JPH11142054A - Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas - Google Patents

Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Info

Publication number
JPH11142054A
JPH11142054A JP9302140A JP30214097A JPH11142054A JP H11142054 A JPH11142054 A JP H11142054A JP 9302140 A JP9302140 A JP 9302140A JP 30214097 A JP30214097 A JP 30214097A JP H11142054 A JPH11142054 A JP H11142054A
Authority
JP
Japan
Prior art keywords
nitrogen
liquefied
natural gas
liquefied natural
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9302140A
Other languages
Japanese (ja)
Inventor
Taiji Kishida
泰治 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP9302140A priority Critical patent/JPH11142054A/en
Publication of JPH11142054A publication Critical patent/JPH11142054A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a system in safety without requiring any intermediate refrigerant by providing a detector for detecting the flammable components in nitrogen flowing through a passage connecting a rectification column, a circulation nitrogen compressor, a liquefied natural gas heat exchanger and a liquefied nitrogen storage tank thereby sustaining the compression pressure of circulation nitrogen at a low level. SOLUTION: Liquefied nitrogen in a passage 55 is subjected to pressure drop expansion through a valve 56 and introduced into a liquefied nitrogen storage tank 57 and flush gas is taken out from the upper part thereof and circulated through the passage 52 while being combined. Liquefied nitrogen stored temporarily in the liquefied nitrogen storage tank 57 is led out to a passage 59 and boosted by means of a liquefied nitrogen pump 60. Subsequently, it is subjected to pressure drop expansion and introduced through a passage 63 into a cold box 19a thence introduced to the top of an upper column 11 while being combined with liquefied nitrogen in a passage 26. A hydrocarbon analyzer 61 is provided in the passage 55 in order to detect/measure the quantity of hydrocarbon in high pressure liquefied nitrogen constantly. When it exceeds a specified level, an alarm is delivered immediately and a circulation nitrogen liquefying section 34 is stopped entirely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化天然ガス(以
下LNGという)の冷熱を利用した空気液化分離装置及
び方法に関し、詳しくは、LNGが比較的高い圧力で供
給される場合に、循環窒素系の圧力を前記LNGの供給
圧力よりも低く設定し、かつ、装置の安全性を確保した
空気液化分離装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation apparatus and method using the cold of liquefied natural gas (hereinafter referred to as LNG), and more particularly, to a method for circulating nitrogen when LNG is supplied at a relatively high pressure. The present invention relates to an air liquefaction separation apparatus and method in which the pressure of the system is set lower than the supply pressure of the LNG and the safety of the apparatus is ensured.

【0002】[0002]

【従来の技術】空気を液化精留分離し、その成分である
酸素,窒素,アルゴン等をガス又は液製品として採取す
る方法において、その系に必要な冷熱をLNGの冷熱に
より賄って装置の運転を行う方法は、従来から各種の方
式が提案されている。すなわち、ガス製品を採取する場
合の深冷精留分離装置は、装置運転に必要な起動時装置
冷却用の冷熱、運転時の温端ロス及び侵入熱の補給に必
要な冷熱、液製品採取の場合は、これらに加えて液製品
が系外に液として持ち出す冷熱分の補給を、LNGの冷
熱から供給を受けることによって賄う方式である。
2. Description of the Related Art In a method in which air is liquefied and rectified and its components, such as oxygen, nitrogen, argon, etc., are collected as a gas or liquid product, the cold required for the system is covered by the cold of LNG to operate the apparatus. Various methods have heretofore been proposed. In other words, the cryogenic rectification / separation device for collecting gas products is required to supply the cold heat for cooling the device at the time of start-up necessary for the operation of the device, the cold heat required for the replenishment of hot end loss and intrusion heat during operation, and the collection of liquid product. In this case, in addition to the above, replenishment of cold heat taken out of the system as a liquid by the liquid product is provided by receiving supply from cold heat of LNG.

【0003】この場合、通常の装置では、膨張タービン
を設置して上記必要冷熱を発生させるのに対してこれが
不要となり、その分の原料空気圧縮動力が節減でき、動
力原単位が節減される。空気液化分離におけるコストの
大部分は動力費であり、その大部分は、原料空気の圧縮
動力費であるから、この内の膨張タービン向けの空気の
圧縮動力を節減するだけでも大幅な原単位の節減にな
る。
[0003] In this case, in a usual apparatus, the above-mentioned required cooling heat is generated by installing an expansion turbine, which is not necessary, so that the raw material air compression power can be saved by that amount, and the power consumption can be reduced. Most of the cost in air liquefaction and separation is power cost, and most of it is the cost of power for compressing feed air. Saves money.

【0004】しかし、LNGは可燃性であり、原料空気
あるいは製品酸素との熱交換は好ましくないため、循環
窒素系を設けてLNGより高い圧力の循環窒素とLNG
とを熱交換させるか、循環窒素とLNGとの熱交換をさ
らにフロン等の循環冷媒を介して行い、万一熱交換器の
漏洩が起こっても、可燃性のLNGが原料空気中、製品
酸素中に混入したり、精留塔に侵入したりすることがな
いように配慮していた。
However, since LNG is flammable and heat exchange with raw material air or product oxygen is not preferable, a circulating nitrogen system is provided so that circulating nitrogen at a higher pressure than LNG and LNG can be used.
Or heat exchange between the circulating nitrogen and LNG is further performed via a circulating refrigerant such as Freon, so that even if a heat exchanger leaks, flammable LNG will be produced in the raw material air, Care was taken not to mix them in or to enter the rectification column.

【0005】すなわち、循環窒素系における予冷部の熱
交換器では、LNGとフロン又は各種ガスの中間冷媒を
介して熱交換させ、窒素を液化させる液化部の熱交換器
でLNGと熱交換する窒素は、LNGよりも高い圧力で
熱交換させていた。
That is, in the heat exchanger of the pre-cooling section in the circulating nitrogen system, heat is exchanged between LNG and an intermediate refrigerant of chlorofluorocarbon or various gases, and nitrogen exchanged with LNG in the heat exchanger of the liquefaction section for liquefying nitrogen. Had heat exchanged at a higher pressure than LNG.

