JPH11158526A - Production of high p slag - Google Patents
Production of high p slagInfo
- Publication number
- JPH11158526A JPH11158526A JP32802597A JP32802597A JPH11158526A JP H11158526 A JPH11158526 A JP H11158526A JP 32802597 A JP32802597 A JP 32802597A JP 32802597 A JP32802597 A JP 32802597A JP H11158526 A JPH11158526 A JP H11158526A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- hot metal
- concentration
- treatment
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、P濃度が0.15
%以下の低P溶銑を出発原料として、高濃度のP2 O5
を含有し、直接肥料として使用できる高Pスラグを製造
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
% Or less of low-P hot metal as a starting material and a high concentration of P 2 O 5
And a method for producing high-P slag that can be used directly as a fertilizer.
【0002】[0002]
【従来の技術】P2 O5 の高いスラグを得る方法とし
て、1.5〜2%(以下、濃度は全て重量%を示す)の
Pを含有する溶銑を原料とするトーマス転炉法が古くか
ら知られている。 2. Description of the Related Art As a method for obtaining a slag having a high P 2 O 5 , the Thomas converter method using hot metal containing P of 1.5 to 2% (hereinafter, all concentrations are shown by weight%) is an old method. Known from.
【0003】しかし、現在の原料事情から判断すると溶
銑中のP濃度は0.15%以下であり、トーマス転炉法
の採用は実状に合わない。また、トーマス転炉法の場
合、溶銑中にSiが約0.5%含まれており、スラグ量
は、溶鋼トン当たり200〜300kgと膨大となり、
溶銑中のP濃度が高いわりには、P2 O5 が16〜22
%にとどまっていた。[0003] However, judging from the current raw material situation, the P concentration in the hot metal is 0.15% or less, and the adoption of the Thomas converter method is not practical. Also, in the case of the Thomas converter method, about 0.5% of Si is contained in the hot metal, and the amount of slag is as large as 200 to 300 kg per ton of molten steel,
The P concentration is high despite of the hot metal, P 2 O 5 is 16 to 22
In percent.
【0004】特開平7−316621号公報には、脱P
スラグに含まれるP2 O5 を数回にわたり還元処理をす
ることにより溶銑中のPを約1〜3%に濃化し、少量の
スラグで再度溶銑脱Pを行い、P2 O5 の高いスラグを
得る方法が提案されている。Japanese Patent Application Laid-Open No. Hei 7-316621 discloses that
By reducing P 2 O 5 contained in the slag several times, P in the hot metal is concentrated to about 1 to 3%, the hot metal is removed again with a small amount of slag, and the slag having a high P 2 O 5 is obtained. Have been proposed.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記提案は、
P2 O5 の高いスラグを得るための最適なフラックス組
成および溶銑脱P条件を明らかにしているとは言い難
い。However, the above proposal is
It is hard to say that the optimum flux composition and hot metal removal P conditions for obtaining a slag with a high P 2 O 5 are clarified.
【0006】本発明の目的は、P濃度が0.15%以下
の低P溶銑を出発原料として、P2O5 が請求1では1
0〜30%、請求項2では10〜35%含有する肥料と
して直接使用可能な高Pスラグを得る方法を提供するこ
とにある。An object of the present invention is to use a low P molten iron having a P concentration of 0.15% or less as a starting material, wherein P 2 O 5 is 1%.
It is an object of the present invention to provide a method for obtaining high P slag which can be directly used as a fertilizer containing 0 to 30%, and in claim 2, 10 to 35%.
【0007】[0007]
【課題を解決するための手段】本発明者は上記目的を達
成するため種々検討を重ねた結果、以下の(A)〜
(D)の知見を得た。The present inventor has made various studies to achieve the above object, and as a result, the following (A) to
(D) was obtained.
【0008】(A)P濃度が0.15%以下の低P溶銑
を出発原料として、その溶銑を脱Pして生成したスラグ
を溶銑浴を収容した容器内に投入し、炭素材および酸化
鉄および/または酸素を供給して、P含有スラグを溶融
すると、0.5〜3%のPを含む溶銑を得ることができ
る。この溶銑のSi濃度は0.1%以下となり、トーマ
ス転炉法で使用される溶銑と同等のPを含有する一方、
トーマス転炉法と異なりSi濃度が低い。従って、溶銑
を再度脱P(以下、最終脱Pという)する時のスラグ量
が低減できP2 O5 の高いスラグを得ることができる。[0008] (A) Starting from a low P hot metal having a P concentration of 0.15% or less, slag produced by removing P from the hot metal is put into a vessel containing a hot metal bath, and the carbon material and iron oxide When the P-containing slag is melted by supplying oxygen and / or oxygen, hot metal containing 0.5 to 3% of P can be obtained. The Si concentration of this hot metal is 0.1% or less, while containing P equivalent to the hot metal used in the Thomas converter method,
Unlike the Thomas converter method, the Si concentration is low. Therefore, the amount of slag at the time of removing P from the hot metal again (hereinafter referred to as final removal P) can be reduced, and a slag having a high P 2 O 5 can be obtained.
