grinding wheel for rotary grinding, if the base disk has a high coefficient of thermal expansion and a high specific gravity, the deviation in the width direction of the grinding wheel (the wheel swells like a drum due to centrifugal force) is much smaller than that of a wheel with a small width. In addition, the present invention is suitably applied to a center race grindstone formed in a wide width, but is also applicable to other types of grindstones. In addition, the rotary grinding wheel according to the present invention has a high peripheral speed grinding speed of 60 m / s or more,
/ S or more and 100 m / s or more.

【0023】[0023]

【実施例】[試験例1]以下、図面を参照して本発明の
一実施例を説明する。表1に示すようにベース円盤の外
周層の材料としてFWCFRP、心材として種々の材料
を用い、図1に示す構造のベース円盤を4種類(実施例
1,2、比較例1,2)作製した。なお、比較例2はF
WCFRP単体構造のベース円盤である。表1に使用し
た外周層の材料、種々の心材材料を示し、表2にこれら
心材材料の物性値を示す。ベース円盤の製造方法は下記
の通りである。すなわち、ベース円盤として、図2
(a)に示す炭素繊維強化プラスチックからなる外周層
1を製作し、外周層1を図2(b)に示す回転軸用穴2
0を有する心材2に、エポキシ樹脂系接着剤を用いて接
着した。上記ベース円盤において、外周層1の寸法は、
その外径が439mm、内径が250mm、厚みが21
0mmである。また、心材2の寸法は、その外径が25
0mm、内径が203.2mm、厚みが210mmであ
る。なお、外周層1は、炭素繊維を円周方向に対してヘ
リカル巻きし、エポキシ樹脂を含浸して作製したもので
ある。
[Test Example 1] An embodiment of the present invention will be described below with reference to the drawings. As shown in Table 1, FWCFRP was used as the material of the outer peripheral layer of the base disk, and various materials were used as the core material, and four types of base disks having the structure shown in FIG. 1 (Examples 1, 2 and Comparative Examples 1, 2) were produced. . Note that Comparative Example 2
It is a base disk having a single structure of WCFRP. Table 1 shows the materials of the outer layer used and various core materials, and Table 2 shows the physical properties of these core materials. The method of manufacturing the base disk is as follows. That is, as a base disk, FIG.
An outer peripheral layer 1 made of a carbon fiber reinforced plastic shown in FIG. 2A is manufactured, and the outer peripheral layer 1 is formed as a rotary shaft hole 2 shown in FIG.
The core material 2 having 0 was bonded using an epoxy resin adhesive. In the above base disk, the dimensions of the outer peripheral layer 1 are as follows:
Its outer diameter is 439mm, inner diameter is 250mm and thickness is 21
0 mm. The core 2 has a dimension whose outer diameter is 25.
0 mm, inner diameter is 203.2 mm, and thickness is 210 mm. The outer layer 1 is formed by helically winding carbon fibers in the circumferential direction and impregnating with an epoxy resin.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】これら4種類のベース円盤を5200rp
m(周速117m/s)で3分間及び60分間回転させ、
円周面の半径方向伸びをレーザー変位計でそれぞれ実測
した。伸び測定位置はベース円盤円周面の中央部及び両
端部の3ヶ所とした。また、ベース円盤の温度を、回転
試験前と1時間空転後の停止時において、表面温度計を
用いて測定した。表3に3分間回転した試験結果、表4
に60分間回転した試験結果をそれぞれ示す。
These four types of base disks are set to 5200 rpm
m (peripheral speed 117 m / s) for 3 minutes and 60 minutes,
The radial elongation of the circumferential surface was measured with a laser displacement meter. The elongation was measured at three positions, that is, the center and both ends of the circumferential surface of the base disk. Further, the temperature of the base disk was measured using a surface thermometer before the rotation test and at the time of the stop after the spin for one hour. Table 3 shows the results of the test rotated for 3 minutes.
Shows the test results after 60 minutes of rotation.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表3及び表4より、実施例1、2のベース
円盤は一般的な2重構造ベース円盤である比較例1と比
べて、60分間空転後の伸びがかなり小さい。また、6
0分間空転後における中央部と両端部の変位の差(半径
の差に相当する)も、実施例1,2では4〜5μmと比
較例1の最大16μmに比べ約1/4であり、砥石幅方
向の位置による差が非常に小さいことが解る。FWCF
RP一体構造の比較例2では、60分間空転後の全体の
伸び自体は実施例1,2より小さいが、砥石幅方向の位
置による伸びの偏差は実施例1,2や比較例1より大き
く、最大24μmである。
As can be seen from Tables 3 and 4, the base disks of Examples 1 and 2 have considerably smaller elongation after 60 minutes of idling than Comparative Example 1 which is a general double-structured base disk. Also, 6
The difference in displacement (corresponding to the difference in radius) between the central portion and both ends after idling for 0 minutes is 4 to 5 μm in Examples 1 and 2, which is about 1/4 of the maximum of 16 μm in Comparative Example 1, and It can be seen that the difference depending on the position in the width direction is very small. FWCF
In Comparative Example 2 of the RP integrated structure, the total elongation itself after 60 minutes of idling is smaller than in Examples 1 and 2, but the deviation of the elongation due to the position in the grindstone width direction is larger than in Examples 1 and 2 and Comparative Example 1. The maximum is 24 μm.

