JPH11154389A - Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element - Google Patents
Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory elementInfo
- Publication number
- JPH11154389A JPH11154389A JP10256965A JP25696598A JPH11154389A JP H11154389 A JPH11154389 A JP H11154389A JP 10256965 A JP10256965 A JP 10256965A JP 25696598 A JP25696598 A JP 25696598A JP H11154389 A JPH11154389 A JP H11154389A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic layer
- layer
- thin film
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 260
- 230000015654 memory Effects 0.000 title claims abstract description 86
- 239000010409 thin film Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000005415 magnetization Effects 0.000 claims abstract description 59
- 239000012212 insulator Substances 0.000 claims abstract description 11
- 239000010408 film Substances 0.000 claims description 50
- 239000004020 conductor Substances 0.000 claims description 9
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 230000010354 integration Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000004321 preservation Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 8
- 230000005641 tunneling Effects 0.000 description 8
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002772 conduction electron Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁化の向きによっ
て情報を記録し、磁気抵抗効果によって再生する磁気抵
抗素子ならびにそれを用いた磁性薄膜メモリに関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element for recording information by the direction of magnetization and reproducing the information by a magnetoresistance effect, and a magnetic thin film memory using the same.
【0002】[0002]
【従来の技術】磁性薄膜メモリは半導体メモリと同じく
稼動部のない固体メモリであるが、電源が断たれても情
報を失わない、繰り返し書換回数が無限回、放射線が入
射すると記録内容が消失する危険性がない等、半導体メ
モリと比較して有利な点がある。特に近年、巨大磁気抵
抗(GMR)効果を利用した薄膜磁気メモリは、従来か
ら提案されている異方性磁気抵抗効果を用いた磁性薄膜
メモリと比較して大きな出力が得られるため注目されて
いる。例えば日本応用磁気学会誌VOL.20,P22
(1996)には、図7に示したように硬質磁性膜HM
/非磁性膜NM/軟磁性膜SM/非磁性膜NMなる構成
要素をメモリー素子とした固体メモリーが提案されてい
る。このメモリー素子には金属導体と接合されてセンス
線Sが、絶縁膜Iによって上記センス線Sと絶縁された
ワード線Wが、各々設けられており、このワード線電流
及びセンス線電流によって発生する磁界により情報の書
き込みを行う。具体的には図8に示したように、ワード
線Wに電流Iを流し電流の向きIDによって異なる方向
の磁界を発生させて硬質磁性膜HMの磁化反転を行いメ
モリー状態“0”、“1”の記録を行う。例えば同図
(a)に示すように正の電流を流して右向きの磁界を発
生させて硬質磁性膜HMに“1”の記録を行い、同図
(b)に示すように負の電流を流して左向きの磁界を発
生させて硬質磁性膜HMに“0”の記録を行う。情報の
読み出しは図9に示すようにワード線Wに記録電流より
小さい電流Iを流して軟磁性膜SMの磁化反転のみを起
こし、その際の抵抗変化を測定する。巨大磁気抵抗効果
を利用すれば軟磁性膜SMと硬質磁性膜HMの磁化が平
行の場合と反平行の場合で抵抗値が異なるので、そのと
き生ずる抵抗変化により“1”、“0”のメモリー状態
を判別することができる。同図(a)に示したような正
から負のパルスを印加すると、軟磁性膜は右向きから左
向きになり、メモリー状態“1”に対しては、同図
(b)のように小さい抵抗値から同図(c)のように大
きい抵抗値に変化し、メモリー状態“0”に対しては、
同図(d)のように大きい抵抗値から同図(e)のよう
に小さい抵抗値に変化する。このようにして抵抗の変化
を読み取れば、記録後の軟磁性膜SMの磁化状態に関わ
らず硬質磁性膜HMに記録した情報の読み出しが可能で
あり、非破壊読み出しが可能である。2. Description of the Related Art Like a semiconductor memory, a magnetic thin film memory is a solid-state memory having no moving parts, but does not lose information even when power is cut off, has an infinite number of rewrites repeatedly, and loses recorded contents when radiation enters. There are advantages such as no danger, as compared with semiconductor memories. In particular, in recent years, a thin film magnetic memory utilizing the giant magnetoresistance (GMR) effect has attracted attention because a large output can be obtained as compared with a conventionally proposed magnetic thin film memory using the anisotropic magnetoresistance effect. . For example, VOL. 20, P22
(1996) has a hard magnetic film HM as shown in FIG.
There has been proposed a solid-state memory in which a constituent element of a non-magnetic film NM / soft magnetic film SM / non-magnetic film NM is a memory element. This memory element is provided with a sense line S joined to a metal conductor, and a word line W insulated from the sense line S by an insulating film I. The sense line S is generated by the word line current and the sense line current. Information is written by a magnetic field. Specifically, as shown in FIG. 8, a current I is applied to the word line W to generate magnetic fields in different directions depending on the direction ID of the current to reverse the magnetization of the hard magnetic film HM, and to store the memory states “0” and “1”. Is recorded. For example, as shown in FIG. 7A, a positive current is applied to generate a rightward magnetic field to record "1" in the hard magnetic film HM, and a negative current is applied as shown in FIG. To generate a leftward magnetic field to record “0” on the hard magnetic film HM. In reading information, as shown in FIG. 9, a current I smaller than the recording current is applied to the word line W to cause only the magnetization reversal of the soft magnetic film SM, and the resistance change at that time is measured. If the giant magnetoresistance effect is used, the resistance values of the soft magnetic film SM and the hard magnetic film HM are different depending on whether the magnetization is parallel or antiparallel. The state can be determined. When a positive to negative pulse as shown in FIG. 3A is applied, the soft magnetic film turns from right to left, and for the memory state “1”, a small resistance value as shown in FIG. From (c) to a large resistance value as shown in FIG.
The resistance changes from a large resistance value as shown in FIG. 4D to a small resistance value as shown in FIG. If the change in resistance is read in this manner, information recorded on the hard magnetic film HM can be read regardless of the magnetization state of the soft magnetic film SM after recording, and nondestructive reading can be performed.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記構成の磁
性薄膜メモリは、ビットセルの面積を小さくするに伴っ
て、磁性層内部で生じる反磁界(自己減磁界)が無視で
きなくなり、記録保持する磁性層の磁化方向が一方向に
定まらず不安定となってしまう。したがって上記構成の
磁性薄膜メモリは、ビットセルを微細化するとともに情
報の保存ができず、高集積化が不可能であるといった欠
点を有していた。However, in the magnetic thin film memory having the above structure, the demagnetizing field (self-demagnetizing field) generated inside the magnetic layer cannot be neglected as the area of the bit cell is reduced, and the magnetic thin film memory for recording and holding is not able to be stored. The magnetization direction of the layer is not determined in one direction and becomes unstable. Therefore, the magnetic thin film memory having the above configuration has a drawback that it is not possible to store information while miniaturizing the bit cell, and it is impossible to achieve high integration.
【0004】本発明は、これらの点に鑑み、ビットセル
微細化する際に問題となる磁性薄膜の反磁界をなくし、
高集積化を可能にした磁性薄膜メモリの実現を目的とす
る。また微細化しても磁気抵抗比が低下しない磁気抵抗
素子の実現を目的とする。In view of these points, the present invention eliminates a demagnetizing field of a magnetic thin film, which is a problem when miniaturizing a bit cell,
An object of the present invention is to realize a magnetic thin film memory capable of high integration. Another object of the present invention is to realize a magnetoresistive element in which the magnetoresistance ratio does not decrease even when the size is reduced.
【0005】[0005]
【課題を解決するための手段】前記の目的は以下の手段
によって達成される。The above object is achieved by the following means.