【0009】(B)上記の最終脱P時に、炭素濃度を
1.0%以下まで脱炭すれば、炭素の燃焼反応熱により
溶鋼の温度が上昇して、1550℃以上となることか
ら、蛍石(CaF2 )を添加しなくても十分スラグが溶
解し、脱P力の強いスラグを形成できる。 (C)最終脱P時のスラグ塩基度を適正に管理すること
により、上記(B)の効果を一層高めることができる。(B) If the carbon concentration is reduced to 1.0% or less during the final degassing, the temperature of the molten steel rises due to the heat of combustion reaction of carbon and becomes 1550 ° C. or more. Even without the addition of stone (CaF 2 ), the slag can be sufficiently dissolved to form a slag having a strong de-P force. (C) The effect of the above (B) can be further enhanced by properly managing the slag basicity at the time of the final de-P.
【0010】(D)溶銑浴には前記のように0.5〜3
%のPを含むが、同時にほぼ同濃度のMnと0.1%程
度のSiも含有する。最終脱P時に、Pがスラグに移行
すると同時にMnとSiも、MnOとSiO2 の形でス
ラグに移行する。スラグを肥料として使用する場合、M
nOおよびSiO2 は悪影響を与えないが、これらの量
を少なくした方がより一層スラグ中P2 O5 濃度を上昇
させることができ、肥料としての効果が増す。また、M
nOを分離できれば、Mn源として有効活用も期待でき
る。(D) The hot metal bath contains 0.5 to 3 as described above.
% Of P, but at the same time contain approximately the same concentration of Mn and about 0.1% of Si. At the time of the final removal of P, at the same time as P transfers to slag, Mn and Si also transfer to slag in the form of MnO and SiO 2 . When slag is used as fertilizer, M
Although nO and SiO 2 do not adversely affect each other, reducing their amounts can further increase the P 2 O 5 concentration in the slag, thereby increasing the effect as a fertilizer. Also, M
If nO can be separated, it can be expected to be effectively used as a Mn source.
【0011】本発明は、上記知見に基づきなされたもの
でその要旨は下記の(1)および(2)のとおりであ
る。 (1)P濃度が0.15%以下の低P溶銑を脱Pして得
られるP含有スラグを溶銑浴に投入し、炭素材および酸
化鉄または/および酸素を供給して、スラグ中のPを溶
銑浴中に還元抽出して0.5〜3%のPおよび0.1%
以下のSiを含む溶銑を生成する第1工程と、第1工程
で生成したスラグを除去した後、該溶銑に処理後のスラ
グ塩基度(CaO/SiO2 重量%比)が2〜8になる
ようにフラックスを添加し、さらに酸化鉄源の添加およ
び/または酸素ガスの吹き込みを行って溶銑中に含まれ
る炭素濃度を1%以下まで低下させる第2工程により処
理後のP2 O5 濃度が10〜30%であるスラグを得る
ことを特徴とする高Pスラグの製造方法。The present invention has been made based on the above findings, and the gist is as follows (1) and (2). (1) P-containing slag obtained by removing low-P hot metal having a P concentration of 0.15% or less into a hot metal bath is supplied to a hot metal bath, and a carbon material and iron oxide or / and oxygen are supplied, and P in the slag is supplied. Is reduced and extracted in a hot metal bath to obtain 0.5 to 3% of P and 0.1%.
The following first step of producing hot metal containing Si, and after removing the slag generated in the first step, the slag basicity (CaO / SiO 2 wt% ratio) of the hot metal after treatment becomes 2 to 8 the flux was added to, more P 2 O 5 concentration after treatment by the addition and / or second step be reduced to less than 1% of carbon concentration of oxygen contained in molten pig iron by performing a blowing gas iron oxide source A method for producing high-P slag, wherein a slag of 10 to 30% is obtained.
【0012】(2)上記(1)に記載の第1工程で生成
した溶銑に酸化鉄または/および酸素を添加することに
より溶銑中のMnおよびSiを低下させてから上記
(1)に記載の第2工程の処理を実施することよりP2
O5 濃度が10〜35%であるスラグを得ることを特徴
とする高Pスラグの製造方法。(2) Mn and Si in the hot metal are reduced by adding iron oxide and / or oxygen to the hot metal produced in the first step described in the above (1), and then described in the above (1). By performing the processing of the second step, P 2
Process for producing a high P slag O 5 concentration is characterized by obtaining a slag 10 to 35%.