【0030】従って、比較例1、2のベース円盤を用い
その外周面に砥石片を接着剤により貼り付けた構造の研
削砥石においては、ベース円盤の砥石幅方向に沿った位
置による伸び偏差が大きいため、被削材の加工精度に悪
影響を与えたり、またその対応のため砥石が恒温状態に
なるまで研削作業を待機する必要があり、加工能率の低
下が避けられない。更に、形状修正のためのツルーイン
グも作業時温度近傍で行う必要があるため、砥石管理作
業の煩わしさが生ずる。また、空調設備等が無く1日の
室温変化が大きな作業環境では、被削材の研削品質管理
が一層困難となる。
Accordingly, in the grinding wheel having a structure in which the grindstone pieces are adhered to the outer peripheral surface of the base disks of Comparative Examples 1 and 2 with an adhesive, the elongation deviation due to the position of the base disk along the width direction of the grindstone is large. For this reason, the processing accuracy of the work material is adversely affected, and it is necessary to wait for the grinding operation until the grindstone reaches a constant temperature state in order to cope with the adverse effect, and a reduction in the processing efficiency is inevitable. Further, since the truing for shape correction also needs to be performed in the vicinity of the temperature at the time of work, the work of managing the grindstone occurs. Further, in a work environment in which there is no air conditioner or the like and a large change in room temperature per day, it becomes more difficult to control the grinding quality of the work material.

【0031】また、比較例1では使用時に発生する遠心
力と発熱による伸びの絶対量が大きいことから砥石接合
部に生ずる引張応力が大きくなり、砥石の破損等が発生
しやすくなり安全面で不利となる。
Further, in Comparative Example 1, since the absolute amount of elongation due to centrifugal force and heat generated during use is large, the tensile stress generated at the joint of the grindstones becomes large, and the grindstone is liable to be damaged, which is disadvantageous in terms of safety. Becomes

【0032】これは、長時間回転によるベース円盤と空
気の摩擦熱及びベース円盤の回転軸と研削盤軸受部の摩
擦熱によって、ベース円盤温度が上昇し、比較例1,2
のベース円盤は半径方向への弾性率が低くかつ熱膨張係
数が高いため、ベース円盤の歪みが大きくなったものと
考えられる。従って、実際の研削時においても、本試験
結果と同様の現象が生じるものと推定される。
This is because the temperature of the base disk increases due to the frictional heat between the base disk and air due to the long-time rotation and the frictional heat between the rotating shaft of the base disk and the bearing of the grinding machine.
It is considered that the base disk has a low elastic modulus in the radial direction and a high coefficient of thermal expansion, so that the distortion of the base disk was increased. Therefore, it is presumed that the same phenomenon as the result of this test occurs even during actual grinding.