【0006】すなわち、本発明は、基板上に、円筒型で
低い保磁力を有する第1磁性層と、円筒型で高い保磁力
を有する第2磁性層が、絶縁体からなる非磁性層を介し
て積層され、該第1磁性層および該第2磁性層は左回り
もしくは右回りに容易軸を有し、該第1、第2磁性層の
磁化方向の相対角度によって、異なる抵抗値有すること
を特徴とする磁気抵抗素子を提案するものであり、前記
非磁性層が酸化アルミニウムもしくは窒化アルミニウム
もしくは酸化シリコンもしくは窒化シリコンであるこ
と、第1磁性層及び第2磁性層の膜厚が100オングス
トロームを超え、5000オングストローム以下である
こと、前記非磁性層の膜厚は5オングストローム以上3
0オングストローム以下であること、前記第1磁性層の
保磁力が前記第2磁性層の保磁力の半分以下で、第1磁
性層の保磁力が10Oe以上50Oe以下、第2磁性層
の保磁力が50Oeを超えること、前記第2磁性層の非
磁性層と反対側の面に接して反強磁性層が設けられてお
り、該反強磁性層と該第2磁性層が交換結合して該第2
磁性層の磁化が固定されていること、第1磁性層及び第
2磁性層の中心部に絶縁体に囲まれた導電体が形成され
ていること、前記第2磁性層の保磁力が10Oe以上5
0Oe以下、第1磁性層の保磁力は、2Oe以上で、第
2磁性層の保磁力の半分以下であることを含む。That is, according to the present invention, a first magnetic layer having a low coercive force in a cylindrical shape and a second magnetic layer having a high coercive force in a cylindrical shape are provided on a substrate via a nonmagnetic layer made of an insulator. The first magnetic layer and the second magnetic layer have easy axes counterclockwise or counterclockwise, and have different resistance values depending on the relative angles of the magnetization directions of the first and second magnetic layers. The non-magnetic layer is made of aluminum oxide, aluminum nitride, silicon oxide, or silicon nitride, and the thickness of the first magnetic layer and the second magnetic layer exceeds 100 angstroms. 5000 angstrom or less, and the thickness of the nonmagnetic layer is 5 angstrom or more and 3 angstrom or less.
0 Å or less, the coercive force of the first magnetic layer is less than half of the coercive force of the second magnetic layer, the coercive force of the first magnetic layer is 10 Oe to 50 Oe, and the coercive force of the second magnetic layer is An antiferromagnetic layer having a thickness exceeding 50 Oe is provided in contact with the surface of the second magnetic layer opposite to the nonmagnetic layer, and the antiferromagnetic layer and the second magnetic layer are exchange-coupled to each other. 2
The magnetization of the magnetic layer is fixed, a conductor surrounded by an insulator is formed at the center of the first magnetic layer and the second magnetic layer, and the coercive force of the second magnetic layer is 10 Oe or more. 5
The coercive force of the first magnetic layer is not more than 0 Oe, and includes not less than 2 Oe and not more than half of the coercive force of the second magnetic layer.
【0007】また、本発明は前記の磁気抵抗素子からな
ることを特徴とする磁性薄膜メモリ素子を提案するもの
であり、第1磁性層及び第2磁性層がFe,Co,Ni
のうち少なくとも1種の元素を含むことを含む。Further, the present invention proposes a magnetic thin film memory element comprising the above-mentioned magnetoresistive element, wherein the first magnetic layer and the second magnetic layer are made of Fe, Co, Ni.
Including at least one kind of element.
【0008】また、本発明は、前記の磁性薄膜メモリ素
子に膜面と垂直に電流を流し該電流により生じる磁界に
より前記第1磁性層の磁化方向を定めることにより
“0”と“1”の状態を記録することを特徴とする磁性
薄膜メモリの記録方法を提案するものであり、さらに、
前記の磁性薄膜メモリ素子に膜面と垂直に電流を流し抵
抗を測定することで“0”と“1”の磁化情報を検出す
ることを特徴とする磁性薄膜メモリの再生方法を提案す
るものである。The present invention also provides a magnetic thin-film memory device in which a current is caused to flow perpendicularly to the film surface, and a magnetic field generated by the current determines the magnetization direction of the first magnetic layer, whereby the "0" and "1" are determined. It is intended to propose a recording method of a magnetic thin film memory characterized by recording a state,
The present invention proposes a reproducing method for a magnetic thin-film memory, characterized in that a current is passed through the magnetic thin-film memory element perpendicular to the film surface and the resistance is measured to detect magnetization information of "0" and "1". is there.
【0009】本発明に関わる磁性薄膜メモリにおいて
は、磁性膜が閉磁路構造となっているため、磁界による
悪影響をなくすことが可能であり、安定に磁化情報を保
存できる。このため1ビットのセル幅を小さくすること
ができ、集積度の高い磁性薄膜メモリを実現することが
できる。また隣接セルに漏洩磁界が濡れ出さないため、
より安定に情報の記録再生を行うことが可能となる。In the magnetic thin film memory according to the present invention, since the magnetic film has a closed magnetic circuit structure, it is possible to eliminate the adverse effect of the magnetic field and to stably store magnetization information. Therefore, the 1-bit cell width can be reduced, and a highly integrated magnetic thin film memory can be realized. Also, since the leakage magnetic field does not wet out to the adjacent cells,
Recording and reproduction of information can be performed more stably.
【0010】[0010]
【発明の実施の形態】次に本発明の磁性薄膜メモリの各
実施例を、より詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, each embodiment of the magnetic thin film memory of the present invention will be described in more detail.
【0011】[0011]
【実施例】(実施例1)図1は本発明の磁性薄膜メモリ
素子の一例を示す図で円筒型のメモリセルである。図1
において、1は第1磁性層、2は第2磁性層、3は非磁
性層で、後述するようにスピントンネル効果を生じせし
めるため、絶縁体からなる材料を用いる。また矢印は各
磁性層における磁化方向を示している。第1磁性層及び
第2磁性層は円筒形であり、左回りもしくは右回りに容
易軸を有し、その磁化は円筒に沿って環状に配向してい
る。このため、従来の技術で述べた媒体と異なり磁極が
端面に出ることがなく、安定した磁化の保存ができる。(Embodiment 1) FIG. 1 shows an example of a magnetic thin film memory element of the present invention, which is a cylindrical memory cell. FIG.
In the above, 1 is a first magnetic layer, 2 is a second magnetic layer, 3 is a non-magnetic layer, and a material made of an insulator is used to cause a spin tunnel effect as described later. Arrows indicate the magnetization direction in each magnetic layer. The first magnetic layer and the second magnetic layer are cylindrical, have an easy axis counterclockwise or counterclockwise, and their magnetizations are annularly oriented along the cylinder. Therefore, unlike the medium described in the related art, the magnetic pole does not come out to the end face, and stable magnetization can be stored.
【0012】“0”,“1”の磁化情報は、第1磁性層
の磁化方向が左もしくは右回りかのどちらかに対応して
記録される。例えば、図1の(a)は“0”、(b)は
“1”に対応する、磁化情報を記録することができるよ
うに、第1磁性層は低い保磁力を有する。The magnetization information of "0" and "1" is recorded according to whether the magnetization direction of the first magnetic layer is clockwise or counterclockwise. For example, FIG. 1A corresponds to “0” and FIG. 1B corresponds to “1”. The first magnetic layer has a low coercive force so that magnetization information can be recorded.
【0013】第2磁性層は、第1磁性層よりも高い保磁
力を有しており、その磁化方向は磁化情報に依存せず、
予め決められた方向に配向しており、保存時、記録時、
再生時、のいずれの状態でも常に一定に保たれている。The second magnetic layer has a higher coercive force than the first magnetic layer, and its magnetization direction does not depend on magnetization information.
Oriented in a predetermined direction, when storing, recording,
During playback, it is always kept constant in any state.
【0014】また本発明の磁性薄膜メモリ素子は、第1
磁性層と第2磁性層の磁化が平行のときは低い抵抗値を
示し、反平行のときは高い抵抗値を示す。このため、第
1磁性層の磁化方向によって、メモリ素子の抵抗値が異
なり、記録された磁化情報を読み出すことができる。Further, the magnetic thin film memory element of the present invention has a first
When the magnetizations of the magnetic layer and the second magnetic layer are parallel, a low resistance value is shown, and when the magnetizations are antiparallel, a high resistance value is shown. Therefore, the resistance value of the memory element varies depending on the magnetization direction of the first magnetic layer, and the recorded magnetization information can be read.