【0013】[0013]
【発明の実施の形態】図1に、最終脱Pプロセスの構成
例として転炉の縦断面図を示す。脱P処理用の反応容器
は、通常用いられる転炉1が好適であるが、脱Pフラッ
クスおよび鉄鉱石8の添加と撹拌の手段(図1では底吹
きガス7を使用した例を示した)を有するものなら他の
設備でも構わない。なお、2は上吹きランス、3は底吹
きノズル、4は高P含有銑、5はスラグ6は酸素ガスで
ある。FIG. 1 is a longitudinal sectional view of a converter as a configuration example of a final de-P process. As the reaction vessel for the de-P treatment, a converter 1 which is usually used is suitable, but a means for adding and stirring the de-P flux and the iron ore 8 (FIG. 1 shows an example using the bottom-blown gas 7). Other facilities may be used as long as they have the above. In addition, 2 is a top blowing lance, 3 is a bottom blowing nozzle, 4 is high P content pig iron, 5 is slag 6 is oxygen gas.
【0014】本発明によれば、先ず、P濃度が0.15
%以下の溶銑を脱Pして得られるP含有スラグを原料ス
ラグとして用意し、例えば転炉1に収容された低P溶銑
浴に投入する。このとき原料スラグは通常固化状態であ
るため、燃焼溶融し、スラグ中のPを溶銑浴中に還元抽
出する原料として炭素材および酸化鉄または/および酸
素を供給する。According to the present invention, first, the P concentration is 0.15
% Or less of hot metal is prepared as a raw material slag obtained by removing P from the molten iron and put into a low P hot metal bath accommodated in the converter 1, for example. At this time, since the raw material slag is usually in a solid state, it is burned and melted, and a carbon material and iron oxide or / and oxygen are supplied as a raw material for reducing and extracting P in the slag into a hot metal bath.
【0015】炭素材は、燃料および還元剤としてコーク
スや微粉炭等を使用し、酸化鉄は、支燃ガスの酸素供給
源としてミルスケールや鉱石等鉄を使用する。転炉1を
使用すれば、酸素吹き込み上吹きランス2すれば、酸素
が容易に供給できる。The carbon material uses coke or pulverized coal as a fuel and a reducing agent, and the iron oxide uses iron such as mill scale or ore as an oxygen supply source of a supporting gas. When the converter 1 is used, oxygen can be easily supplied by using the oxygen blowing upper lance 2.
【0016】最終脱Pを施す溶銑中のP濃度を0.5〜
3%の間が望ましい。[0016] The P concentration in the hot metal subjected to the final P removal is 0.5 to
Preferably between 3%.
【0017】P濃度が0.5%未満の場合には、スラグ
中のP2 O5 濃度が10%未満程度にしかならず、通常
の0.15%以下のPを含有する溶銑の脱PスラグのP
2 O5 濃度5%前後のものと大差がない。If the P concentration is less than 0.5%, the P 2 O 5 concentration in the slag must be less than about 10%. P
There is not much difference from those with 2 O 5 concentration around 5%.
【0018】P濃度が3%を超えると、、脱P処理に必
要なスラグ量が過剰となり、スラグのフォーミングによ
る溢れや撹拌力不足による脱P効率の低下等の原因とな
り好ましくない。If the P concentration exceeds 3%, the amount of slag required for the de-P treatment becomes excessive, and the slag overflows due to forming and the de-P efficiency decreases due to insufficient stirring power, which is not preferable.
【0019】また、P濃度が3%超えると、溶銑中にP
を還元抽出する場合の反応駆動力が低下し、還元時間が
長くなるので好ましくない。最終脱P処理時のスラグ塩
基度(CaO/SiO2 )は、2〜8が好ましい。On the other hand, if the P concentration exceeds 3%, P
The reaction driving force when reducing and extracting is reduced, and the reduction time becomes longer, which is not preferable. The slag basicity (CaO / SiO 2 ) at the time of the final P removal treatment is preferably from 2 to 8.
【0020】スラグ塩基度が2未満では脱P能が不足
し、スラグ中のP2 O5 濃度が10%未満にしかなら
ず、好ましくない。塩基度が8を超えると初期のスラグ
の融点が高くなりすぎ、最終脱P後の溶鋼温度を155
0℃以上としても十分に滓化せず、安定した脱P能が得
られない。If the basicity of the slag is less than 2, the P removal ability becomes insufficient, and the P 2 O 5 concentration in the slag becomes less than 10%, which is not preferable. If the basicity exceeds 8, the initial melting point of the slag becomes too high, and the molten steel temperature after the final removal of P is 155.
Even if the temperature is 0 ° C. or higher, slag is not sufficiently formed and stable P removal ability cannot be obtained.
【0021】塩基度のより好ましい範囲は、4〜8であ
る。CaO源として生石灰、石灰石等が使用できる。S
iO2 源としては珪砂、珪石等を使用する。A more preferred range of the basicity is from 4 to 8. Quicklime, limestone and the like can be used as a CaO source. S
Silica sand, silica stone, etc. are used as the iO 2 source.
【0022】この他にCaOおよびSiO2 の少なくと
も1種以上を含んだ各種のスラグを活用できれば、製鉄
所から発生するスラグ廃棄物の減量化になり好ましい。
CaF2 はスラグの融点を低下させる成分であるが、P
2 O5 と反応してアパタイトを形成し、肥料としての効
果をなくすのでスラグ中の含有濃度は1%未満、望まし
くは0.1%以下に抑えるのが望ましい。In addition, it is preferable to use various slags containing at least one of CaO and SiO 2 , since the amount of slag waste generated from steelworks can be reduced.
