JPH11118761A - Method and device for analyzing ions due to capillary cataphoresis - Google Patents
Method and device for analyzing ions due to capillary cataphoresisInfo
- Publication number
- JPH11118761A JPH11118761A JP9281526A JP28152697A JPH11118761A JP H11118761 A JPH11118761 A JP H11118761A JP 9281526 A JP9281526 A JP 9281526A JP 28152697 A JP28152697 A JP 28152697A JP H11118761 A JPH11118761 A JP H11118761A
- Authority
- JP
- Japan
- Prior art keywords
- capillary
- metal ions
- complex
- buffer
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、キャピラリ電気泳
動を用いてイオン類を分析する方法及び装置に係り、特
に、有機酸、脂肪酸、芳香族カルボン酸、無機陰イオン
等の陰イオン類と、ニッケル、コバルト、銅、亜鉛等の
金属イオン類を同時に測定することが可能な、キャピラ
リ電気泳動によるイオン類分析方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for analyzing ions using capillary electrophoresis, and more particularly, to anions such as organic acids, fatty acids, aromatic carboxylic acids and inorganic anions. The present invention relates to a method and an apparatus for analyzing ions by capillary electrophoresis, which can simultaneously measure metal ions such as nickel, cobalt, copper, and zinc.
【0002】[0002]
【従来の技術】従来、有機酸、無機陰イオン等の陰イオ
ン性物質は、イオンクロマトグラフィやキャピラリ電気
泳動等の分離分析装置を用いて測定され、一方、ニッケ
ル、コバルト、銅等の金属イオン類を含む陽イオン性物
質は、原子吸光分析装置、誘導結合プラズマ原子発光分
析装置(ICP/AES)、誘導結合プラズマ質量分析
装置(ICP/MS)等の元素分析装置、あるいは、イ
オンクロマトグラフィやキャピラリ電気泳動等の分離分
析装置を用いて測定されていた。2. Description of the Related Art Conventionally, anionic substances such as organic acids and inorganic anions have been measured using a separation analyzer such as ion chromatography or capillary electrophoresis, while metal ions such as nickel, cobalt and copper have been measured. Cationic substances including are analyzed by elemental analyzers such as an atomic absorption spectrometer, an inductively coupled plasma atomic emission analyzer (ICP / AES), an inductively coupled plasma mass spectrometer (ICP / MS), or ion chromatography or capillary electricity. It was measured using a separation analyzer such as electrophoresis.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、イオン
性が異なる陰イオン類と金属イオン類を同時には測定で
きないため、測定装置や条件が最低2つは必要であり、
装置の数が増えたり、測定条件を変えて測定を行う必要
があり、測定に時間がかかる等の問題点を有していた。However, since anions and metal ions having different ionic properties cannot be measured at the same time, at least two measuring devices and conditions are required.
There is a problem that the number of devices is increased, and it is necessary to perform measurement under different measurement conditions, and it takes a long time to perform the measurement.
【0004】本発明は、前記従来の問題点を解消するべ
くなされたもので、キャピラリ電気泳動を用いて、陰イ
オン類と金属イオン類を同時に分析できるようにするこ
とを課題とする。An object of the present invention is to solve the above-mentioned conventional problems, and it is an object of the present invention to be able to simultaneously analyze anions and metal ions using capillary electrophoresis.
【0005】[0005]
【課題を解決するための手段】本発明は、キャピラリ電
気泳動を用いてイオン類を分析するに際して、金属イオ
ン類に対して高い錯安定度定数を持つ陰イオン性物質を
泳動緩衝液に用いて、金属イオン類と陰イオン性の錯体
を形成させることにより、前記課題を解決したものであ
る。SUMMARY OF THE INVENTION The present invention uses an anionic substance having a high complex stability constant for metal ions as an electrophoresis buffer when analyzing ions using capillary electrophoresis. This problem has been solved by forming an anionic complex with metal ions.
【0006】又、前記陰イオン性物質を、2、6−ピリ
ジンカルボン酸、エチレンジアミン四酢酸、又は、ニト
リロ三酢酸としたものである。Further, the anionic substance is 2,6-pyridinecarboxylic acid, ethylenediaminetetraacetic acid, or nitrilotriacetic acid.