【0006】これにより、例えば、熱交換器に亀裂が入
って流体間で漏洩が生じても、LNGが窒素に混入しな
いように安全対策を講じていた。すなわち、仮に窒素中
にLNGが漏洩すると、沸点の関係から精留塔中の酸素
純度の高いところに濃縮し、爆発に至る可能性があるた
め、上記対策を行っていた。また、このように、従来
は、循環窒素の圧力をLNGの供給圧力より高く設定し
ていたので、循環経路には、液化窒素貯槽を介在させる
ことは通常行われていなかった。
As a result, safety measures have been taken to prevent LNG from being mixed into nitrogen even if the heat exchanger cracks and leaks between fluids. That is, if LNG leaks into nitrogen, it may be concentrated in a portion of the rectification column where oxygen purity is high due to the boiling point and may explode, so the above measures have been taken. Further, as described above, conventionally, the pressure of the circulating nitrogen is set to be higher than the supply pressure of the LNG, so that a liquefied nitrogen storage tank is not usually provided in the circulation path.

【0007】[0007]

【発明が解決しようとする課題】しかし、LNGの用途
によっては、非常に高い圧力で供給される場合があり、
この場合は、循環窒素圧力をそのLNGの圧力以上に圧
縮しなければならず、このための圧縮動力が増大する不
都合が生じる。
However, depending on the application of LNG, it may be supplied at a very high pressure,
In this case, the circulating nitrogen pressure must be compressed to a value equal to or higher than the pressure of the LNG, which causes a disadvantage that the compression power increases.

【0008】また、中間冷媒を介在使用して循環窒素の
低圧部を冷却することも、近年は、地球環境保護の観点
からの規制が厳しくなり、冷媒の使用が限られた条件で
のみ可能となってきており、その対策が必要であった。
[0008] In recent years, the use of an intermediate refrigerant to cool the low-pressure portion of circulating nitrogen has recently become stricter from the viewpoint of protection of the global environment. And measures were needed.

【0009】そこで本発明は、循環窒素の圧縮圧を低く
抑え、かつ、中間冷媒を使用せずに安全に装置を稼動す
ることができる液化天然ガスの冷熱を利用した空気液化
分離装置及び方法を提供することを目的としている。
Accordingly, the present invention provides an air liquefaction separation apparatus and method utilizing the cryogenic heat of liquefied natural gas which can keep the compression pressure of circulating nitrogen low and can operate the apparatus safely without using an intermediate refrigerant. It is intended to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の液化天然ガスの冷熱を利用した空気液化分
離装置は、液化天然ガスの冷熱を利用して空気を液化精
留する空気液化分離装置において、窒素ガスを圧縮する
少なくとも一基の循環窒素圧縮機と、該循環窒素圧縮機
で圧縮した循環窒素と液化天然ガスとを熱交換させる少
なくとも一基の液化天然ガス熱交換器と、該液化天然ガ
ス熱交換器で冷却されて液化した液化窒素を貯留する液
化窒素貯槽と、少なくとも精留塔からの窒素ガスを前記
循環窒素圧縮機に導入する経路と、循環窒素圧縮機と前
記液化天然ガス熱交換器とを結ぶ経路と、該液化天然ガ
ス熱交換器と前記液化窒素貯槽とを結ぶ経路と、該液化
窒素貯槽と精留塔とを結ぶ経路と、これら経路を流れる
窒素中の可燃成分の量を検出する検出器とを設けた循環
窒素液化部を備えたことを特徴とするものであって、特
に、前記可燃成分の量を検出する検出器が炭化水素測定
器であること、さらに、前記液化窒素貯槽が複数個設け
られていることを特徴としている。
In order to achieve the above object, an air liquefaction / separation apparatus utilizing the cryogenic heat of liquefied natural gas according to the present invention comprises an air liquefaction apparatus which liquefies air by utilizing the cryogenic heat of liquefied natural gas. In the separation device, at least one circulating nitrogen compressor for compressing nitrogen gas, and at least one liquefied natural gas heat exchanger for heat exchange between the circulating nitrogen and liquefied natural gas compressed by the circulating nitrogen compressor, A liquefied nitrogen storage tank for storing liquefied nitrogen cooled and liquefied by the liquefied natural gas heat exchanger, a path for introducing at least nitrogen gas from a rectification column to the circulating nitrogen compressor, a circulating nitrogen compressor and the liquefaction A path connecting the natural gas heat exchanger, a path connecting the liquefied natural gas heat exchanger and the liquefied nitrogen storage tank, a path connecting the liquefied nitrogen storage tank and the rectification tower, and nitrogen flowing through these paths. Flammable components A circulating nitrogen liquefaction unit provided with a detector for detecting the amount of the combustible component is a hydrocarbon measuring device, in particular, It is characterized in that a plurality of liquefied nitrogen storage tanks are provided.

【0011】また、本発明の液化天然ガスの冷熱を利用
した空気液化分離方法は、空気を圧縮,精製,冷却して
精留塔に導入し,精留分離して空気成分の少なくとも一
種のガスを製品として採取するとともに、系に必要な冷
熱を液化天然ガスの冷熱を利用して供給することにより
空気を液化精留する空気液化分離方法において、精留塔
から導出した窒素ガスの少なくとも一部を圧縮し、液化
天然ガスと熱交換させて冷却液化し、生成した液化窒素
の少なくとも一部を液化窒素貯槽に貯留し、該貯留液化
窒素の少なくとも一部を精留塔に導入して循環させ、該
循環窒素及び/又は前記貯留液化窒素中の可燃成分の含
有量を検出し、該検出値が所定量以上のときには、前記
循環窒素の循環を停止することを特徴とし、さらに、前
記循環窒素の圧力が、液化天然ガスの供給圧力よりも低
いことを特徴としている。
Further, the air liquefaction / separation method of the present invention utilizing the cold heat of liquefied natural gas comprises compressing, purifying and cooling air, introducing the compressed air into a rectification column, rectifying and separating the air, and purifying at least one kind of air component gas. In the air liquefaction separation method of liquefying and rectifying air by supplying the required cold heat to the system using the cold heat of liquefied natural gas, at least a part of the nitrogen gas derived from the rectification column Is compressed, cooled and liquefied by heat exchange with liquefied natural gas, and at least a part of the generated liquefied nitrogen is stored in a liquefied nitrogen storage tank, and at least a part of the stored liquefied nitrogen is introduced into a rectification column and circulated. Detecting the content of combustible components in the circulating nitrogen and / or the stored liquefied nitrogen, and stopping the circulation of the circulating nitrogen when the detected value is equal to or more than a predetermined amount; Pressure It is characterized in that less than the supply pressure of the liquefied natural gas.