【0033】[試験例2]さらに、砥石幅以外は比較例
1(心材がA2014アルミニウム合金製)と同様に、
表5又は表6に示す砥石幅が異なる5種類のベース円盤
を作製した。これら5種類のベース円盤を用いて、試験
例1と同様に、3分間空転後と60分間空転後のベース
円盤歪みを調べた。表5及び表6にこれらの測定結果を
示す。
Test Example 2 Further, except for the width of the grindstone, as in Comparative Example 1 (the core was made of A2014 aluminum alloy),
Five types of base disks having different grinding wheel widths shown in Table 5 or Table 6 were produced. Using these five types of base disks, base disk distortions after 3 minutes of idling and after 60 minutes of idling were examined in the same manner as in Test Example 1. Tables 5 and 6 show the results of these measurements.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】表5及び表6より、砥石幅30mmでは偏
差が3〜4μmと少ないが、50mmでは10〜11μ
mとなり、これは実研削作業において加工品精度に問題
が生じ始めるレベルである。また、図3に試験例1及び
試験例2の結果を併せて示す。図3より、砥石幅(厚
み)30〜70mmの間で、厚みが増すに連れて歪み偏
差が大きくなり、50mm以上で歪み偏差が加工品精度
に実質的な影響を与えるレベルに到達することが分か
る。
According to Tables 5 and 6, the deviation is as small as 3 to 4 μm when the grinding wheel width is 30 mm, but 10 to 11 μm when the grinding wheel width is 50 mm.
m, which is a level at which a problem starts to occur in the precision of the processed product in the actual grinding operation. FIG. 3 also shows the results of Test Example 1 and Test Example 2. From FIG. 3, it can be seen that the strain deviation increases as the thickness increases between 30 to 70 mm in the grinding wheel width (thickness), and reaches a level at which the strain deviation has a substantial effect on the precision of the workpiece at 50 mm or more. I understand.

【0037】[0037]

【発明の効果】本発明によれば、高周速下において使用
しても、ベース円盤の伸び及びその砥石幅方向(砥石回
転軸方向)に沿った回転半径方向伸びの偏差が小さく、
高精度研削が可能な回転研削用砥石が提供される。従っ
て、本発明は、砥石幅が大きい、特に砥石幅50mm以
上の回転研削用砥石に好適に適用され、研削時間の短縮
が図られる。また、本発明に基づくベース円盤は熱膨張
率が小さくされているため、温度差によるベース円盤の
歪みが小さい。よって、砥石が恒温状態になるまで砥石
作業を待機する必要が無いことにより、加工能率が向上
すると共に、被削材の加工精度も常に良好に保たれる。
また、一日の温度変化が大きい作業環境では砥石の形状
変化が大きいが、本発明に基づく砥石を用いることによ
り、この様な状況下でも安定した研削作業を実施し得
る。さらに、ツルーイング作業は、砥石の温度によら
ず、何時実施しても所定の形状精度が安定して作り出せ
る。また、本発明によれば、ベース円盤の心材が比較的
脆性な材料であっても、外周層を構成するCFRPに囲
まれているため、心材部に外的な衝撃が直接伝達されに
くいため、作業の安全性が向上される。
According to the present invention, even when used under a high peripheral speed, the deviation of the elongation of the base disk and the elongation in the radial direction of rotation along the grinding wheel width direction (the direction of the grinding wheel rotation axis) is small.
Provided is a grinding wheel for rotary grinding capable of high-precision grinding. Therefore, the present invention is suitably applied to a grindstone having a large grindstone width, particularly a grindstone having a grindstone width of 50 mm or more, and the grinding time can be reduced. Further, since the base disk according to the present invention has a small coefficient of thermal expansion, distortion of the base disk due to a temperature difference is small. Therefore, since it is not necessary to wait for the grindstone operation until the grindstone reaches a constant temperature state, the machining efficiency is improved, and the machining accuracy of the work material is always kept good.
In a work environment in which the temperature changes daily are large, the shape of the grindstone changes greatly. However, by using the grindstone according to the present invention, a stable grinding operation can be performed even in such a situation. Further, the truing operation can stably produce a predetermined shape accuracy irrespective of the temperature of the grindstone at any time. Further, according to the present invention, even if the core material of the base disk is a relatively brittle material, since the external impact is not directly transmitted to the core material portion because it is surrounded by the CFRP forming the outer peripheral layer, Work safety is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るベース円盤型研削砥石
の構造を説明するための図である。
FIG. 1 is a view for explaining the structure of a base disk-type grinding wheel according to one embodiment of the present invention.