【0007】又、キャピラリ電気泳動を用いてイオン類
を分析する装置において、金属イオン類に対して高い錯
安定度定数を持つ陰イオン性物質が用いられた泳動緩衝
液と、該泳動緩衝液に注入されたイオン類を分離するキ
ャピラリと、該キャピラリ出側で、分離された陰イオン
類と金属イオン類を同時に分析する検出器とを備えるこ
とにより、同じく前記課題を解決したものである。Further, in an apparatus for analyzing ions using capillary electrophoresis, an electrophoresis buffer using an anionic substance having a high complex stability constant for metal ions, This object is also achieved by providing a capillary for separating the injected ions and a detector for simultaneously analyzing the separated anions and metal ions on the exit side of the capillary.
【0008】又、前記検出器を、間接吸光度法及び直接
検出法の両者による測定が可能なダイオードアレイ検出
器とすることにより、単一の検出器で高精度の測定がで
きるようにしたものである。Further, the detector is a diode array detector capable of performing measurement by both the indirect absorbance method and the direct detection method, so that a single detector can perform high-precision measurement. is there.
【0009】2、6−ピリジンカルボン酸(PDC)、
エチレンジアミン四酢酸、ニトリロ三酢酸等の、金属イ
オン類に対して高い錯安定度定数(錯体の溶液中におけ
る安定度を示すものとして最もよく用いられ、錯体の解
離定数の逆数で表わされる)を持ち、金属イオン類と錯
体形成能の高い陰イオン性物質を泳動緩衝液(バッフ
ァ)に用いることで、試料中のニッケル、コバルト、銅
イオン等は、例えばPDCと錯体を形成し、図1に示す
如く陰イオン性を示す。従って、塩化物イオンや硫酸イ
オン等の無機陰イオン類や、リンゴ酸、クエン酸、酢酸
等の有機酸と同時に測定することが可能となる。2,6-pyridinecarboxylic acid (PDC),
Has a high complex stability constant for metal ions such as ethylenediaminetetraacetic acid and nitrilotriacetic acid (most often used as an indicator of the stability of a complex in solution, expressed as the reciprocal of the dissociation constant of the complex). By using an anionic substance having a high ability to form a complex with metal ions for the electrophoresis buffer (buffer), nickel, cobalt, copper ions and the like in the sample form a complex with, for example, PDC and are shown in FIG. It shows an anionic property. Therefore, it is possible to measure simultaneously with inorganic anions such as chloride ions and sulfate ions, and organic acids such as malic acid, citric acid and acetic acid.
【0010】バッファに用いることが可能なPDCの各
金属に対する錯安定度定数を図2に示す。FIG. 2 shows the complex stability constants for each metal of PDC that can be used as a buffer.
【0011】例えばPDCとニッケル等のPDC金属錯
体は、紫外(UV)吸収を持ち、波長275nm及び2
25nmでは、バッファのPDCよりUV吸収が大きい
ため、図3(A)に示す如く、ピークがベースラインよ
り上側に現われる。これに対して陰イオン類は、PDC
よりUV吸収が小さいため、ピークはベースラインより
下側に現われる。しかしながら、測定波長を選択するこ
とにより、上下を反転させ、図3(B)に示す如く、陰
イオン類を上側に現わすこともできる。For example, PDC and a PDC metal complex such as nickel have ultraviolet (UV) absorption, and have a wavelength of 275 nm and a wavelength of 275 nm.
At 25 nm, the UV absorption is larger than the PDC of the buffer, so that a peak appears above the baseline as shown in FIG. In contrast, anions are PDC
The peak appears below the baseline because of the lower UV absorption. However, by selecting the measurement wavelength, it is also possible to invert the upside down and make the anions appear on the upper side as shown in FIG. 3 (B).
【0012】図3(A)は、測定波長275.10n
m、参照波長オフの直接検出法による場合、図3(B)
は、測定波長350.20nm、参照波長275.10
nmの間接吸光度法による場合である。FIG. 3A shows a measurement wavelength of 275.10 n.
FIG. 3 (B) in the case of the direct detection method of m and the reference wavelength off.
Is measured wavelength 350.20 nm, reference wavelength 275.10
It is the case by the indirect absorbance method of nm.