【0012】上記構成によれば、循環窒素液化部に液化
窒素を貯留する液化窒素貯槽を設けるとともに、窒素中
の炭化水素を検出・監視する分析計を設けたので、万
一、熱交換器に亀裂等のトラブルが生じて漏洩があって
も、検出器(炭化水素分析器)でただちにこれを発見で
き、循環窒素を停止することにより、精留塔を主要機器
とする空気分離部に炭化水素が侵入するのを防ぐことが
でき、循環窒素をLNGの供給圧力より低い圧力で循環
させることができる。
According to the above configuration, a liquefied nitrogen storage tank for storing liquefied nitrogen is provided in the circulating nitrogen liquefaction section, and an analyzer for detecting and monitoring hydrocarbons in nitrogen is provided. Even if there is a leak due to a crack or other trouble, the detector (hydrocarbon analyzer) can immediately detect this and stop the circulating nitrogen, so that the air separation section whose main equipment is the rectification tower is the hydrocarbon. Can be prevented from entering, and the circulating nitrogen can be circulated at a pressure lower than the supply pressure of LNG.

【0013】さらに、液化窒素貯槽を設けることによ
り、所定量以上の炭化水素を含む液化窒素がこれに貯留
されて空気分離部に至るには時間を要するので、また、
液化部と空気分離部とを結ぶ経路に炭化水素分析計を設
けることにより、空気分離部が爆発の危険範囲に入る可
能性は極めて低く、装置全体の安全が充分に確保でき
る。
Further, by providing a liquefied nitrogen storage tank, it takes time for liquefied nitrogen containing a predetermined amount or more of hydrocarbons to be stored therein and reach the air separation unit.
By providing the hydrocarbon analyzer in the path connecting the liquefaction unit and the air separation unit, the possibility that the air separation unit enters the danger area of explosion is extremely low, and the safety of the entire apparatus can be sufficiently ensured.

【0014】また、循環窒素の圧力を比較的低圧とする
ことができ、LNGと窒素とを直接熱交換差せることが
できるので、フロン等の中間冷媒を使用する必要がなく
なった。このため、装置構成がシンプルになるととも
に、循環窒素圧縮機も、多くの種類の中から最適なもの
を選定することができる。
Further, since the pressure of the circulating nitrogen can be made relatively low and the heat exchange between LNG and nitrogen can be made directly different, it is not necessary to use an intermediate refrigerant such as Freon. For this reason, the apparatus configuration is simplified, and the most suitable circulating nitrogen compressor can be selected from many types.

【0015】例えば、循環窒素の圧力を、LNGより高
圧の80Kg/cmG以上に選定すると、レシプロ式
圧縮機を採用しなければならなくなるが、本発明により
窒素圧縮機の選択幅が広くなり、ターボ式のものが使用
できる。
For example, if the pressure of the circulating nitrogen is selected to be 80 kg / cm 2 G or higher, which is higher than LNG, a reciprocating compressor must be employed. , A turbo type can be used.

【0016】[0016]

【発明の実施の形態】図1は本発明の空気液化分離装置
の一形態例を示す系統図である。経路1から大気が原料
空気として29,500Nm/h導入され、空気圧縮
機2で5.5kg/cmGに圧縮されて経路3に導出
し、クーラー4(前記空気圧縮機のアフタークーラー
等) で冷却された後、切換え使用される対でなるMS吸
着器5の一方に導入される。前記クーラー4の冷却水
は、所要冷却温度に応じて、別に設けられた熱交換器
(図示せず)により、低温天然ガス(気化LNG)と熱
交換して低温にした冷却水を使用する。
FIG. 1 is a system diagram showing an embodiment of an air liquefaction / separation apparatus according to the present invention. Atmospheric air is introduced from the path 1 as raw material air at 29,500 Nm 3 / h, compressed to 5.5 kg / cm 2 G by the air compressor 2 and led out to the path 3, and is cooled 4 (the after-cooler of the air compressor or the like). ), And is introduced into one of the paired MS adsorbers 5 used for switching. As the cooling water for the cooler 4, a cooling water that has been cooled to a low temperature by exchanging heat with low-temperature natural gas (vaporized LNG) by a separately provided heat exchanger (not shown) is used in accordance with the required cooling temperature.

【0017】MS吸着器5で、含有する炭酸ガス及び水
分を除去された圧縮精製空気は、経路6から空気分離部
19のコールドボックス19a内に導入されて主熱交換
器7に入り、主精留塔9から帰還する酸素,窒素等の低
温ガスと熱交換して冷却され、−172℃で導出して経
路8から主精留塔9の下部塔10の下部へ導入される。
The compressed and purified air from which the carbon dioxide and water contained therein have been removed by the MS adsorber 5 is introduced into the cold box 19a of the air separation unit 19 from the path 6 and enters the main heat exchanger 7, where it is subjected to main purification. The heat is exchanged with a low-temperature gas such as oxygen and nitrogen returning from the distillation tower 9, cooled, and discharged at −172 ° C. to be introduced into the lower part of the lower tower 10 of the main rectification tower 9 from the path 8.

【0018】下部塔10に導入された原料空気は、塔内
を上昇し、塔頂から降下してくる還流液と向流気液接触
して精留を行い、塔上部に窒素を分離するとともに、塔
底部には酸素富化液化空気が留出する。この酸素富化液
化空気16,500Nm/hは、経路12から導出
し、膨張弁13で膨張して約0.4kg/cmGとな
り、経路14から上部塔11の中間部に導入され、該塔
内で精留に供される。
The raw material air introduced into the lower tower 10 rises in the tower, comes into contact with the reflux liquid descending from the top in countercurrent gas-liquid state, performs rectification, and separates nitrogen into the upper part of the tower. At the bottom of the column, oxygen-enriched liquefied air distills. This oxygen-enriched liquefied air 16,500 Nm 3 / h is derived from the passage 12, expanded by the expansion valve 13 to about 0.4 kg / cm 2 G, introduced into the middle part of the upper tower 11 from the passage 14, It is subjected to rectification in the column.