CaF 2 is a component that lowers the melting point of slag.
Since it reacts with 2 O 5 to form apatite and loses its effect as a fertilizer, its content in slag is preferably less than 1%, preferably less than 0.1%.
【0023】フラックスを初期に一括して添加しても良
いし、撹拌しながら分けて投入しても良い。スラグ中に
Pは、P2 O5 の形で移行するためPの酸化剤として鉄
鉱石、焼結鉱、スケール等の酸化鉄源の添加または/お
よび酸素ガスの吹き込みが必要である。酸化鉄源の場合
はフラックスと同様に一括添加しても良いし、撹拌を行
いながら徐々に添加しても良い。酸素ガスの場合は撹拌
を行いながら吹き込むのが望ましい。The flux may be added all at once in the beginning, or may be added separately with stirring. Since P moves into the slag in the form of P 2 O 5 , it is necessary to add an iron oxide source such as iron ore, sinter, or scale as an oxidizing agent for P, and / or blow oxygen gas. In the case of an iron oxide source, it may be added at once as in the case of the flux, or may be gradually added while stirring. In the case of oxygen gas, it is desirable to blow in while stirring.
【0024】上記フラックス等を添加した後、容器内を
撹拌して脱P処理を行うが、撹拌の方法は、底吹きノズ
ルからガスを吹き込む方式やインペラーによる機械的撹
拌方式がありいずれの方式でもよいし、併用してもよ
い。After the addition of the above flux and the like, the inside of the vessel is stirred to perform de-P treatment. The stirring method includes a method of blowing gas from a bottom blowing nozzle and a mechanical stirring method using an impeller. Good or may be used together.
【0025】塩基度の高いスラグは、融点が高いので滓
化し難いが脱炭反応の進行に従って溶銑浴の温度が上昇
し、スラグの融点を上回ると滓化して、Pの酸化により
生成したP2 O5 を溶解する。P2 O5 はスラグの融点
を下げる作用があるので、P2 O 5を溶解したフラック
スは更に融点が低下し、周囲の未滓化フラックスの溶解
を促進することができる。従って、CaF2 を添加しな
くても速やかにフラックスを滓化することができる。The high basicity slag, because of the high melting point and hardly the temperature of the molten iron bath with the progress of the decarburization reaction is increased slag formation, and slag formation exceeds the melting point of the slag, P 2 produced by the oxidation of P O 5 to dissolve. Since P 2 O 5 has a function of lowering the melting point of slag, the melting point of the flux in which P 2 O 5 is dissolved further lowers, and the dissolution of the surrounding unslagged flux can be promoted. Accordingly, the flux can be quickly turned into slag without adding CaF 2 .
【0026】溶鋼中の炭素濃度を1.0%以下とした理
由は、1.0%を超えると炭素の燃焼反応熱による溶鋼
温度の上昇が不十分となり、1550℃未満となり蛍石
を1%を超えて添加しなければならないからである。滓
化したスラグには、次第にPの酸化によって発生したP
2 O5 が濃化し、溶銑中のP濃度は低下する。あるレベ
ルに達するとスラグ中のP2 O5 と溶銑中のPが平衡に
達して脱P反応が停止する。The reason why the carbon concentration in the molten steel is set to 1.0% or less is that if it exceeds 1.0%, the temperature of the molten steel due to the heat of combustion reaction of carbon becomes insufficient and becomes less than 1550 ° C., and the fluorite becomes 1%. This is because it must be added in excess of. The slag that has become slag has P gradually generated by the oxidation of P.
2 O 5 is enriched, and the P concentration in the hot metal decreases. When a certain level is reached, P 2 O 5 in the slag and P in the hot metal reach equilibrium, and the de-P reaction stops.
【0027】第1工程終了後、さらに高い高Pスラグを
得るために、溶銑中のMnおよびSiを除去する処理工
程を追加することもできる。この処理工程においては、
酸素および/または酸化鉄を添加しつつ、溶銑を撹拌し
て、MnおよびSiの酸化を促進する。この場合、スラ
グの塩基度(CaO/SiO2 :スラグ中の2成分の重
量%比)が高すぎるとPも同時に酸化され、第2工程の
最終脱P処理時スラグ中P2 O5 濃度の低下を招くた
め、スラグの塩基度は0.5以下が望ましい。After the completion of the first step, a processing step for removing Mn and Si in the hot metal may be added in order to obtain a higher P slag. In this processing step,
The hot metal is agitated while adding oxygen and / or iron oxide to promote oxidation of Mn and Si. In this case, if the basicity of the slag (CaO / SiO 2 : weight% ratio of the two components in the slag) is too high, P is also oxidized at the same time, and the P 2 O 5 concentration in the slag during the final de-P treatment in the second step is reduced. In order to cause a decrease, the basicity of the slag is desirably 0.5 or less.