【0013】[0013]
【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0014】図4に、本発明にかかるキャピラリ電気泳
動によるイオン類分析装置の全体構成を示す。FIG. 4 shows an overall configuration of an ion analyzer by capillary electrophoresis according to the present invention.
【0015】本実施形態は、試料の分離を行うためのキ
ャピラリ10と、試料容器8中の試料6と共に、該キャ
ピラリ10の中に導入され、試料を分離するためのバッ
ファ12(陰極側)、13(陽極側)と、前記キャピラ
リ10両端の、例えば白金電極16(陰極側)、17
(陽極側)に例えば5〜30kVの高電圧を印加する高
圧電源14と、前記キャピラリ10の外壁(例えばポリ
イミド)を剥がして形成された検出用セル11と、間接
吸光度法及び直接検出法の両者による測定が可能なUV
ダイオードアレイ検出器20とを含んで構成されてい
る。In this embodiment, a buffer 10 (cathode side) for separating a sample, which is introduced into the capillary 10 together with a capillary 10 for separating a sample and a sample 6 in a sample container 8, and separates the sample, 13 (anode side) and platinum electrodes 16 (cathode side), 17 at both ends of the capillary 10
A high-voltage power supply 14 for applying a high voltage of, for example, 5 to 30 kV to the (anode side), a detection cell 11 formed by peeling an outer wall (for example, polyimide) of the capillary 10, and both an indirect absorbance method and a direct detection method UV that can be measured by
And a diode array detector 20.
【0016】前記試料容器8に装入された試料6は、図
5に示す如く、該試料容器8に蓋9をして密閉し、試料
容器内を加圧することによって、陰極側のバッファ12
に注入される。バッファ中のPDCの錯体形成反応は速
いため、試料6がキャピラリ10内に注入され、PDC
と混合すると、即座に錯体が形成される。As shown in FIG. 5, the sample 6 placed in the sample container 8 is closed by closing the sample container 8 with a lid 9 and pressurizing the inside of the sample container, thereby forming a buffer 12 on the cathode side.
Is injected into. Since the complex formation reaction of PDC in the buffer is fast, the sample 6 is injected into the capillary 10 and the PDC
Upon formation, a complex is formed immediately.
【0017】前記UVダイオードアレイ検出器20は、
図6に詳細に示す如く、例えば重水素ランプで構成され
る光源22と、該光源22から発生された光を平行光線
とするためのレンズ24と、測定光線をオン・オフする
ためのシャッタ26と、前記キャピラリ10の検出用セ
ル11のところで、測定光線を整向するためのアライメ
ントインターフェース用光学スリット28と、該光学ス
リット28を通過した測定光線を波長に応じて回折する
ための回折格子30と、該回折格子30によって回折さ
れた光を波長毎に検出するための、例えば測定波長が1
90〜600nmのダイオードアレイ32とを用いて構
成されている。The UV diode array detector 20 comprises:
As shown in detail in FIG. 6, a light source 22 composed of, for example, a deuterium lamp, a lens 24 for converting the light generated from the light source 22 into parallel rays, and a shutter 26 for turning on / off the measurement rays An alignment interface optical slit 28 for aligning the measurement light beam at the detection cell 11 of the capillary 10, and a diffraction grating 30 for diffracting the measurement light beam passing through the optical slit 28 according to the wavelength. For detecting the light diffracted by the diffraction grating 30 for each wavelength, for example, when the measurement wavelength is 1
It is configured using a diode array 32 of 90 to 600 nm.
【0018】[0018]
【実施例】前記キャピラリ10として、内径50μm、
外径350μm、全長80.5cm、検出用セル11ま
での有効長72cmのフューズドシリカキャピラリを用
い、バッファ12、13としては、20mMPDC、
0.5mMセチルトリメチルアンモニウムブロマイドp
H5.77を用いた。印加電圧は、25kV、キャピラ
リ10の温度は20℃で測定した。試料は、図5に示し
たような加圧法を用いて、50mbarで8秒間注入し
た。検出にはUVダイオードアレイ検出器20を用い
て、ニッケルイオンのようなUV吸収を持つ物質の検出
には、測定波長275.10nm、参照波長オフの直接
検出法を用い、硫酸イオンや有機酸類のようなUV吸収
をほとんど持たない物質の検出には、測定波長350.