【0019】前記経路14の酸素富化液化空気は、その
一部が経路15に分岐して粗アルゴン塔16の凝縮器1
7に入り、該凝縮器17で冷熱を供給して大部分がガス
となり、経路18から前記上部塔11の中間部へ導入さ
れる。
A part of the oxygen-enriched liquefied air in the path 14 branches to the path 15 and
7, the cooling heat is supplied by the condenser 17, and most of the gas is turned into gas, and the gas is introduced into the middle part of the upper tower 11 from the passage 18.

【0020】前記下部塔10の頂部に分離した窒素ガス
は、経路20に導出して分岐し、分岐した一方が主凝縮
蒸発器22に入り、上部塔11の塔底に留出した液化酸
素と熱交換して液化し、経路23に導出して二分し、一
方は、再び下部塔10の頂部に導入されて該塔の還流液
となる。分岐した他方の液化窒素3900Nm/h
は、経路24,膨張弁25を経て経路26から上部塔1
1の頂部に還流液として導入される。
The nitrogen gas separated at the top of the lower column 10 is led out to a path 20 and branched, and one of the branches enters the main condensing evaporator 22 and the liquefied oxygen distilled off at the bottom of the upper column 11 and The liquid is liquefied by heat exchange, is led to the path 23, and is bisected. One is again introduced to the top of the lower column 10 and becomes the reflux liquid of the column. 3900 Nm 3 / h of the other branched liquefied nitrogen
From the path 26 via the path 24 and the expansion valve 25
At the top of 1 is introduced as reflux.

【0021】前記経路20から分岐した窒素ガスの他方
8,800Nm/hは、経路21を経て前記主熱交換
器7に入り、前記原料空気と熱交換して略常温になった
後、経路27からコールドボックス19aを導出し、調
節弁28を経て後述の循環窒素液化部(循環窒素系)3
4へ向かう。
The other 8,800 Nm 3 / h of the nitrogen gas branched from the path 20 enters the main heat exchanger 7 via a path 21 and exchanges heat with the raw material air to reach a substantially normal temperature. A cold box 19a is drawn out from the tank 27 and passed through a control valve 28 to a circulating nitrogen liquefaction unit (circulating nitrogen system) 3 to be described later.
Go to 4.

【0022】前記上部塔11内では、前記塔底部に留出
した液化酸素が、主凝縮蒸発器22内のガス側流路を流
れる窒素ガスと熱交換し、気化して上昇ガスとなる。上
部塔11の頂部に導入された前記液化窒素及び塔中間部
に導入された酸素富化液化空気は、上部塔11の還流液
となって塔内を流下し、前記上昇ガスと向流気液接触し
て精留が行われる。
In the upper tower 11, the liquefied oxygen distilled at the bottom of the tower exchanges heat with the nitrogen gas flowing through the gas-side flow passage in the main condensing evaporator 22, and is vaporized to become a rising gas. The liquefied nitrogen introduced into the top of the upper tower 11 and the oxygen-enriched liquefied air introduced into the middle of the tower become the reflux liquid of the upper tower 11 and flow down the tower, and the rising gas and the countercurrent gas-liquid The rectification is performed on contact.

【0023】その結果、上部塔11の頂部に分離した窒
素ガス15,000Nm/hは、経路29に取り出さ
れ、主熱交換器7で前記原料空気と熱交換して略常温と
なり、コールドボックス19aを導出して経路31,3
2から循環窒素液化部34のコールドボックス34a内
に向かう。
As a result, 15,000 Nm 3 / h of the nitrogen gas separated at the top of the upper tower 11 is taken out to the passage 29 and exchanged heat with the raw material air in the main heat exchanger 7 to become substantially normal temperature, so that the cold box is formed. 19a is derived and the paths 31 and 3
From 2, it goes into the cold box 34 a of the circulating nitrogen liquefaction unit 34.

【0024】前記上部塔11の塔底部に分離した液化酸
素は、経路43に取り出されて液化酸素貯槽44に貯蔵
される。また、上部塔11の中上部の排ガスは、経路3
0から導出され、主熱交換器7で熱回収を行って系外へ
導出される。
The liquefied oxygen separated at the bottom of the upper tower 11 is taken out through a passage 43 and stored in a liquefied oxygen storage tank 44. In addition, the exhaust gas in the middle and upper parts of the upper tower 11
0, the heat is recovered by the main heat exchanger 7, and the heat is led out of the system.

【0025】さらに、上部塔11の中間部におけるアル
ゴン濃度が最も高い位置付近からアルゴンフィードガス
が経路35に抜き出され、前記粗アルゴン塔16の下部
に導入されて精留が行われ、該粗アルゴン塔16の頂部
からアルゴン約95〜97%の粗アルゴンが経路37に
導出される。
Further, an argon feed gas is withdrawn from the vicinity of the position where the argon concentration is highest in the middle part of the upper column 11 through a passage 35, introduced into the lower part of the crude argon column 16 and rectified. From the top of the argon tower 16, about 95-97% of argon is passed to the passage 37 in crude argon.

【0026】粗アルゴン塔16を導出した粗アルゴン
は、アルゴン熱交換器38を経てアルゴン精製装置39
に入り、触媒工程を主とする精製を行った後、再度アル
ゴン熱交換器38を経て高純アルゴン塔40の塔底のリ
ボイラーに入り、自身は液化して導出し、この高純アル
ゴン塔40の中部に導入されて精留され、塔底部に高純
度アルゴンを留出する。この高純度液化アルゴンは、経
路41に取り出されて液化アルゴン貯槽42に貯留され
る。
The crude argon derived from the crude argon tower 16 is passed through an argon heat exchanger 38 to an argon purifier 39.
And after purifying mainly the catalytic process, again passes through the argon heat exchanger 38 and enters the reboiler at the bottom of the high-purity argon column 40, liquefies itself and is discharged. And rectified in the middle of the column, and high-purity argon is distilled off at the bottom of the column. This high-purity liquefied argon is taken out through the path 41 and stored in the liquefied argon storage tank 42.