【0015】本発明のメモリ素子には、スピントンネル
型の巨大磁気抵抗素子を用いる。これは、以下の理由に
よる。第1は、スピントンネル型では、大きな磁気抵抗
(MR)比が得られるためである。磁性層の間にCuな
どの良導体の非磁性層を挟んだスピン散乱型の磁気抵抗
素子では、10%程度のMR比しか得られていないが、
スピントンネル型では、室温で20〜30%程度のMR
比が得られており、読み取りの際の信号を大きくするこ
とができる。第2に、スピントンネル型の磁気抵抗素子
は、その抵抗値を1kΩ以上とその抵抗値を大きくする
ことができるためである。これは、本発明のメモリ素子
をマトリックス上に配置して作動される場合には、半導
体スイッチング素子をメモリ素子に接続して使用する
が、メモリ素子の抵抗が半導体スイッチング素子のオン
抵抗(約1kΩ程度)より小さい場合、オン抵抗のばら
つきの影響を受けて、メモリ素子に記録された情報の読
み取りが不安定になってしまうからである。第3に、ス
ピントンネル型では、膜面に垂直に電流を流すCPP
(Current Perpendicular to the film Plane)−MR
(Magneto-Resistance)効果を用いることができるため
である。これは、メモリ素子に端子を取り付ける際に、
メモリ素子の横方向に端子を取り付けるよりも、本発明
のように図2のごとく電極線6,7をメモリ素子の上下
に取り付ける方が、メモリ素子と電極線との接触が確実
にとれるためである。この点ではスピン散乱型の磁気抵
抗素子でも同様にCPP−MR効果で磁気抵抗を観測す
ることができるがメモリ素子としては不適切である。こ
れは、スピン散乱型の磁気抵抗素子は、その抵抗値が、
膜面に平行に電流を流す場合でも数10Ωと小さいが、
CPP−MR効果を用いる場合、さらに抵抗値が一桁以
上小さくなってしまい、上述のように読み取りが正確に
行われなくなってしまう。A giant magnetoresistive element of a spin tunnel type is used for the memory element of the present invention. This is for the following reason. The first is that a large magnetoresistance (MR) ratio can be obtained with the spin tunnel type. In a spin scattering type magnetoresistive element in which a nonconductive layer of a good conductor such as Cu is sandwiched between magnetic layers, only an MR ratio of about 10% is obtained.
In the spin tunnel type, the MR at room temperature is about 20 to 30%.
As a result, the signal at the time of reading can be increased. Second, the spin tunneling type magnetoresistive element can increase its resistance value to 1 kΩ or more. When the memory element of the present invention is arranged on a matrix and operated, the semiconductor switching element is connected to the memory element and used. However, the ON resistance of the semiconductor switching element (about 1 kΩ) is used. If it is smaller than about, the reading of information recorded in the memory element becomes unstable due to the influence of the variation in the on-resistance. Third, in the spin tunnel type, a CPP in which a current flows perpendicular to the film surface is used.
(Current Perpendicular to the film Plane)-MR
This is because the (Magneto-Resistance) effect can be used. This is when attaching the terminal to the memory element,
Attaching the electrode lines 6 and 7 above and below the memory element as shown in FIG. 2, as in the present invention, can ensure the contact between the memory element and the electrode line, rather than attaching the terminals in the lateral direction of the memory element. is there. In this respect, a magnetoresistance element of the spin scattering type can also observe the magnetoresistance by the CPP-MR effect, but is unsuitable as a memory element. This is because the spin scattering type magnetoresistive element has a resistance value of
Even when a current flows in parallel to the film surface, it is as small as several tens of ohms.
When the CPP-MR effect is used, the resistance value is further reduced by one digit or more, and reading cannot be performed accurately as described above.
【0016】(実施例2)前述のように、本発明の磁性
薄膜メモリ素子は、スピントンネル型により磁気抵抗効
果が生じることを特徴とする。このスピントンネリング
による磁気抵抗効果は、例えば図1に示すように第1磁
性層/非磁性層/第2磁性層の構造をなすが、非磁性層
には薄い絶縁層を用いる。そして、再生時に電流を膜面
に対して垂直に流した際に第1磁性層から第2磁性層へ
電子のトンネル現象が起きるようにする。(Embodiment 2) As described above, the magnetic thin film memory element of the present invention is characterized in that a magnetoresistance effect is generated by a spin tunneling type. The magnetoresistance effect by the spin tunneling has, for example, a structure of a first magnetic layer / nonmagnetic layer / second magnetic layer as shown in FIG. 1, but a thin insulating layer is used for the nonmagnetic layer. Then, when a current is caused to flow perpendicular to the film surface during reproduction, a tunnel phenomenon of electrons from the first magnetic layer to the second magnetic layer occurs.
【0017】本発明のスピントンネル型の磁性薄膜メモ
リ素子は、強磁性体金属において伝導電子がスピン偏極
をおこしているため、フェルミ面における上向きスピン
と下向スピンの電子状態が異なっており、このような強
磁性体金属を用いて、強磁性体と絶縁体と強磁性体から
なる強磁性トンネル接合を作ると、伝導電子はそのスピ
ンを保ったままトンネルするため、両磁性層の磁化状態
によってトンネル確率が変化し、それがトンネル抵抗の
変化となって現れる。これにより、第1磁性層と第2磁
性層の磁化が平行の場合は抵抗が小さく第1磁性層と第
2磁性層の磁化が反平行の場合は抵抗が大きくなる。上
向きスピンと下向スピンの状態密度の差が大きい方がこ
の抵抗値は大きくなりより大きな再生信号が得られるの
で、第1磁性層と第2磁性層はスピン分極率の高い磁性
材料を用いることが望ましい。具体的には第1磁性層と
第2磁性層は、フェルミ面における上下スピンの偏極量
が大きいFeを選定し、Coを第2成分として選定して
なる。具体的にはFe,Co,Niを主成分とした材料
から選択して用いられてなることが望ましく、好ましく
は、Fe,Co,FeCo,NiFe,NiFeCoな
どが良い。NiFeの元素組成は、NixFe100−
xとした場合、xは0以上82以下が望ましい。より具
体的には、Fe,Co,Ni72Fe28,Ni51F
e49,Ni42Fe58,Ni25Fe75,Ni9
Fe91などが挙げられる。In the spin tunnel type magnetic thin film memory element of the present invention, the conduction state of the ferromagnetic metal causes spin polarization, so that the electron states of the upward spin and the downward spin on the Fermi surface are different. When a ferromagnetic tunnel junction composed of a ferromagnetic material, an insulator, and a ferromagnetic material is made using such a ferromagnetic metal, the conduction electrons tunnel while keeping their spins. This changes the tunnel probability, which appears as a change in tunnel resistance. Thereby, the resistance is small when the magnetizations of the first and second magnetic layers are parallel, and the resistance is large when the magnetizations of the first and second magnetic layers are antiparallel. The larger the difference in the state density between the upward spin and the downward spin, the greater the resistance value, and a greater reproduction signal can be obtained. Therefore, the first magnetic layer and the second magnetic layer should be made of a magnetic material having a high spin polarizability. Is desirable. Specifically, the first magnetic layer and the second magnetic layer are formed by selecting Fe having a large amount of polarization of the vertical spin on the Fermi surface, and selecting Co as the second component. Specifically, it is desirable to use a material containing Fe, Co, and Ni as main components, and it is preferable to use Fe, Co, FeCo, NiFe, NiFeCo, or the like. The elemental composition of NiFe is NixFe100-
When x is set, x is desirably 0 or more and 82 or less. More specifically, Fe, Co, Ni72Fe28, Ni51F
e49, Ni42Fe58, Ni25Fe75, Ni9
Fe91 and the like.
【0018】さらに、第1磁性層は保持力を小さくする
ために、NiFe,NiFeCo,Feなどがより望ま
しい。また、第2磁性層は、保持力を大きくするため
に、Coを主成分とする材料が望ましい。Further, the first magnetic layer is more preferably made of NiFe, NiFeCo, Fe or the like in order to reduce coercive force. The second magnetic layer is preferably made of a material containing Co as a main component in order to increase the coercive force.