【0028】前記のように、前処理された溶銑にスラグ
塩基度(CaO/SiO2 )が2〜8になるよう調整し
た脱Pフラックスを添加することにより、P2 O5 濃度
が10〜35%である高Pスラグを得ることができる。As described above, the P 2 O 5 concentration is 10 to 35 by adding the de-P flux adjusted so that the slag basicity (CaO / SiO 2 ) is 2 to 8 to the pretreated hot metal. % Of high P slag can be obtained.
【0029】スラグ中のP2 O5 濃度は、スラグの組
成、初期の溶銑中のP濃度等によって異なるが、本発明
法の場合、請求項1では10〜30%、請求項2では1
0〜35%である。通常の転炉精錬及び溶銑脱Pにおけ
るスラグ中のP2 O5 濃度は5%程度であるから本発明
法によって2〜6倍に高めることができる。The P 2 O 5 concentration in the slag varies depending on the composition of the slag, the initial P concentration in the hot metal, and the like. In the case of the method of the present invention, 10% to 30% in the first aspect and 1% in the second aspect.
0 to 35%. P 2 O 5 concentration in the slag in a normal converter refining and molten iron removal P can be increased to 2-6 fold by the method of the present invention because it is approximately 5%.
【0030】この高Pスラグは溶銑と分離して反応容器
外に排出するが、このスラグはP濃度が高いため肥料の
みならず、リン酸原料として利用が可能である。また、
最終脱P後の溶鋼をさらに脱P処理することにより、P
濃度が0.02%以下の溶鋼を溶製し製品化することも
可能である。The high-P slag is separated from the hot metal and discharged out of the reaction vessel. Since the slag has a high P concentration, it can be used not only as a fertilizer but also as a raw material for phosphoric acid. Also,
By further de-P treatment of the molten steel after final de-P,
It is also possible to smelt molten steel having a concentration of 0.02% or less to produce a product.
【0031】[0031]
【実施例】転炉を用いて、P濃度が0.10〜0.11
%の低P溶銑を出発原料として、その溶銑を脱Pして生
成したスラグを転炉内に投入し、炭素材および酸素を供
給して、溶融すると共に、該スラグ中のPを溶銑浴中に
還元抽出して約2%のPを含む溶銑を2トン溶製した。EXAMPLE Using a converter, the P concentration was 0.10 to 0.11.
% Of low-P hot metal as a starting material, the slag generated by removing the hot metal from the hot metal is put into a converter, carbon material and oxygen are supplied and melted, and P in the slag is converted into a hot metal bath. And 2 tons of hot metal containing about 2% P was melted.
【0032】この溶銑に表1に示す脱Pフラックス(生
石灰中CaO=92%、鉄鉱石中T.Fe=65%)を
添加し、酸素吹き込み量、鉄鉱石投入量を変化させるこ
とにより処理後の炭素濃度、浴温度を変化させて最終脱
Pした。フラックスの添加方法は半量を初期に、残りを
送酸開始5分後に行った。To the hot metal, a P-free flux (CaO in quicklime = 92%, T.Fe in iron ore = 65%) shown in Table 1 was added, and the molten iron was treated by changing the oxygen injection amount and the iron ore input amount. The final P was removed by changing the carbon concentration and bath temperature. The method of adding the flux was such that a half amount was initially used, and the remaining was performed 5 minutes after the start of the acid supply.
【0033】[0033]
【表1】 [Table 1]
【0034】フラックスおよび鉄鉱石を添加後、アルゴ
ンガスを使用した底吹き撹拌しながら酸素ガスを上吹き
して最終脱P処理を行った。送酸開始後20分で最終脱
Pを終了し溶銑とスラグを分離して排出した。最終脱P
処理前後の溶銑、溶鋼成分およびスラグ成分を表2に示
す。After the addition of the flux and the iron ore, oxygen gas was blown upward while the bottom was stirred using argon gas to perform a final de-P treatment. Twenty minutes after the start of the acid supply, the final removal of P was completed, and the hot metal and slag were separated and discharged. Final removal P
Table 2 shows the hot metal, the molten steel component, and the slag component before and after the treatment.
【0035】[0035]
【表2】 [Table 2]
【0036】本発明例1、2では、P2 O5 濃度18%
以上の高P2 O5 スラグが容易に得られ、特にスラグ量
が溶鋼トンあたり200kg以下である本発明例2で
は、トーマス法では得られなかったP2 O5 濃度25%
以上の高Pスラグが得られた。In Examples 1 and 2 of the present invention, the P 2 O 5 concentration was 18%.
The above high P 2 O 5 slag can be easily obtained. In particular, in Example 2 of the present invention in which the amount of slag is 200 kg or less per ton of molten steel, the P 2 O 5 concentration of 25% which could not be obtained by the Thomas method.
The above high P slag was obtained.