【0027】前記経路31に導出した上部塔11からの
圧力0.1kg/cmGの窒素ガス15,000Nm
/hは、その一部11,800Nm3/hが経路33
に分岐し、製品窒素ガスとして経路33から系外に取り
出され、分岐した他方の窒素ガス32,000Nm
hは、経路32から前記循環窒素液化部34のコールド
ボックス34aに導入され、最初にLNG熱交換器45
aに入る。
15,000 Nm of nitrogen gas at a pressure of 0.1 kg / cm 2 G from the upper tower 11 led out to the path 31
3 / h, a part of which is 11,800 Nm3 / h
, And is taken out of the system as a product nitrogen gas from the path 33, and the other branched nitrogen gas is 32,000 Nm 3 /
h is introduced into the cold box 34a of the circulating nitrogen liquefaction section 34 from the path 32, and is first introduced into the LNG heat exchanger 45.
Enter a.

【0028】一方、圧力80kg/cmG、温度−1
55℃のLNGが30Ton/hで経路46から導入さ
れ、その一部が経路47aに分岐して前記LNG熱交換
器45aに導入され、前記経路32から導入されて向流
する窒素ガスと熱交換する。熱交換した窒素ガスは、−
135℃に冷却されて経路48からコールドボックス3
4aを導出する。
On the other hand, pressure 80 kg / cm 2 G, temperature -1
LNG at 55 ° C. is introduced at 30 Ton / h from the path 46, a part of which is branched into the path 47a, introduced into the LNG heat exchanger 45a, and exchanges heat with the nitrogen gas introduced from the path 32 and flowing countercurrently. I do. The heat-exchanged nitrogen gas is
Cold box 3 from path 48 cooled to 135 ° C
4a is derived.

【0029】経路48の冷却窒素ガスは、−135℃で
循環窒素圧縮機49に導入され、低温圧縮されて4.7
kg/cmGとなり、経路50に導出し、前記経路2
7,弁28を経由してきた4.7kg/cmGの窒素
ガス88,000Nm/hと合流し、経路51により
LNG熱交換器45bに導入される。該LNG熱交換器
45bでは、前記経路46から経路47bに分岐した8
0kg/cmGのLNGと向流熱交換し、−135℃
まで冷却され、経路52からコールドボックス34aの
外に出る。
The cooled nitrogen gas in the passage 48 is introduced into a circulating nitrogen compressor 49 at -135 ° C. and is compressed at a low temperature to 4.7.
kg / cm 2 G.
7. Merges with 4.7 kg / cm 2 G of nitrogen gas 88,000 Nm 3 / h that has passed through the valve 28, and is introduced into the LNG heat exchanger 45 b through the path 51. In the LNG heat exchanger 45b, 8 branched from the path 46 to a path 47b.
Countercurrent heat exchange with 0 kg / cm 2 G LNG, -135 ° C
And exits the cold box 34a through the path 52.

【0030】経路52の4.6kg/cmG、−13
5℃の窒素ガス12,000Nm/hは、循環窒素圧
縮機53に導入され、60kg/cmGに圧縮され、
経路54に導出して再度コールドボックス34aに導入
された後、LNG熱交換器45cに導入され、経路47
cから導入されて向流する80kg/cmGのLNG
と熱交換し、−150℃となり、液化(ここでは超臨界
の条件の状態も液化の状態という)して経路55に導出
する。
4.6 kg / cm 2 G of the route 52, -13
12,000 Nm 3 / h of 5 ° C. nitrogen gas is introduced into the circulating nitrogen compressor 53 and compressed to 60 kg / cm 2 G,
After being led out to the path 54 and again introduced into the cold box 34a, it is introduced into the LNG heat exchanger 45c and
80kg / cm 2 G LNG introduced from c and flowing countercurrently
Then, the heat exchange temperature becomes −150 ° C., and the liquid is liquefied (the state of the supercritical condition is also referred to as a liquefied state) and led to the path 55.

【0031】経路55に導出した液化窒素12,000
Nm/hは、弁56で約2kg/cmGまで降圧膨
張して−185℃となり、液化窒素貯槽57に導入され
る。弁56で膨張した際に発生したフラッシュガスは、
液化窒素貯槽57の上部から取り出され、低温ガス経路
66を通り、前記経路52に合流して循環する。
The liquefied nitrogen 12,000 led out to the path 55
Nm 3 / h is reduced in pressure to about 2 kg / cm 2 G by the valve 56 to reach −185 ° C., and is introduced into the liquefied nitrogen storage tank 57. The flash gas generated when expanded by the valve 56 is:
It is taken out from the upper part of the liquefied nitrogen storage tank 57, passes through the low-temperature gas path 66, merges with the path 52, and circulates.

【0032】前記LNG熱交換器45a,45b,45
cで昇温してガス化し、常温になった天然ガスは、それ
ぞれ熱交換器群を導出後に合流し、経路65を経て天然
ガスの使用先に送られる。
The LNG heat exchangers 45a, 45b, 45
The natural gas which has been heated and gasified in step c to have a normal temperature is joined after the respective heat exchangers are led out, and is sent to the natural gas destination via the path 65.

【0033】前記液化窒素貯槽57に一次的に貯留され
た液化窒素7500Nm/hは、経路59に導出され
て液化窒素ポンプ60で昇圧した後、調節弁62で0.
3kg/cmGまで降圧膨張し、経路63を経てコー
ルドボックス19a内に導入され、経路26の液化窒素
3600Nm/hに合流して上部塔11の頂部に導入
され、該上部塔11の還流液となるとともに、空気分離
部へ所要冷熱を供給する。液化窒素貯槽57の貯蔵圧力
が揚液するために必要な程度に高い場合は、液化窒素ポ
ンプ60を省略することができる。
The liquefied nitrogen 7500 Nm 3 / h temporarily stored in the liquefied nitrogen storage tank 57 is led out to a passage 59 and pressurized by a liquefied nitrogen pump 60.
The pressure is reduced and expanded to 3 kg / cm 2 G, introduced into the cold box 19 a via the channel 63, combined with liquefied nitrogen 3600 Nm 3 / h in the channel 26, introduced into the top of the upper column 11, and refluxed in the upper column 11. It becomes liquid and supplies the required cold heat to the air separation unit. If the storage pressure of the liquefied nitrogen storage tank 57 is high enough to pump the liquid, the liquefied nitrogen pump 60 can be omitted.