【0019】(実施例3)上述のように本発明の磁気抵
抗メモリ素子はスピントンネリングによる磁気抵抗効果
を用いるため、非磁性層は、電子がスピンを保持してト
ンネルするために、絶縁層でなければならない。非磁性
膜の全部が絶縁層であっても、その一部が絶縁層であっ
てもよい。一部を絶縁層にしてその厚みを極小にするこ
とにより、磁気抵抗効果をさらに高めることができる。
非磁性金属膜を酸化させた酸化層にする例としては、A
l膜の一部を空気中で酸化させてAl2O3層を形成す
る例が挙げられる。非磁性層は絶縁体からなり、好まし
くは、酸化アルミニウムAlOx、窒化アルミニウムA
lNx、酸化シリコンSiOx、窒化シリコンSiNx
であることが、望ましい。NiOxを主成分としてもよ
い。これは、スピントンネルが起きるには、第1磁性層
と第2磁性層の伝導電子のエネルギーに、適切なポテン
シャルバリアーが存在することが必要であるが、上述の
材料では、このバリアーを得ることが比較的容易で、製
造上も有利であるからである。(Embodiment 3) As described above, since the magnetoresistive memory element of the present invention uses the magnetoresistance effect by spin tunneling, the non-magnetic layer is formed of an insulating layer because electrons hold spins and tunnel. There must be. The entire non-magnetic film may be an insulating layer or a part thereof may be an insulating layer. The magnetoresistive effect can be further enhanced by partially forming the insulating layer and minimizing its thickness.
Examples of an oxide layer formed by oxidizing a non-magnetic metal film include:
There is an example in which a part of the 1 film is oxidized in the air to form an Al 2 O 3 layer. The non-magnetic layer is made of an insulator, preferably aluminum oxide AlOx, aluminum nitride A
1Nx, silicon oxide SiOx, silicon nitride SiNx
Is desirable. NiOx may be the main component. This is because in order for spin tunneling to occur, it is necessary that an appropriate potential barrier exists for the energies of conduction electrons in the first magnetic layer and the second magnetic layer. Is relatively easy and is advantageous in production.
【0020】(実施例4)本発明の磁性薄膜メモリ素子
の第1磁性層及び第2磁性層の膜厚は、100オングス
トロームを超え、5000オングストローム以下である
ことが望ましい。これは、第1に非磁性層に酸化物を用
いる場合、酸化物の影響で、磁性層の非磁性層側の界面
の磁性が弱まり、この影響が膜厚が薄い場合大きいこと
が挙げられる。第2に、酸化アルミニウム非磁性層を、
Alを成膜したのちに酸素を導入して酸化させて作成す
る場合、アルミニウムが数10オングストローム残り、
この影響が、磁性層が100オングストローム以下であ
る場合、大きくなって適切なメモリ特性が得られないた
めである。第3に、特にサブミクロンにメモリ素子を微
細化した場合、第1磁性層のメモリ保持性能が、また、
第2磁性層の一定の磁化の保持機能が衰えるからであ
る。また厚すぎるとセルの抵抗値は大きくなりすぎるな
どの問題であるので、5000オングストローム以下が
望ましくより望ましくは1000オングストローム以下
がよい。(Embodiment 4) It is desirable that the thicknesses of the first magnetic layer and the second magnetic layer of the magnetic thin film memory element of the present invention be more than 100 Å and not more than 5000 Å. First, when an oxide is used for the nonmagnetic layer, the effect of the oxide weakens the magnetism at the interface of the magnetic layer on the nonmagnetic layer side, and this effect is large when the film thickness is small. Second, the aluminum oxide nonmagnetic layer is
When oxidizing by introducing oxygen after forming Al, a few tens of angstroms of aluminum remain,
This is because when the magnetic layer has a thickness of 100 Å or less, the magnetic layer becomes too large to obtain an appropriate memory characteristic. Third, especially when the memory element is miniaturized to a submicron, the memory retention performance of the first magnetic layer is increased.
This is because the function of holding the constant magnetization of the second magnetic layer is reduced. On the other hand, if the thickness is too large, the resistance value of the cell becomes too large. Therefore, the thickness is preferably 5,000 Å or less, more preferably 1,000 Å or less.
【0021】Si基板上に、第1磁性層1としてNiF
e(膜厚t)、非磁性層3としてAl2O3(膜厚10
オングストローム)、第2磁性層2としてCo(膜厚
t)を順に積層し、図2(a)の構成の本発明の磁性薄
膜メモリ素子を作成した。NiFe、Al2O3、Co
から構成されるスピントンネル素子部は、フォーカスイ
オンビームにより、直径約0.8μmの円筒型に微細加
工した。磁性層膜厚tは、10オングストロームから1
0000オングストロームまで変えて作成した。電極
6、7間に電流を流し、2つの磁性層が平行な場合と反
平行な場合とでの抵抗値を測定した。MR比は、(最大
抵抗値−最低抵抗値)/最低抵抗値で定義した。結果を
表1の実験例Aの欄に記した。磁性層膜厚は、110オ
ングストロームから5000オングストロームまでは、
MR比は15%以上であるが、それ以外では10%未満
となった。また110オングストロームから1000オ
ングストロームまでは、20%以上のMR比が得られ
た。On a Si substrate, NiF is used as the first magnetic layer 1.
e (film thickness t) and Al 2 O 3 (film thickness 10
Angstrom) and Co (film thickness t) as the second magnetic layer 2 were laminated in this order to produce a magnetic thin film memory element of the present invention having the configuration shown in FIG. NiFe, Al 2 O 3 , Co
The spin tunneling element section composed of was finely processed into a cylindrical shape having a diameter of about 0.8 μm by a focus ion beam. The thickness t of the magnetic layer ranges from 10 angstroms to 1
It was made by changing it to 0000 angstroms. A current was passed between the electrodes 6 and 7, and the resistance value was measured when the two magnetic layers were parallel and antiparallel. The MR ratio was defined as (maximum resistance-minimum resistance) / minimum resistance. The results are shown in the column of Experimental Example A in Table 1. The thickness of the magnetic layer is from 110 Å to 5000 Å,
The MR ratio was 15% or more, but was less than 10% in other cases. From 110 Å to 1000 Å, an MR ratio of 20% or more was obtained.
【0022】(比較例1)次に、比較例1として図2
(a)をスピン散乱膜で構成したもの(磁性層NiFe
(膜厚t)、非磁性層Cu(膜厚50オングストロー
ム)、磁性層Co(膜厚t)を順に積層した)を、上記
と同様に磁性層の膜厚を変えて、直径約0.8μmに加
工して作成した。ここでスピン散乱膜とは、2つの磁性
層間に挟まれた非磁性層が良導体で構成された巨大磁気
抵抗膜である。この素子のMR比の測定結果を表1の比
較例1の欄に示す。(Comparative Example 1) Next, FIG.
(A) composed of a spin scattering film (magnetic layer NiFe
(Thickness t), a nonmagnetic layer Cu (thickness 50 Å), and a magnetic layer Co (thickness t) were sequentially laminated) by changing the thickness of the magnetic layer in the same manner as described above to obtain a diameter of about 0.8 μm. Created by processing. Here, the spin scattering film is a giant magnetoresistive film in which a nonmagnetic layer sandwiched between two magnetic layers is formed of a good conductor. The measurement results of the MR ratio of this device are shown in the column of Comparative Example 1 in Table 1.
【0023】(比較例2)次に、比較例2として磁路が
閉じていない開磁路構成の図7のスピントンネル膜(図
中のSMをNiFe(膜厚t)、NMをAl2O3(膜
厚15オングストローム)、HMをCo(膜厚t)とし
た)を、上記と同様に磁性層の膜厚を変えて、直径約
0.8μmに加工して作成した。この素子のMR比の測
定結果を表1の比較例2の欄に示す。(Comparative Example 2) Next, as Comparative Example 2, a spin tunnel film of FIG. 7 having an open magnetic circuit configuration in which the magnetic path is not closed (SM in the figure is NiFe (thickness t), and NM is Al 2 O 3 (thickness: 15 angstroms), HM was Co (thickness: t)), and the diameter of the magnetic layer was changed to about 0.8 μm by changing the thickness of the magnetic layer in the same manner as described above. The measurement results of the MR ratio of this device are shown in the column of Comparative Example 2 in Table 1.