【0037】また、本発明例1、2の高Pスラグを肥料
として使用した結果、特に問題なく使用することができ
た。脱P処理温度が低い条件の比較例1は、処理後のス
ラグの流動性を確保するため、スラグ中のCaF2 濃度
が15%となるように蛍石を添加した。この結果、スラ
グ中のP2 O5 濃度は高くできたがが、CaF2 の存在
によりアパタイトが形成され、肥料として使用すること
ができなかった。In addition, as a result of using the high P slag of Examples 1 and 2 of the present invention as a fertilizer, it could be used without any particular problem. In Comparative Example 1 in which the temperature for the de-P treatment was low, fluorite was added such that the CaF 2 concentration in the slag became 15% in order to ensure the fluidity of the slag after the treatment. As a result, although the P 2 O 5 concentration in the slag could be increased, apatite was formed due to the presence of CaF 2 and could not be used as a fertilizer.
【0038】比較例2は、脱P処理温度が低く、しかも
螢石を使用しなかったため、スラグの流動性が極端に低
下し、脱P反応が十分進行せず、スラグ中P2 O5 濃度
も10%未満であった。比較例3は、処理前の溶銑中の
P濃度が0.1%と低く、処理後のスラグ中のP2 O5
濃度は5%以下であり、肥料として十分な性能が得られ
なかった。In Comparative Example 2, since the de-P treatment temperature was low and fluorite was not used, the fluidity of the slag was extremely reduced, the de-P reaction did not proceed sufficiently, and the P 2 O 5 concentration in the slag was low. Was also less than 10%. In Comparative Example 3, the P concentration in the hot metal before the treatment was as low as 0.1%, and the P 2 O 5 in the slag after the treatment was low.
The concentration was 5% or less, and sufficient performance as a fertilizer could not be obtained.
【0039】本発明例1と同じ溶銑2トンを転炉に装入
し、最終脱P処理に先だって、鉄鉱石を30kg、生石
灰を2kg投入しつつ酸素を1Nm3/分の流量で5分間の
処理をして溶銑中のMnおよびSiを除去した。処理前
のMn、Siはそれぞれ、1.4%、0.06%であ
り、処理後のMn、Siはそれぞれ、0.25%、0.
01%であった。この溶銑を対象に表1の本発明例1と
同じ条件で脱P処理を行った結果、スラグ中のP2 O5
濃度は23%と本発明例1よりさらに高いP2 O5 濃度
が得られた。この高Pスラグを肥料として使用した結
果、特に問題なく使用することができた。2 tons of the same hot metal as in Example 1 of the present invention were charged into a converter, and prior to the final de-P treatment, 30 kg of iron ore and 2 kg of quick lime were introduced and oxygen was supplied at a flow rate of 1 Nm 3 / min for 5 minutes. The treatment was performed to remove Mn and Si in the hot metal. Mn and Si before the treatment were 1.4% and 0.06%, respectively, and Mn and Si after the treatment were 0.25% and 0.1%, respectively.
01%. As a result of performing the de-P treatment on the hot metal under the same conditions as in Example 1 of the present invention in Table 1, P 2 O 5 in the slag was obtained.
The P 2 O 5 concentration was 23%, which was higher than that of Inventive Example 1. As a result of using this high P slag as a fertilizer, it could be used without any problem.
【0040】本発明例2と同じ溶銑2トンを転炉に装入
し、最終脱P処理に先だって、鉄鉱石を30kg、生石
灰を2kg投入しつつ酸素を1Nm3/分の流量で5分間の
処理をして溶銑中のMn、Siを除去した。処理前のM
n、Siはそれぞれ、1.3%、0.05%であり、処
理後のMn、Siはそれぞれ、0.2%、0.01%で
あった。この溶銑を対象に本発明例2と同じ条件で脱P
処理を行った結果、スラグ中のP2 O5 濃度は31%と
表2のNo.2よりさらに高いスラグ中P2 O5 濃度が
得られた。この高Pスラグを肥料として使用した結果、
特に問題なく使用することができた。In the converter, 2 tons of the same hot metal as in Example 2 of the present invention were charged into the converter, and prior to the final de-P treatment, 30 kg of iron ore and 2 kg of quicklime were added and oxygen was supplied at a flow rate of 1 Nm 3 / min for 5 minutes. After the treatment, Mn and Si in the hot metal were removed. M before processing
n and Si were 1.3% and 0.05%, respectively, and Mn and Si after the treatment were 0.2% and 0.01%, respectively. This hot metal was removed under the same conditions as in Example 2 of the present invention.
As a result of performing the treatment, the P 2 O 5 concentration in the slag was 31%, which was no. Higher slag P 2 O 5 concentration than 2 was obtained. As a result of using this high P slag as fertilizer,
It could be used without any problem.
【0041】[0041]
【発明の効果】本発明によって低P含有銑鉄を出発原料
として、高濃度のP2 O5 を均一に含むスラグを作るこ
とができる。このスラグは肥料として直接使用できる。According to the present invention, a slag uniformly containing a high concentration of P 2 O 5 can be produced from pig iron having a low P content as a starting material. This slag can be used directly as fertilizer.