【0034】また、前記経路55には、窒素中の可燃成
分である炭化水素の量を検出する検出器である炭化水素
分析計(QIA)61が設けられており、該経路55を
流れる高圧液体窒素中の炭化水素量を常時検出・測定し
ている。測定値が所定の量を超えた場合は、直ちに警報
を発するとともに信号を発し、循環窒素液化部34の全
体(コールドボックス34a内及び循環窒素圧縮機4
9,53)を停止するよう設定しておく。
The passage 55 is provided with a hydrocarbon analyzer (QIA) 61 which is a detector for detecting the amount of hydrocarbon which is a combustible component in nitrogen. The amount of hydrocarbons in nitrogen is constantly detected and measured. If the measured value exceeds a predetermined amount, an alarm is issued immediately and a signal is issued, and the entire circulating nitrogen liquefaction unit 34 (in the cold box 34a and in the circulating nitrogen compressor 4).
9, 53) is set to stop.

【0035】なお、循環窒素液化部34の循環窒素中に
LNGが微量混入したことが検出され、循環窒素系を停
止する場合の各種バルブの閉弁順序は、幾通りか考えら
れ、採用プロセスによって異なるので、その詳細な説明
は省略する。
When it is detected that a small amount of LNG has entered the circulating nitrogen of the circulating nitrogen liquefaction unit 34, the order of closing various valves when the circulating nitrogen system is stopped can be considered in several ways. Since they are different, detailed description thereof is omitted.

【0036】これにより、前記LNG熱交換器45a,
45b,45cの何れかに、例えば亀裂が生じて微量の
LNGが循環窒素中に漏洩しても、炭化水素分析計61
により検出されて循環窒素系が停止し、漏洩したLNG
が空気分離部19まで及ぶことがなくなる。
Thus, the LNG heat exchanger 45a,
For example, even if a crack is generated in any of 45b and 45c and a small amount of LNG leaks into the circulating nitrogen, the hydrocarbon analyzer 61
Circulating nitrogen system was stopped due to
Does not reach the air separation unit 19.

【0037】さらに、仮に微量漏洩したLNGを含む液
化窒素が短時間経路55を流れても、その液化窒素は、
前記液化窒素貯槽57に導入されて貯留されるため、主
精留塔9(図示は省略するが、液化酸素中の炭化水素量
測定器は、従来通り設置されている)へ到達するのは、
相当時間経過した後であり、前記炭化水素分析計61が
故障して発見が遅れた場合でも、別途炭化水素測定器
(図示せず)を設けて液化窒素貯槽57内の液化窒素中
の含有炭化水素量を一定時間毎に検査していれば大事に
至ることはない。また、液化窒素貯槽57から主精留塔
9への経路63にも、別に炭化水素測定器(図示せず)
を設けておくことにより、主精留塔9内に炭化水素の蓄
積が始まる前に炭化水素含有液化窒素の供給を停止する
ことができる。
Further, even if the liquefied nitrogen containing LNG leaked in a very small amount flows through the short-time path 55,
Since it is introduced and stored in the liquefied nitrogen storage tank 57, it reaches the main rectification column 9 (although not shown, a device for measuring the amount of hydrocarbons in liquefied oxygen is conventionally installed).
Even after a considerable time has passed, even if the hydrocarbon analyzer 61 fails and the discovery is delayed, a separate hydrocarbon measuring device (not shown) is provided to provide the hydrocarbon contained in the liquefied nitrogen in the liquefied nitrogen storage tank 57. If the amount of hydrogen is inspected at regular intervals, it does not matter. In addition, a hydrocarbon measuring device (not shown) is also provided on a route 63 from the liquefied nitrogen storage tank 57 to the main rectification column 9.
Is provided, the supply of hydrocarbon-containing liquefied nitrogen can be stopped before the accumulation of hydrocarbons in the main rectification column 9 starts.

【0038】また、前記液化窒素貯槽57を複数個設置
しておくことにより、上記ステップの安全度を更に向上
させることができる。すなわち、複数個の液化窒素貯槽
57を、例えば直列に接続して使用することにより、又
は受入れ貯槽と払出し貯槽とを区別して使用することに
より、より安全な稼働が可能になる。万一液化窒素貯槽
57の一つに炭化水素が微量混入しても、空気分離部1
9は運転維持が可能である。
By providing a plurality of the liquefied nitrogen storage tanks 57, the safety of the above steps can be further improved. That is, by using a plurality of liquefied nitrogen storage tanks 57 connected, for example, in series, or by using the receiving storage tank and the discharge storage tank separately, safer operation becomes possible. Even if a small amount of hydrocarbons enters one of the liquefied nitrogen storage tanks 57, the air separation unit 1
9 is capable of maintaining operation.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
循環窒素液化部に液化窒素を貯留する液化窒素貯槽を設
けるとともに、窒素中の炭化水素を検出・監視する検出
器を設けたので、万一循環系の熱交換器にトラブルが生
じてLNGの漏洩があっても、該検出器でただちに発見
でき、循環窒素系を停止することにより、空気分離部に
炭化水素が侵入するのを防ぐことができ、循環窒素をL
NGの供給圧力より低い圧力で循環するよう形成でき
る。
As described above, according to the present invention,
A liquefied nitrogen storage tank for storing liquefied nitrogen is provided in the circulating nitrogen liquefaction section, and a detector for detecting and monitoring hydrocarbons in nitrogen is provided. Can be immediately detected by the detector, and by stopping the circulating nitrogen system, hydrocarbons can be prevented from entering the air separation section.
It can be formed to circulate at a pressure lower than the supply pressure of NG.

【0040】さらに、液化窒素貯槽を設けたことによ
り、所定量以上の炭化水素を含む液化窒素がこれに貯留
されるので、分離部に至る前にこれを検知することがで
き、精留塔内に侵入して濃縮し、爆発の危険に至る可能
性は極めて低く、安全が確保できる。また、フロン等の
中間冷媒を使用する必要がなくなる。
Furthermore, the provision of the liquefied nitrogen storage tank allows liquefied nitrogen containing a predetermined amount or more of hydrocarbons to be stored in the tank. It is very unlikely that the substance will enter and condense into an explosion, causing a danger of explosion, and safety can be ensured. Also, there is no need to use an intermediate refrigerant such as Freon.