【0024】(比較例3)次に、比較例3として磁路が
閉じていない開磁路構成の図7のスピン散乱膜(図中の
SMをNiFe(膜厚t)、NMをCu(膜厚50オン
グストローム)、HMをCo(膜厚t)とした)を上記
と同様に約0.8μmの長さに加工して作成し、MR比
を測定した。この素子のMR比の測定結果を表1の比較
例3の欄に示す。(Comparative Example 3) Next, as Comparative Example 3, the spin scattering film of FIG. 7 having an open magnetic circuit configuration in which the magnetic path is not closed (SM in the figure is NiFe (film thickness t), and NM is Cu (film) A thickness of 50 angstrom) and HM of Co (thickness t) were processed to a length of about 0.8 μm in the same manner as described above, and the MR ratio was measured. The measurement results of the MR ratio of this device are shown in the column of Comparative Example 3 in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】表1より、本発明のスピントンネル素子
は、スピン散乱素子と比較してMR比が高く、特に、磁
性層を厚くしても、高いMR比が得られることがわか
る。また、開磁路構成のMR低下は、磁性層膜厚が10
0オングストローム以上で顕著となる。これは円筒型と
したことで反磁界が低減され、磁化方向の乱れが少なく
なったことによると推定される。しかしスピン散乱膜
は、磁性層膜厚が100オングストローム以上では、円
筒型でもMR比が低下している。これは、スピン散乱膜
では、磁性層膜厚が厚くなると、磁気抵抗効果そのもの
が起きにくくなるためである。Table 1 shows that the spin tunneling device of the present invention has a higher MR ratio than the spin scattering device, and in particular, a high MR ratio can be obtained even when the magnetic layer is thickened. Further, the MR reduction in the open magnetic circuit configuration is caused by the fact that the magnetic layer thickness is 10
It becomes remarkable at 0 angstrom or more. This is presumed to be due to the fact that the demagnetizing field was reduced by the cylindrical shape, and the disturbance in the magnetization direction was reduced. However, in the case of the spin scattering film, when the thickness of the magnetic layer is 100 Å or more, the MR ratio is lowered even in the cylindrical type. This is because in the spin scattering film, when the thickness of the magnetic layer increases, the magnetoresistance effect itself hardly occurs.
【0027】したがって、円筒型による反磁界低減は、
スピン散乱膜よりもスピントンネル膜において、その効
果が顕著となる。すなわち、円筒型構成は、スピントン
ネル素子でその効果が発揮され、高集積化に対応できる
デバイスとなることがわかる。Therefore, the demagnetizing field can be reduced by the cylindrical type.
The effect is more remarkable in the spin tunnel film than in the spin scattering film. In other words, it can be seen that the cylindrical configuration exhibits the effect of the spin tunnel element, and is a device that can cope with high integration.
【0028】(実施例5)また、前記非磁性層は数10
オングストローム程度の均一な層であって、その絶縁部
分の膜厚は5オングストローム以上30オングストロー
ム以下であることが望ましい。これは、5オングストロ
ーム未満である場合、第1磁性層と第2磁性層が電気的
にショートしてしまう可能性があるからであり、30オ
ングストロームを超える場合、電子のトンネル現象が起
きにくくなるからである。さらに、望ましくは、5オン
グストローム以上25オングストローム以下であること
が望ましい。より望ましくは5オングストローム以上1
8オングストロームがよい。(Embodiment 5) The non-magnetic layer has several tens of
It is a uniform layer having a thickness of about Å, and the thickness of the insulating portion is desirably not less than 5 Å and not more than 30 Å. This is because if the thickness is less than 5 angstroms, the first magnetic layer and the second magnetic layer may be electrically short-circuited. If the thickness exceeds 30 angstroms, electron tunneling is less likely to occur. It is. Furthermore, it is desirable that the thickness be 5 Å or more and 25 Å or less. More preferably, 5 angstrom or more and 1
8 angstroms is good.
【0029】(実施例6)また、本発明の磁性薄膜メモ
リ素子の第1磁性層の保磁力は10Oe以上で50Oe
以下、が望ましい。これは、記録のときに、メモリ素子
に電流を流してその際発生する磁界で第1磁性層の磁化
を反転させるため、50Oeを超える保磁力の場合、磁
化反転に要する電流が大きくなってメモリの消費電力が
大きくなる、また限界電流密度に達してメモリ素子もし
くはメモリ素子とスイッチング素子を結ぶ電極線が断線
するためである。また10Oe以下では、安定に磁化情
報を保存することが困難であるためである。また第2磁
性層の保磁力は、50Oeを超えることが望ましい。こ
れは保磁力が弱い場合、保存時、記録時に磁化が反転し
て、再生することができなくなるからである。Embodiment 6 The coercive force of the first magnetic layer of the magnetic thin film memory element of the present invention is 10 Oe or more and 50 Oe.
The following is desirable. This is because, during recording, a current flows through the memory element to reverse the magnetization of the first magnetic layer by a magnetic field generated at the time. Therefore, when the coercive force exceeds 50 Oe, the current required for the magnetization reversal increases, This is because the power consumption increases and the current density reaches the limit current density, and the memory element or the electrode line connecting the memory element and the switching element is disconnected. Also, it is difficult to stably store the magnetization information at 10 Oe or less. Further, the coercive force of the second magnetic layer desirably exceeds 50 Oe. This is because when the coercive force is weak, the magnetization is reversed during storage and recording, and reproduction cannot be performed.
【0030】このため、また、本発明の磁性薄膜メモリ
素子の第1磁性層の保磁力は第2磁性層の保磁力の半分
以下に設定することが望ましい。For this reason, it is desirable that the coercive force of the first magnetic layer of the magnetic thin film memory element of the present invention is set to be less than half of the coercive force of the second magnetic layer.
【0031】保磁力の制御は、例えば、CoにFeを添
加すると保磁力は小さくなり、Ptを添加すると保磁力
は大きくなるので、例えばCo100−x−yFexP
tyとして元素組成x及びyを調節して保磁力を制御す
ればよい。また成膜時の基板温度を高くすることによっ
ても保磁力を高めることができるので別の保磁力の制御
方法として成膜時の基板温度を調節することもよい。こ
の方法と前述した強磁性薄膜の組成を調節する方法とを
組み合わせてもよい。The coercive force is controlled, for example, by adding Fe to Co, the coercive force decreases, and adding Pt, the coercive force increases. For example, Co100-xyFexP
The coercive force may be controlled by adjusting the element compositions x and y as ty. Since the coercive force can be increased by increasing the substrate temperature during film formation, another method of controlling the coercive force may be to adjust the substrate temperature during film formation. This method may be combined with the above-described method of adjusting the composition of the ferromagnetic thin film.
【0032】(実施例7)本発明の磁性薄膜メモリ素子
において、第2磁性層の非磁性層と反対側の面に接して
反強磁性層を設け、該反強磁性層と該第2磁性層が交換
結合して該第2磁性層の磁化が固定してもよい。反強磁
性層との交換結合によって、第2磁性層の保磁力を大き
くすることが可能となる。この場合、第1磁性層と第2
磁性層に同じ材料を用いることも可能であるので、保磁
力を大きくするためにMR比を犠牲にするといったこと
がなく、材料の選択の幅が広がる。反強磁性層としては
酸化ニッケルNiO、鉄マンガンFeMn、酸化コバル
トCoOなどが挙げられる。(Embodiment 7) In the magnetic thin film memory element of the present invention, an antiferromagnetic layer is provided in contact with the surface of the second magnetic layer opposite to the nonmagnetic layer, and the antiferromagnetic layer and the second magnetic layer The layers may be exchange coupled and the magnetization of the second magnetic layer may be fixed. The exchange coupling with the antiferromagnetic layer makes it possible to increase the coercive force of the second magnetic layer. In this case, the first magnetic layer and the second magnetic layer
Since the same material can be used for the magnetic layer, there is no need to sacrifice the MR ratio in order to increase the coercive force, and the range of material selection can be widened. Examples of the antiferromagnetic layer include nickel oxide NiO, iron manganese FeMn, and cobalt oxide CoO.