【図1】最終脱Pプロセスの構成を示す縦断面図であ
る。FIG. 1 is a longitudinal sectional view showing a configuration of a final P removal process.
1:転炉、 2:上吹きランス、 3:底吹きノズル、 4:高P含有銑、 5:スラグ、 6:酸素ガス、 7:底吹きガス(Ar、窒素等)、 8:脱Pフラックス、鉄鉱石等 1: converter, 2: top blow lance, 3: bottom blow nozzle, 4: high P content pig, 5: slag, 6: oxygen gas, 7: bottom blow gas (Ar, nitrogen, etc.), 8: de-P flux , Iron ore, etc.
Claims (2)
て得られるP含有スラグを溶銑浴に投入し、炭素材およ
び酸化鉄または/および酸素を供給して、スラグ中のP
を溶銑浴中に還元抽出して0.5〜3%のPおよび0.
1%以下のSiを含む溶銑を生成する第1工程と、第1
工程で生成したスラグを除去した後、該溶銑に処理後の
スラグ塩基度(CaO/SiO2 重量%比)が2〜8に
なるようにフラックスを添加し、さらに酸化鉄源の添加
および/または酸素ガスの吹き込みを行って溶銑中に含
まれる炭素濃度を1%以下まで低下させる第2工程によ
り処理後のP2 O5 濃度が10〜30%であるスラグを
得ることを特徴とする高Pスラグの製造方法。1. A P-containing slag obtained by removing hot metal having a P concentration of 0.15% or less from a molten iron bath is charged into a hot metal bath, and a carbon material and iron oxide or / and oxygen are supplied to supply P to the slag.
Was reduced and extracted into a hot metal bath to obtain 0.5 to 3% of P and 0.1%.
A first step of producing hot metal containing 1% or less of Si,
After removing the slag generated in the process, a flux is added to the hot metal so that the slag basicity (CaO / SiO 2 wt% ratio) becomes 2 to 8, and further an iron oxide source is added and / or A high step of obtaining a slag having a P 2 O 5 concentration of 10 to 30% by a second step of blowing oxygen gas to reduce the concentration of carbon contained in the hot metal to 1% or less. Slag production method.
銑に酸化鉄または/および酸素を添加することにより溶
銑中のMnおよびSiを低下させてから請求項1に記載
の第2工程の処理を実施することによりP2 O5 濃度が
10〜35%であるスラグを得ることを特徴とする高P
スラグの製造方法。2. The second step according to claim 1, wherein Mn and Si in the hot metal are reduced by adding iron oxide and / or oxygen to the hot metal produced in the first step according to claim 1. Characterized in that a slag having a P 2 O 5 concentration of 10 to 35% is obtained by carrying out the treatment of high P.
Slag production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32802597A JPH11158526A (en) | 1997-11-28 | 1997-11-28 | Production of high p slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32802597A JPH11158526A (en) | 1997-11-28 | 1997-11-28 | Production of high p slag |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11158526A true JPH11158526A (en) | 1999-06-15 |
Family
ID=18205686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32802597A Withdrawn JPH11158526A (en) | 1997-11-28 | 1997-11-28 | Production of high p slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11158526A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092537A1 (en) * | 2001-05-17 | 2002-11-21 | Jfe Steel Corporation | Material for phosphate fertilizer and method for production thereof |
WO2003037824A1 (en) * | 2001-10-31 | 2003-05-08 | Jfe Steel Corporation | Raw material for silicate phosphate fertilizer and method for production thereof |
JP2007217214A (en) * | 2006-02-15 | 2007-08-30 | Nippon Steel Corp | Slag containing phosphorous-concentrated phase and its production method |
WO2010074309A1 (en) * | 2008-12-26 | 2010-07-01 | Jfeスチール株式会社 | Method for reclaiming iron and phosphorus from steelmaking slag |
JP2011208277A (en) * | 2010-03-12 | 2011-10-20 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphatic fertilizer |
JP2012001797A (en) * | 2010-06-21 | 2012-01-05 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag, and blast-furnace slag fine powder or blast-furnace slag cement, and resource raw material for phosphoric acid |
JP2012007189A (en) * | 2010-06-22 | 2012-01-12 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphate resource raw material |
JP2014001456A (en) * | 2008-12-26 | 2014-01-09 | Jfe Steel Corp | Recovery method for iron and phosphorus from steel slag |
JP2015140473A (en) * | 2014-01-30 | 2015-08-03 | Jfeスチール株式会社 | Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor |
JP2017125244A (en) * | 2016-01-15 | 2017-07-20 | 新日鐵住金株式会社 | Production method of dephosphorization slag |
WO2019078199A1 (en) | 2017-10-20 | 2019-04-25 | 新日鐵住金株式会社 | Method for dechromizing hot metal and method for producing phosphate fertilizer raw material |
JP2019151535A (en) * | 2018-03-06 | 2019-09-12 | 日本製鉄株式会社 | Method of producing phosphate slag fertilizer |
-
1997
- 1997-11-28 JP JP32802597A patent/JPH11158526A/en not_active Withdrawn