【0041】しかも、循環窒素の圧力を比較的低圧にす
ることができ、また、LNGと窒素とを直接熱交換する
ことができ、装置構成がシンプルになるとともに、循環
窒素圧縮機も多くの種類の中から最適なものを選定する
ことができる。
Further, the pressure of the circulating nitrogen can be made relatively low, the heat exchange between LNG and nitrogen can be performed directly, the apparatus configuration becomes simple, and the circulating nitrogen compressor can be of many types. The most suitable one can be selected from

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の空気液化分離装置の一形態例を示す
系統図である。
FIG. 1 is a system diagram showing one embodiment of an air liquefaction / separation apparatus of the present invention.

【符号の説明】[Explanation of symbols]

2…空気圧縮機、4…クーラー、5…MS吸着器、7…
主熱交換器、9…主精留塔、10…下部塔、11…上部
塔、13…膨張弁、16…粗アルゴン塔、17…凝縮
器、19…空気分離部、19a…コールドボックス、2
2…主凝縮蒸発器、25…膨張弁、28…調節弁、34
…循環窒素液化部(循環窒素系)34a…コールドボッ
クス,38…アルゴン熱交換器、39…アルゴン精製装
置、40…高純アルゴン塔、42…液化アルゴン貯槽、
44…液化酸素貯槽、45a,45b,45c…LNG
熱交換器、49,53…循環窒素圧縮機、57…液化窒
素貯槽、60…液化窒素ポンプ、61…炭化水素分析計
(QIA)、62…調節弁
2 ... Air compressor, 4 ... Cooler, 5 ... MS adsorber, 7 ...
Main heat exchanger, 9: Main rectification column, 10: Lower column, 11: Upper column, 13: Expansion valve, 16: Crude argon column, 17: Condenser, 19: Air separation unit, 19a: Cold box, 2
2: Main condensing evaporator, 25: expansion valve, 28: control valve, 34
... circulating nitrogen liquefaction unit (circulating nitrogen system) 34a ... cold box, 38 ... argon heat exchanger, 39 ... argon purifier, 40 ... high purity argon tower, 42 ... liquefied argon storage tank
44 ... liquefied oxygen storage tank, 45a, 45b, 45c ... LNG
Heat exchangers, 49, 53: circulating nitrogen compressor, 57: liquefied nitrogen storage tank, 60: liquefied nitrogen pump, 61: hydrocarbon analyzer (QIA), 62: control valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液化天然ガスの冷熱を利用して空気を液
化精留する空気液化分離装置において、窒素ガスを圧縮
する少なくとも一基の循環窒素圧縮機と、該循環窒素圧
縮機で圧縮した循環窒素と液化天然ガスとを熱交換させ
る少なくとも一基の液化天然ガス熱交換器と、該液化天
然ガス熱交換器で冷却されて液化した液化窒素を貯留す
る液化窒素貯槽と、少なくとも精留塔からの窒素ガスを
前記循環窒素圧縮機に導入する経路と、循環窒素圧縮機
と前記液化天然ガス熱交換器とを結ぶ経路と、該液化天
然ガス熱交換器と前記液化窒素貯槽とを結ぶ経路と、該
液化窒素貯槽と精留塔とを結ぶ経路と、これら経路を流
れる窒素中の可燃成分の量を検出する検出器とを設けた
循環窒素液化部を備えたことを特徴とする液化天然ガス
の冷熱を利用した空気液化分離装置。
1. An air liquefaction / separation apparatus for liquefying air by utilizing the cold heat of liquefied natural gas, wherein at least one circulating nitrogen compressor for compressing nitrogen gas and circulating compressed by said circulating nitrogen compressor At least one liquefied natural gas heat exchanger for heat exchange between nitrogen and liquefied natural gas, a liquefied nitrogen storage tank for storing liquefied nitrogen cooled by the liquefied natural gas heat exchanger, and at least a rectification tower A path for introducing the nitrogen gas to the circulating nitrogen compressor, a path connecting the circulating nitrogen compressor and the liquefied natural gas heat exchanger, and a path connecting the liquefied natural gas heat exchanger and the liquefied nitrogen storage tank. Liquefied natural gas, comprising: a circulating nitrogen liquefaction unit provided with a path connecting the liquefied nitrogen storage tank and the rectification tower, and a detector for detecting the amount of combustible components in nitrogen flowing through these paths. Sky using the cold heat of Gas-liquid separation equipment.
【請求項2】 前記可燃成分の量を検出する検出器が炭
化水素測定器であることを特徴とする請求項1記載の液
化天然ガスの冷熱を利用した空気液化分離装置。
2. The air liquefaction / separation apparatus according to claim 1, wherein the detector for detecting the amount of the combustible component is a hydrocarbon measuring device.
【請求項3】 前記液化窒素貯槽が複数個設けられてい
ることを特徴とする請求項1記載の液化天然ガスの冷熱
を利用した空気液化分離装置。
3. The air liquefaction / separation apparatus utilizing the cryogenic heat of liquefied natural gas according to claim 1, wherein a plurality of said liquefied nitrogen storage tanks are provided.
【請求項4】 空気を圧縮,精製,冷却して精留塔に導
入し,精留分離して空気成分の少なくとも一種のガスを
製品として採取するとともに、系に必要な冷熱を液化天
然ガスの冷熱を利用して供給することにより空気を液化
精留する空気液化分離方法において、精留塔から導出し
た窒素ガスの少なくとも一部を圧縮し、液化天然ガスと
熱交換させて冷却液化し、生成した液化窒素の少なくと
も一部を液化窒素貯槽に貯留し、該貯留液化窒素の少な
くとも一部を精留塔に導入して循環させ、該循環窒素及
び/又は前記貯留液化窒素中の可燃成分の含有量を検出
し、該検出値が所定量以上のときには、前記循環窒素の
循環を停止することを特徴とする液化天然ガスの冷熱を
利用した空気液化分離方法。
4. Air is compressed, refined, cooled and introduced into a rectification column, rectified and separated to collect at least one gas of air components as a product, and cryogenic heat required for the system is converted to liquefied natural gas. In the air liquefaction separation method in which air is liquefied and rectified by supplying it using cold heat, at least a part of the nitrogen gas derived from the rectification column is compressed, and heat exchange with liquefied natural gas is performed to liquefy and cool. At least a part of the liquefied nitrogen thus obtained is stored in a liquefied nitrogen storage tank, and at least a part of the stored liquefied nitrogen is introduced into a rectification column and circulated, and the circulated nitrogen and / or the combustible component contained in the stored liquefied nitrogen An air liquefaction / separation method using the cryogenic heat of liquefied natural gas, comprising detecting an amount and, when the detected value is equal to or greater than a predetermined amount, circulating the circulating nitrogen.
【請求項5】 前記循環窒素の圧力が液化天然ガスの供
給圧力よりも低いことを特徴とする請求項4記載の液化
天然ガスの冷熱を利用した空気液化分離方法。
5. The method of claim 4, wherein the pressure of the circulating nitrogen is lower than the supply pressure of the liquefied natural gas.
JP9302140A 1997-11-04 1997-11-04 Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas Pending JPH11142054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9302140A JPH11142054A (en) 1997-11-04 1997-11-04 Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9302140A JPH11142054A (en) 1997-11-04 1997-11-04 Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Publications (1)