【0033】(実施例8)図3は本発明の磁性薄膜メモ
リ素子の別の例を示す図である。図3で、第1磁性層1
及び第2磁性層2の中心部には、絶縁体4に囲まれた導
電体5が形成されている。この導電体5は、記録の際に
電流を流して磁化反転させるためのもので、磁性層より
も導電率の高いものを用いる。絶縁体4は、導電体5と
磁性層が接触するのを防ぐために設けられたものであ
る。図4は、図3の断面図を示したもので、図3にさら
に再生のために用いるセンス線61と62及び記録の際
に用いるワード線7を追加して示している。図4では、
センス線62はワード線71の抵抗電極としても機能し
ているが、別にワード線72を設けたのが、図5であ
る。図5に示した構造では、記録の際にはワード線7
1,72に電流を流して記録を行う。読み取りのときに
は、センス線61とセンス線62の間に電流を流して、
メモリ素子の抵抗値を測定する。なお、センス線61,
62及びワード線71,72は平行していても直交して
いてもよい。例えば、図6に示した構造では、センス線
61とセンス線62は平行で、それに直交する形でワー
ド線7が設けられている。(Embodiment 8) FIG. 3 is a view showing another example of the magnetic thin film memory element of the present invention. In FIG. 3, the first magnetic layer 1
In the center of the second magnetic layer 2, a conductor 5 surrounded by an insulator 4 is formed. The conductor 5 is used for flowing a current during recording to reverse the magnetization, and has a higher conductivity than the magnetic layer. The insulator 4 is provided to prevent the conductor 5 from contacting the magnetic layer. FIG. 4 is a cross-sectional view of FIG. 3, in which sense lines 61 and 62 used for reproduction and a word line 7 used for recording are additionally shown in FIG. In FIG.
Although the sense line 62 also functions as a resistance electrode of the word line 71, a word line 72 is separately provided in FIG. In the structure shown in FIG. 5, the word line 7 is used for recording.
The recording is performed by applying a current to 1,72. At the time of reading, a current flows between the sense line 61 and the sense line 62,
Measure the resistance value of the memory element. Note that the sense lines 61,
The word lines 62 and the word lines 71 and 72 may be parallel or orthogonal. For example, in the structure shown in FIG. 6, the sense line 61 and the sense line 62 are parallel, and the word line 7 is provided orthogonal to the sense line 61 and the sense line 62.
【0034】図3,4及び図5に示した構造では、図1
の構造と比較すると、記録時には磁性層に電流が流れな
いので、配線抵抗が低くなり、消費電力、応答性に優れ
る。In the structure shown in FIGS. 3, 4 and 5, FIG.
Compared to the structure of the above, since no current flows through the magnetic layer during recording, the wiring resistance is reduced, and the power consumption and the responsiveness are excellent.
【0035】(実施例9)本発明の磁性薄膜メモリ素子
に記録を行う際には、膜面に対して垂直に電流を流し
て、すなわち、電流が磁化方法に対して垂直になるよう
にして、該電流により生じる磁界により前記第1磁性層
の磁化方向を定めることにより“0”と“1”の状態を
記録する。流す電流の向きによって、発生する磁場の向
きが異なる。例えば、メモリ素子の上から下に電流を流
した際には、メモリ素子の上部から見て時計回りに磁界
が発生し、磁化は時計回りになる。反対に電流を下から
上に流すと、磁化は反時計回りになる。本発明の磁性薄
膜メモリ素子の第1磁性層は保磁力が小さく、第2磁性
層は保磁力が大きい。流す電流の大きさを第1磁性層の
磁化反転磁界より大きい磁界が発生するように、設定す
れば、第1磁性層にその磁化の向きに応じて、“0”,
“1”のデジタルデータを記録することができる。(Embodiment 9) When recording is performed on the magnetic thin film memory element of the present invention, a current is caused to flow perpendicular to the film surface, that is, the current is made perpendicular to the magnetization method. The state of "0" and "1" is recorded by determining the magnetization direction of the first magnetic layer by the magnetic field generated by the current. The direction of the generated magnetic field differs depending on the direction of the flowing current. For example, when a current flows from top to bottom of a memory element, a magnetic field is generated clockwise when viewed from above the memory element, and magnetization is clockwise. Conversely, when current flows from bottom to top, the magnetization becomes counterclockwise. The first magnetic layer of the magnetic thin film memory element of the present invention has a small coercive force, and the second magnetic layer has a large coercive force. If the magnitude of the flowing current is set such that a magnetic field larger than the magnetization reversal magnetic field of the first magnetic layer is generated, “0”, “0”,
Digital data "1" can be recorded.
【0036】(実施例10)磁化情報の再生は、本発明
の磁性薄膜メモリ素子に膜面垂直に、すなわち、第1磁
性層、非磁性層、第2磁性層の順にもしくは第2磁性
層、非磁性層、第1磁性層の順に流れるようにして、メ
モリ素子の第1磁性層及び第2磁性層間の抵抗値を測定
することで“0”と“1”の磁化情報を検出する。この
とき、第1磁性層と第2磁性層の磁化の向きが平行の場
合には抵抗値が小さく、反平行の場合には抵抗値が大き
い。第2磁性層の磁化は予め決められた方向に固定され
ているので、第1磁性層に記録された磁化によって、抵
抗値が異なり、情報の読み取りを行うことができる。(Embodiment 10) The reproduction of magnetization information is perpendicular to the magnetic thin film memory element of the present invention, that is, in the order of the first magnetic layer, the nonmagnetic layer, the second magnetic layer, or the second magnetic layer. By measuring the resistance value between the first magnetic layer and the second magnetic layer of the memory element while flowing in the order of the nonmagnetic layer and the first magnetic layer, the magnetization information of “0” and “1” is detected. At this time, when the magnetization directions of the first magnetic layer and the second magnetic layer are parallel, the resistance value is small, and when the magnetization directions are antiparallel, the resistance value is large. Since the magnetization of the second magnetic layer is fixed in a predetermined direction, the resistance value differs depending on the magnetization recorded on the first magnetic layer, so that information can be read.
【0037】(実施例11)磁性層は円柱状に限らず、
四角形の断面を持つ構造でも、磁化が閉磁路に配向して
いればよい。例えば図1(a)の代わりに図10
(b)、図3の代わりに図10(b)に示す様な四角形
の断面を持つ構造でもよい。図10では、1は第1磁性
層、2は第2磁性層、3は非磁性層、4は絶縁膜、5は
書込み線である。また四角形に限らず多角形でもよい。
但し、円筒状構造が、最も安定な閉磁路構造となるた
め、より望ましい。(Embodiment 11) The magnetic layer is not limited to a columnar shape.
Even in a structure having a square cross section, the magnetization may be oriented to the closed magnetic path. For example, instead of FIG.
(B) Instead of FIG. 3, a structure having a square cross section as shown in FIG. 10 (b) may be used. In FIG. 10, 1 is a first magnetic layer, 2 is a second magnetic layer, 3 is a non-magnetic layer, 4 is an insulating film, and 5 is a write line. The shape is not limited to a square, but may be a polygon.
However, a cylindrical structure is more preferable because it becomes the most stable closed magnetic circuit structure.
【0038】(実施例12)以上の実施例では、保磁力
の低い第1磁性層を情報を保存するメモリ層、保磁力の
高い第2磁性層を磁化方向が一定である層(ピン層)と
したが、第2磁性層を情報を保存するメモリ層、第1磁
性層を第2磁性層の情報を読み出すための検出層として
もよい。この検出層は再生時に、双方向に磁化反転させ
て、その際に生じる抵抗変化を検出するために設けられ
るものである。Embodiment 12 In the above embodiments, the first magnetic layer having a low coercive force is used as a memory layer for storing information, and the second magnetic layer having a high coercive force is used as a layer having a constant magnetization direction (pin layer). However, the second magnetic layer may be a memory layer for storing information, and the first magnetic layer may be a detection layer for reading information from the second magnetic layer. This detection layer is provided for reversing the magnetization in both directions at the time of reproduction and detecting a resistance change occurring at that time.