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092537A1 (en) * | 2001-05-17 | 2002-11-21 | Jfe Steel Corporation | Material for phosphate fertilizer and method for production thereof |
WO2003037824A1 (en) * | 2001-10-31 | 2003-05-08 | Jfe Steel Corporation | Raw material for silicate phosphate fertilizer and method for production thereof |
JP2007217214A (en) * | 2006-02-15 | 2007-08-30 | Nippon Steel Corp | Slag containing phosphorous-concentrated phase and its production method |
KR101361991B1 (en) * | 2008-12-26 | 2014-02-11 | 제이에프이 스틸 가부시키가이샤 | Method for reclaiming iron and phosphorus from steelmaking slag |
WO2010074309A1 (en) * | 2008-12-26 | 2010-07-01 | Jfeスチール株式会社 | Method for reclaiming iron and phosphorus from steelmaking slag |
CN102264919A (en) * | 2008-12-26 | 2011-11-30 | 杰富意钢铁株式会社 | Method for reclaiming iron and phosphorus from steelmaking slag |
EP3239308A1 (en) * | 2008-12-26 | 2017-11-01 | Jfe Steel Corporation | Method for reclaiming iron and phosphorus from steelmaking slag |
JP2015038250A (en) * | 2008-12-26 | 2015-02-26 | Jfeスチール株式会社 | Method of recovering iron and phosphorus from steelmaking slag |
JP2014001456A (en) * | 2008-12-26 | 2014-01-09 | Jfe Steel Corp | Recovery method for iron and phosphorus from steel slag |
KR101359797B1 (en) * | 2008-12-26 | 2014-02-07 | 제이에프이 스틸 가부시키가이샤 | Method for reclaiming iron and phosphorus from steelmaking slag |
JP2011208277A (en) * | 2010-03-12 | 2011-10-20 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphatic fertilizer |
JP2012001797A (en) * | 2010-06-21 | 2012-01-05 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag, and blast-furnace slag fine powder or blast-furnace slag cement, and resource raw material for phosphoric acid |
JP2012007189A (en) * | 2010-06-22 | 2012-01-12 | Jfe Steel Corp | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphate resource raw material |
JP2015140473A (en) * | 2014-01-30 | 2015-08-03 | Jfeスチール株式会社 | Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor |
JP2017125244A (en) * | 2016-01-15 | 2017-07-20 | 新日鐵住金株式会社 | Production method of dephosphorization slag |
WO2019078199A1 (en) | 2017-10-20 | 2019-04-25 | 新日鐵住金株式会社 | Method for dechromizing hot metal and method for producing phosphate fertilizer raw material |
KR20200051765A (en) | 2017-10-20 | 2020-05-13 | 닛폰세이테츠 가부시키가이샤 | Method for dechromium of molten iron and method for producing raw material for phosphate fertilizer |
US11254992B2 (en) | 2017-10-20 | 2022-02-22 | Nippon Steel Corporation | Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material |
JP2019151535A (en) * | 2018-03-06 | 2019-09-12 | 日本製鉄株式会社 | Method of producing phosphate slag fertilizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018178260A (en) | Converter steelmaking process | |
JPH11158526A (en) | Production of high p slag | |
JP2019151535A (en) | Method of producing phosphate slag fertilizer | |
JPH0141681B2 (en) | ||
JP4192503B2 (en) | Manufacturing method of molten steel | |
JP4461495B2 (en) | Dephosphorization method of hot metal | |
JPH05148525A (en) | Treatment of molten iron | |
JP5286892B2 (en) | Dephosphorization method of hot metal | |
JPS58147506A (en) | Preliminary treatment of molten iron | |
JP3823595B2 (en) | Hot metal refining method | |
JP4411934B2 (en) | Method for producing low phosphorus hot metal | |
JPH01147011A (en) | Steelmaking method | |
JP3194212B2 (en) | Converter steelmaking method | |
JPH0841516A (en) | Pre-refining method | |
JP2000328121A (en) | Dephosphorization method of molten iron | |
JP3218629B2 (en) | Hot metal dephosphorization method | |
JPS6121285B2 (en) | ||
JPH10102120A (en) | Steelmaking method | |
JP2023049462A (en) | Dephosphorization of hot metal | |
JP2802799B2 (en) | Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it | |
JP2017171975A (en) | Dephosphorization agent for molten pig iron and dephosphorization method | |
JPS6212301B2 (en) | ||
JPH0673427A (en) | Method for refining molten high carbon iron being restrained from rephosphorization | |
JPH07216429A (en) | Production of stainless crude molten steel using decarburized slag | |
JP2022160777A (en) | Smelting method of low phosphorus steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050201 |