Publication Number Publication Date
JPH11142054A true JPH11142054A (en) 1999-05-28

Family

ID=17905397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9302140A Pending JPH11142054A (en) 1997-11-04 1997-11-04 Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Country Status (1)

Country Link
JP (1) JPH11142054A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318069A (en) * 2001-04-18 2002-10-31 Air Water Inc Deep cold air separating device
CN100357684C (en) * 2004-10-28 2007-12-26 苏州市兴鲁空分设备科技发展有限公司 Method and device for separating air
JP2008025986A (en) * 2006-06-30 2008-02-07 Air Products & Chemicals Inc System to increase capacity of lng-based liquefier in air separation process
CN100400995C (en) * 2006-11-22 2008-07-09 苏州市兴鲁空分设备科技发展有限公司 Method and device for air separation
JP2013506105A (en) * 2009-08-13 2013-02-21 エア プロダクツ アンド ケミカルズ インコーポレイテッド Control of refrigerant composition
CN103148676A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Air separation device for preparing oxygen and nitrogen through isobaric separation
CN103791691A (en) * 2012-10-30 2014-05-14 株式会社神户制钢所 Oxygen-enriched air producing system
JP2015206476A (en) * 2014-04-17 2015-11-19 株式会社神戸製鋼所 oxygen concentration system
CN110017628A (en) * 2018-01-10 2019-07-16 毛文军 A kind of LNG cold energy use system and method based on argon circulation
CN114739118A (en) * 2022-05-19 2022-07-12 杭州中泰深冷技术股份有限公司 Cryogenic separation system and method for synthesis gas by utilizing LNG cold energy
DE102022124518A1 (en) 2022-09-23 2024-03-28 Messer Se & Co. Kgaa Method and device for producing air gases

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318069A (en) * 2001-04-18 2002-10-31 Air Water Inc Deep cold air separating device
JP4707865B2 (en) * 2001-04-18 2011-06-22 エア・ウォーター株式会社 Cryogenic air separator
CN100357684C (en) * 2004-10-28 2007-12-26 苏州市兴鲁空分设备科技发展有限公司 Method and device for separating air
JP2008025986A (en) * 2006-06-30 2008-02-07 Air Products & Chemicals Inc System to increase capacity of lng-based liquefier in air separation process
CN100400995C (en) * 2006-11-22 2008-07-09 苏州市兴鲁空分设备科技发展有限公司 Method and device for air separation
US10132561B2 (en) 2009-08-13 2018-11-20 Air Products And Chemicals, Inc. Refrigerant composition control
JP2013506105A (en) * 2009-08-13 2013-02-21 エア プロダクツ アンド ケミカルズ インコーポレイテッド Control of refrigerant composition
CN103791691A (en) * 2012-10-30 2014-05-14 株式会社神户制钢所 Oxygen-enriched air producing system
JP2014088982A (en) * 2012-10-30 2014-05-15 Kobe Steel Ltd Oxygen-enriched air producing system
CN103148676A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Air separation device for preparing oxygen and nitrogen through isobaric separation
WO2014114138A1 (en) * 2013-01-27 2014-07-31 南京瑞柯徕姆环保科技有限公司 Air separation apparatus for isobaric separation and production of oxygen and nitrogen
CN103148676B (en) * 2013-01-27 2016-03-30 南京瑞柯徕姆环保科技有限公司 A kind of equipressure is separated the air separation unit producing oxygen nitrogen
JP2015206476A (en) * 2014-04-17 2015-11-19 株式会社神戸製鋼所 oxygen concentration system
CN110017628A (en) * 2018-01-10 2019-07-16 毛文军 A kind of LNG cold energy use system and method based on argon circulation
CN114739118A (en) * 2022-05-19 2022-07-12 杭州中泰深冷技术股份有限公司 Cryogenic separation system and method for synthesis gas by utilizing LNG cold energy
CN114739118B (en) * 2022-05-19 2024-04-12 杭州中泰深冷技术股份有限公司 Cryogenic separation system and cryogenic separation method for synthesis gas by utilizing LNG cold energy
DE102022124518A1 (en) 2022-09-23 2024-03-28 Messer Se & Co. Kgaa Method and device for producing air gases

Similar Documents

Publication Publication Date Title
US4371381A (en) Gas purification process
US4012212A (en) Process and apparatus for liquefying natural gas
JPH0313505B2 (en)
JPH11142054A (en) Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas
JPS6148072B2 (en)
US5778698A (en) Ultra high purity nitrogen and oxygen generator unit
US5743112A (en) Ultra high purity nitrogen and oxygen generator unit
CA1285208C (en) Process for the recovery of argon
US6050106A (en) Ultra high purity nitrogen and oxygen generator unit
JP2585955B2 (en) Air separation equipment
JPH10132458A (en) Method and equipment for producing oxygen gas
US5638699A (en) High purity nitrogen gas generator
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
US4473385A (en) Lower pressure fractionation of waste gas from ammonia synthesis
JP2621841B2 (en) Cryogenic separation method and apparatus for carbon monoxide
CN1220386A (en) Process for separating high pure nitrogen from air
JP2007003097A (en) Nitrogen generating method and device using the same
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen
JP2859664B2 (en) Nitrogen gas and oxygen gas production equipment
CA2976341A1 (en) Method for recovering helium
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS6086016A (en) Purification of liquefied carbonic acid
KR20240025975A (en) Cryogenic Distillation System Using Cooling Device and Heat Exchange Unit
JPH0328681A (en) Air separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417