【0039】検出層/非磁性層/メモリ層の構成では、
第2磁性層の保磁力は10Oe以上50Oe以下、第1
磁性層の保磁力は、2Oe以上で、第2磁性層の保磁力
の半分以下であることが望ましい。In the structure of the detection layer / nonmagnetic layer / memory layer,
The coercive force of the second magnetic layer is 10 Oe or more and 50 Oe or less,
It is desirable that the coercive force of the magnetic layer be not less than 2 Oe and not more than half of the coercive force of the second magnetic layer.
【0040】(実施例13)以上の実施例では、主にメ
モリ素子について記載したが、上述からもわかるよう
に、本発明の素子は微細化しても高いMR比が実現でき
る点が特徴である。よって、メモリ素子に限らず、例え
ばハードディスクの磁気ヘッド、磁気センサーなどにも
応用してもよい。(Embodiment 13) In the above embodiments, a memory element has been mainly described. However, as can be seen from the above description, the element of the present invention is characterized in that a high MR ratio can be realized even if it is miniaturized. . Therefore, the present invention is not limited to the memory element, and may be applied to, for example, a magnetic head of a hard disk, a magnetic sensor, and the like.
【0041】[0041]
【発明の効果】本発明は、以上説明したように、磁化情
報の保存性が高い、高い集積度と信頼性を実現可能であ
る。さらに、安定した録再ができ、非磁性層の製造マー
ジンが広く、再生時間が短く、ノイズの少ない再生方法
を実現できるという効果を有する。According to the present invention, as described above, it is possible to realize high preservation of magnetization information, high integration and reliability. Furthermore, there is an effect that a stable reproducing can be performed, a manufacturing margin of the nonmagnetic layer is wide, a reproducing time is short, and a reproducing method with less noise can be realized.
【図1】図1(a),(b)は本発明の一実施例である
磁性薄膜メモリ素子の立体説明図である。FIGS. 1A and 1B are three-dimensional explanatory views of a magnetic thin film memory element according to an embodiment of the present invention.
【図2】図2(a),(b)は本発明の一実施例である
磁性薄膜メモリ素子の磁化状態を示した立体説明図であ
る。FIGS. 2A and 2B are three-dimensional explanatory diagrams showing a magnetization state of a magnetic thin film memory element according to one embodiment of the present invention.
【図3】本発明の一実施例である磁性薄膜メモリ素子の
磁化状態を示した立体説明図である。FIG. 3 is a three-dimensional explanatory view showing a magnetization state of the magnetic thin film memory element according to one embodiment of the present invention.
【図4】本発明の一実施例である磁性薄膜メモリ素子の
構造断面説明図である。FIG. 4 is an explanatory structural sectional view of a magnetic thin film memory element according to an embodiment of the present invention.
【図5】本発明の一実施例である磁性薄膜メモリ素子の
構造断面説明図である。FIG. 5 is an explanatory structural sectional view of a magnetic thin film memory element according to an embodiment of the present invention.
【図6】本発明の一実施例である磁性薄膜メモリ素子の
磁化状態を示した立体説明図である。FIG. 6 is a three-dimensional explanatory view showing a magnetization state of the magnetic thin film memory element according to one embodiment of the present invention.
【図7】巨大磁気抵抗効果を用いた従来の磁性薄膜メモ
リを示す磁性薄膜の断面説明図である。FIG. 7 is an explanatory sectional view of a magnetic thin film showing a conventional magnetic thin film memory using a giant magnetoresistance effect.
【図8】巨大磁気抵抗効果を用いた従来の磁性薄膜メモ
リの記録動作を示す図であり(a),(c)はワード電
流Iの時間T応答を示す図であり、(b),(d)は従
来の磁性薄膜メモリの磁化状態を示す図である。8A and 8C are diagrams showing a recording operation of a conventional magnetic thin film memory using the giant magnetoresistance effect, and FIGS. 8A and 8C are diagrams showing a time T response of a word current I, and FIGS. (d) is a diagram showing the magnetization state of the conventional magnetic thin film memory.
【図9】巨大磁気抵抗効果を用いた従来の磁性薄膜メモ
リの再生動作を示す図であり(a)はワード電流Iの時
間T応答を示す図であり、(b)乃至(e)は従来の磁
性薄膜メモリの磁化状態を示す図である。9A and 9B are diagrams showing a reproducing operation of a conventional magnetic thin film memory using a giant magnetoresistance effect, wherein FIG. 9A is a diagram showing a time T response of a word current I, and FIGS. FIG. 4 is a diagram showing a magnetization state of the magnetic thin film memory of FIG.
【図10】図10(a)、図10(b)は本発明の他の
例を示す磁性薄膜メモリ素子の立体説明図である。FIGS. 10A and 10B are three-dimensional explanatory views of a magnetic thin film memory element showing another example of the present invention.
1 第1磁性層 2 第2磁性層 3 非磁性層 4 絶縁体 5 導電体 6,7 ワード線 61,62 センス線 71,72 ワード線 W ワード線 S センス線 I 絶縁層 HM 硬質磁性膜 SM 軟磁性膜 NM 非磁性膜 DESCRIPTION OF SYMBOLS 1 1st magnetic layer 2 2nd magnetic layer 3 non-magnetic layer 4 insulator 5 conductor 6,7 word line 61,62 sense line 71,72 word line W word line S sense line I insulating layer HM hard magnetic film SM soft Magnetic film NM Non-magnetic film
Claims (13)
する第1磁性層と、閉磁路構造で高い保磁力を有する第
2磁性層が、絶縁体からなる非磁性層を介して積層さ
れ、該第1磁性層および該第2磁性層は左回りもしくは
右回りに容易軸を有し、該第1、第2磁性層の磁化方向
の相対角度によって、異なる抵抗値を有することを特徴
とする磁気抵抗素子。1. A first magnetic layer having a low coercive force with a closed magnetic circuit structure and a second magnetic layer having a high coercive force with a closed magnetic circuit structure are laminated on a substrate via a nonmagnetic layer made of an insulator. The first magnetic layer and the second magnetic layer have an easy axis counterclockwise or counterclockwise, and have different resistance values depending on the relative angles of the magnetization directions of the first and second magnetic layers. A magnetoresistive element.
とを特徴とする磁性薄膜メモリ素子。2. A magnetic thin film memory element comprising the magnetoresistive element according to claim 1.
o,Niのうち少なくとも1種の元素を含む請求項1記
載の磁性薄膜メモリ素子。3. The first magnetic layer and the second magnetic layer are made of Fe, C
2. The magnetic thin film memory element according to claim 1, wherein said magnetic thin film memory element contains at least one element of o and Ni.
窒化アルミニウムもしくは酸化シリコンもしくは窒化シ
リコンである請求項1記載の磁気抵抗素子。4. The magnetoresistive element according to claim 1, wherein said nonmagnetic layer is made of aluminum oxide, aluminum nitride, silicon oxide, or silicon nitride.
0オングストロームを超え、5000オングストローム
以下である請求項1記載の磁気抵抗素子。5. The film thickness of the first magnetic layer and the second magnetic layer is 10
2. The magnetoresistive element according to claim 1, wherein the magnetic resistance is more than 0 angstroms and not more than 5000 angstroms.
ム以上30オングストローム以下である請求項1記載の
磁気抵抗素子。6. The magnetoresistive element according to claim 1, wherein said nonmagnetic layer has a thickness of not less than 5 angstroms and not more than 30 angstroms.
層の保磁力の半分以下で、第1磁性層の保磁力が10O
e以上50Oe以下、第2磁性層の保磁力が50Oeを
超える請求項1記載の磁気抵抗素子。7. The coercive force of the first magnetic layer is less than half the coercive force of the second magnetic layer, and the coercive force of the first magnetic layer is 100
2. The magnetoresistive element according to claim 1, wherein the coercive force of the second magnetic layer is greater than or equal to 50 Oe and less than or equal to 50 Oe.