【図2】(a)及び(b)は、図1に示した砥石の分解
図であり、(a)ベース円盤の外周層、(b)ベース円
盤の心材部を示す。
2 (a) and 2 (b) are exploded views of the grindstone shown in FIG. 1, and show (a) an outer peripheral layer of a base disk, and (b) a core material portion of the base disk.

【図3】砥石幅(厚み)と歪み偏差の関係を説明するた
めの図である。
FIG. 3 is a diagram for explaining a relationship between a grindstone width (thickness) and a distortion deviation.

【符号の説明】[Explanation of symbols]

1 外周層 2 心材 20 回転軸用穴 DESCRIPTION OF SYMBOLS 1 Outer layer 2 Core material 20 Hole for rotary shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野々川 岳司 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 寺田 好晴 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Nonokawa 3-36, Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture Inside Noritake Company Limited (72) Inventor Yoshiharu Terada 3-chome Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture No. 1-36 Noritake Company Limited

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】砥粒層をベース円盤に接着してなるベース
円盤型の研削砥石であって、前記ベース円盤は心材と該
心材を取り囲む外周層を備え、前記心材は熱膨脹係数が
18×10-6/℃以下かつ比重が4g/cm3以下の特性
を有し、前記外周層の材質は繊維強化プラスチックであ
ることを特徴とするベース円盤型研削砥石。
1. A base disk-type grinding wheel having an abrasive layer adhered to a base disk, said base disk having a core material and an outer peripheral layer surrounding said core material, said core material having a thermal expansion coefficient of 18 × 10. -6 / ° C. or lower and specific gravity of 4 g / cm 3 or lower, wherein the material of the outer peripheral layer is a fiber-reinforced plastic, wherein the base disk-type grinding wheel is characterized by the following characteristics.
【請求項2】前記心材の材質は、セラミックス質粒子な
いしセラミック質繊維により強化されたアルミニウム基
複合材料であることを特徴とする請求項1記載のベース
円盤型研削砥石。
2. The base disk-type grinding wheel according to claim 1, wherein the core material is an aluminum-based composite material reinforced by ceramic particles or ceramic fibers.
【請求項3】前記心材の材質は、アルミニウム合金であ
ることを特徴とする請求項1記載のベース円盤型研削砥
石。
3. The grinding wheel according to claim 1, wherein the core material is an aluminum alloy.
【請求項4】前記心材の材質は、シリコン20wt%以
上を含有するアルミニウム合金であることを特徴とする
請求項3記載のベース円盤型研削砥石。
4. A base disk-type grinding wheel according to claim 3, wherein said core material is an aluminum alloy containing 20 wt% or more of silicon.
【請求項5】前記外周層の材質は炭素繊維強化プラスチ
ックであることを特徴とする請求項1〜4のいずれか一
に記載のベース円盤型研削砥石。
5. The base disk-type grinding wheel according to claim 1, wherein a material of said outer peripheral layer is carbon fiber reinforced plastic.
【請求項6】砥石回転軸方向に沿った砥石幅が50mm
以上であることを特徴とする請求項1〜5のいずれか一
に記載のベース円盤型研削砥石。
6. A grindstone having a width of 50 mm along a grindstone rotation axis direction.
The base disk-shaped grinding wheel according to any one of claims 1 to 5, characterized in that:
【請求項7】周速80m/s以上の回転研削時、砥石回
転軸方向に沿った前記ベース円盤中心部の半径と、該円
盤端部の半径の差が10μm以下であることを特徴とす
る請求項6記載のベース円盤型研削砥石。
7. A rotary grinding machine having a peripheral speed of 80 m / s or more, wherein a difference between a radius of a center portion of the base disk along a grinding wheel rotation axis direction and a radius of an end portion of the disk is 10 μm or less. A grinding wheel according to claim 6.
JP36949697A 1997-12-26 1997-12-26 Base disk type grinding wheel Pending JPH11188636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36949697A JPH11188636A (en) 1997-12-26 1997-12-26 Base disk type grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36949697A JPH11188636A (en) 1997-12-26 1997-12-26 Base disk type grinding wheel