接して反強磁性層が設けられており、該反強磁性層と該
第2磁性層が交換結合して該第2磁性層の磁化が固定さ
れている請求項1記載の磁気抵抗素子。8. An antiferromagnetic layer is provided in contact with a surface of the second magnetic layer opposite to the nonmagnetic layer, and the antiferromagnetic layer and the second magnetic layer are exchange-coupled to each other. 2. The magnetoresistive element according to claim 1, wherein the magnetization of the two magnetic layers is fixed.
縁体に囲まれた導電体が形成されている請求項1記載の
磁気抵抗素子。9. The magnetoresistive element according to claim 1, wherein a conductor surrounded by an insulator is formed at the center of the first magnetic layer and the second magnetic layer.
上50Oe以下、第1磁性層の保磁力は、2Oe以上
で、第2磁性層の保磁力の半分以下である請求項1記載
の磁気抵抗素子。10. The magnet according to claim 1, wherein the coercive force of the second magnetic layer is 10 Oe or more and 50 Oe or less, and the coercive force of the first magnetic layer is 2 Oe or more and half or less of the coercive force of the second magnetic layer. Resistance element.
電流を流し該電流により生じる磁界により前記第1磁性
層の磁化方向を定めることにより“0”と“1”の状態
を記録することを特徴とする磁性薄膜メモリの記録方
法。11. A state where "0" and "1" are recorded by applying a current to said magnetic thin film memory element perpendicular to the film surface and determining a magnetization direction of said first magnetic layer by a magnetic field generated by said current. A recording method for a magnetic thin film memory, comprising:
に電流を流し該電流により生じる磁界により前記第2磁
性層の磁化方向を定めることにより“0”と“1”の状
態を記録することを特徴とする磁性薄膜メモリ素子の記
録方法。12. Recording "0" and "1" states by applying a current to said magnetic thin film memory element perpendicular to the film surface and determining the magnetization direction of said second magnetic layer by a magnetic field generated by said current. A recording method for a magnetic thin film memory device, comprising:
に電流を流し抵抗を測定することで“0”と“1”の磁
化情報を検出することを特徴とする磁性薄膜メモリの再
生方法。13. A reproducing method for a magnetic thin film memory, characterized in that a current is applied to the magnetic thin film memory element in a direction perpendicular to the film surface and the resistance is measured to detect magnetization information of “0” and “1”.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10256965A JPH11154389A (en) | 1997-09-18 | 1998-09-10 | Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element |
US09/154,859 US6111784A (en) | 1997-09-18 | 1998-09-16 | Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element |
EP98307552A EP0910092B1 (en) | 1997-09-18 | 1998-09-17 | Magnetic thin film memory element and recording/reproduction method using such memory element |
DE69804742T DE69804742T2 (en) | 1997-09-18 | 1998-09-17 | Magnetic thin film memory element and recording / reproducing method using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-253531 | 1997-09-18 | ||
JP25353197 | 1997-09-18 | ||
JP10256965A JPH11154389A (en) | 1997-09-18 | 1998-09-10 | Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11154389A true JPH11154389A (en) | 1999-06-08 |
Family
ID=26541248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10256965A Pending JPH11154389A (en) | 1997-09-18 | 1998-09-10 | Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11154389A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005535115A (en) * | 2002-07-31 | 2005-11-17 | フリースケール セミコンダクター インコーポレイテッド | Magnetoresistive random access memory |
JP2005537659A (en) * | 2002-08-27 | 2005-12-08 | フリースケール セミコンダクター インコーポレイテッド | Magnetic random access memory with vertical write lines |
JP2006060236A (en) * | 2004-08-23 | 2006-03-02 | Samsung Electronics Co Ltd | Magnetic memory element, method of operating the same and method of fabricating the same |
US7099185B2 (en) | 2002-12-13 | 2006-08-29 | Osaka University | Magnetic memory array, method for recording in a magnetic memory array and method for reading out from a magnetic memory array |
CN1329916C (en) * | 2001-04-02 | 2007-08-01 | 惠普公司 | Embracing layer read/wright conductor of soft reference layer fixed in operation |
KR100954507B1 (en) * | 2002-02-15 | 2010-04-27 | 소니 주식회사 | Magnetoresistive effect element and magnetic memory device |
KR101061811B1 (en) | 2003-04-23 | 2011-09-05 | 각고호우징 게이오기주크 | Magnetic ring unit and magnetic memory device |
-
1998
- 1998-09-10 JP JP10256965A patent/JPH11154389A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1329916C (en) * | 2001-04-02 | 2007-08-01 | 惠普公司 | Embracing layer read/wright conductor of soft reference layer fixed in operation |
KR100816746B1 (en) * | 2001-04-02 | 2008-03-26 | 삼성전자주식회사 | Cladded read-write conductor for a pinned-on-the-fly soft reference layer |
KR100954507B1 (en) * | 2002-02-15 | 2010-04-27 | 소니 주식회사 | Magnetoresistive effect element and magnetic memory device |
JP2005535115A (en) * | 2002-07-31 | 2005-11-17 | フリースケール セミコンダクター インコーポレイテッド | Magnetoresistive random access memory |
JP4833548B2 (en) * | 2002-07-31 | 2011-12-07 | エバースピン テクノロジーズ インコーポレイテッド | Magnetoresistive random access memory |
JP2005537659A (en) * | 2002-08-27 | 2005-12-08 | フリースケール セミコンダクター インコーポレイテッド | Magnetic random access memory with vertical write lines |
US7099185B2 (en) | 2002-12-13 | 2006-08-29 | Osaka University | Magnetic memory array, method for recording in a magnetic memory array and method for reading out from a magnetic memory array |
KR101061811B1 (en) | 2003-04-23 | 2011-09-05 | 각고호우징 게이오기주크 | Magnetic ring unit and magnetic memory device |
JP2006060236A (en) * | 2004-08-23 | 2006-03-02 | Samsung Electronics Co Ltd | Magnetic memory element, method of operating the same and method of fabricating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6111784A (en) | Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element | |
US7018725B2 (en) | Magneto-resistance effect element magneto-resistance effect memory cell, MRAM, and method for performing information write to or read from the magneto-resistance effect memory cell | |
JP3679593B2 (en) | Magnetic thin film element, magnetic thin film memory element and recording / reproducing method thereof | |
JP3891540B2 (en) | Magnetoresistive memory, method for recording / reproducing information recorded in magnetoresistive memory, and MRAM | |
US7372727B2 (en) | Magnetic cell and magnetic memory | |
JP3916908B2 (en) | Magnetoresistive element, magnetic memory, and magnetic head | |
JP2003281705A (en) | Magnetic head, magnetic head gimbal assembly, magnetic recording/reproducing device and magnetic memory | |
JP4076197B2 (en) | Magnetic element, storage device, magnetic reproducing head, three-terminal element, and magnetic disk device | |
JP4040173B2 (en) | memory | |
JP3977576B2 (en) | Magnetic memory device | |
KR20070058364A (en) | Storage element and memory | |
JP2000076844A (en) | Magnetic thin-film memory element and its recording and reproducing method as well as image video-recording and reproducing apparatus | |
JPH11154389A (en) | Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element | |
JP3891511B2 (en) | Magnetic thin film memory and recording / reproducing method thereof | |
JP4516086B2 (en) | Magnetoresistive element and manufacturing method thereof, magnetic memory, magnetic head, and magnetic recording apparatus | |
JP4944315B2 (en) | Magnetoresistive film, memory element including the same, and memory using the same | |
JP4136028B2 (en) | Magnetic thin film memory element, magnetic thin film memory using the same, and recording / reproducing method thereof | |
JP3957817B2 (en) | Magnetic thin film memory and recording / reproducing method thereof | |
JP3515940B2 (en) | Magnetic tunnel junction device and magnetic memory using the same | |
JP2001256773A (en) | Access method of magnetic memory cell, and magnetic memory cell | |
JP2003110166A (en) | Magnetoresistance effect film, and memory using it | |
JPH10302457A (en) | Magnetic thin film memory element and magnetic thin film memory using the same | |
JP2003178917A (en) | Magnetoresistive effect film and memory using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050927 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060118 |