Publications (1)

Publication Number Publication Date
JPH11188636A true JPH11188636A (en) 1999-07-13

Family

ID=18494571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36949697A Pending JPH11188636A (en) 1997-12-26 1997-12-26 Base disk type grinding wheel

Country Status (1)

Country Link
JP (1) JPH11188636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071253A (en) * 1999-08-25 2001-03-21 Sulzer Chemtech Ag Method for separating shape-machined thin piece
CN107457714A (en) * 2017-08-25 2017-12-12 郑州博特硬质材料有限公司 A kind of vitrified bonded grinding wheel of ceramic fibre enhancing and preparation method thereof
CN107932349A (en) * 2017-12-01 2018-04-20 湘潭大学 A kind of magnetic rheology elastic body emery wheel and preparation method thereof
KR20190047159A (en) * 2017-10-25 2019-05-08 신한다이아몬드공업 주식회사 High speed rotating composite tool and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071253A (en) * 1999-08-25 2001-03-21 Sulzer Chemtech Ag Method for separating shape-machined thin piece
JP4515608B2 (en) * 1999-08-25 2010-08-04 ズルツァー・ケムテック・アクチェンゲゼルシャフト Method for separating shaped flakes and equipment for performing the method
CN107457714A (en) * 2017-08-25 2017-12-12 郑州博特硬质材料有限公司 A kind of vitrified bonded grinding wheel of ceramic fibre enhancing and preparation method thereof
KR20190047159A (en) * 2017-10-25 2019-05-08 신한다이아몬드공업 주식회사 High speed rotating composite tool and manufacturing method thereof
CN107932349A (en) * 2017-12-01 2018-04-20 湘潭大学 A kind of magnetic rheology elastic body emery wheel and preparation method thereof

Similar Documents

Publication Publication Date Title
US6102789A (en) Abrasive tools
JP3323827B2 (en) Manufacturing method of precision parts
JP3795778B2 (en) Resinoid grinding wheel using hydrogenated bisphenol A type epoxy resin
JP2006346857A (en) Polishing tool
JPH11188636A (en) Base disk type grinding wheel
JP3426522B2 (en) Base disk type grinding wheel
US3271911A (en) Abrasive wheel
JP3083483B2 (en) Grinding wheel
JPH0822509B2 (en) Grinding wheel
JP2609987B2 (en) Superabrasive grindstone and method of manufacturing the same
JPH11104965A (en) Grinding wheel for high speed grinding
JP2514541B2 (en) Super Abrasive Wheel
JPH03256674A (en) Base disc grinding stone
JPH03104566A (en) Grinding wheel
JPH0890424A (en) Disc base for grinding wheel
JP2870357B2 (en) Rotary grinding wheel for online roll grinding equipment
JPH11235667A (en) Base disc type grinding wheel
JP2002018722A (en) Grinding wheel and its manufacturing method
JP2514542B2 (en) Super Abrasive Wheel
JP2023148074A (en) Double-headed surface grinding wheel
JPH10277952A (en) Grinding wheel
JPH11320419A (en) Base disc type grinding wheel
JPH0691535A (en) Super abrasive grain grinding wheel
JPH01188277A (en) Grinding wheel
JP2001025970A (en) Cutting grinding wheel, and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730