20nm、参照波長275.10nmの間接吸光度法を
用いた。図3は、本実施例における有機酸標準液の測定
例を示したものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The capillary 10 has an inner diameter of 50 μm,
A fused silica capillary having an outer diameter of 350 μm, a total length of 80.5 cm, and an effective length of 72 cm up to the detection cell 11 was used.
0.5 mM cetyltrimethylammonium bromide p
H5.77 was used. The applied voltage was measured at 25 kV, and the temperature of the capillary 10 was measured at 20 ° C. The sample was injected at 50 mbar for 8 seconds using the pressure method as shown in FIG. A UV diode array detector 20 is used for detection, and a substance having UV absorption such as nickel ions is detected using a direct detection method with a measurement wavelength of 275.10 nm and a reference wavelength off, and sulfate ions and organic acids are detected. For detection of a substance having almost no UV absorption, a measurement wavelength of 350.
An indirect absorbance method of 20 nm and a reference wavelength of 275.10 nm was used. FIG. 3 shows an example of measurement of an organic acid standard solution in this example.
【0019】又、500倍に希釈した無電解ニッケルめ
つき液中の陰イオン類とニッケルイオンの同時分析例を
図7に示す。FIG. 7 shows an example of simultaneous analysis of anions and nickel ions in the electroless nickel plating solution diluted 500 times.
【0020】本実施形態の方法と、従来のICP/MS
で測定した無電解ニッケルめっき液中のニッケルの定量
値の比較結果を図8に示す。図から明らかな如く、両者
の分析結果は、よく一致している。The method of this embodiment and the conventional ICP / MS
FIG. 8 shows a comparison result of quantitative values of nickel in the electroless nickel plating solution measured in the step (1). As is clear from the figure, the results of both analyzes are in good agreement.
【0021】又、500倍希釈の無電解銅めっき液中の
陰イオン類と銅イオンの同時分析例を図9に示す。FIG. 9 shows an example of simultaneous analysis of anions and copper ions in a 500-fold diluted electroless copper plating solution.
【0022】本実施形態においては、検出器としてUV
ダイオードアレイ検出器を用いているので、間接吸光度
法及び直接検出法の両者による測定が1台の検出器で可
能であり、構成が簡略である。In this embodiment, the detector is UV
Since a diode array detector is used, measurement by both the indirect absorbance method and the direct detection method is possible with one detector, and the configuration is simple.
【0023】なお、検出器の種類はこれに限定されな
い。測定波長も、実施形態や実施例に限定されない。キ
ャピラリの種類も、フューズドシリカキャピラリに限定
されない。バッファもPDCに限定されず、エチレンジ
アミン四酢酸、ニトリロ三酢酸等の、金属イオン類に対
して高い錯安定度定数を持つ他の陰イオン性物質を用い
ることが可能である。The type of the detector is not limited to this. The measurement wavelength is not limited to the embodiment or the example. The type of the capillary is not limited to the fused silica capillary. The buffer is not limited to PDC, and other anionic substances having a high complex stability constant for metal ions, such as ethylenediaminetetraacetic acid and nitrilotriacetic acid, can be used.
【0024】[0024]
【発明の効果】本発明により、従来は、2つ以上の分析
装置、条件が必要であった陰イオン類と金属イオン類の
分析が、1台の分析装置、1つの分析条件で同時に分析
可能となり、短時間(実施例では7分)で陰イオン類と
金属イオン類の同時分析が可能になる。According to the present invention, analysis of anions and metal ions, which conventionally required two or more analyzers and conditions, can be performed simultaneously with one analyzer and one analysis condition. Thus, simultaneous analysis of anions and metal ions becomes possible in a short time (7 minutes in the example).
【図1】本発明の原理を説明するための、バッファによ
って形成される錯体の一例を示す線図FIG. 1 is a diagram illustrating an example of a complex formed by a buffer, for illustrating the principle of the present invention.
【図2】バッファの一例であるPDCの各金属に対する
錯安定度定数を示す図表FIG. 2 is a table showing a complex stability constant of PDC as an example of a buffer with respect to each metal;
【図3】本発明の原理を説明するための、有機酸標準液
の測定例を示す線図FIG. 3 is a diagram showing a measurement example of an organic acid standard solution for explaining the principle of the present invention.
【図4】本発明に係る実施形態のキャピラリ電気泳動に
よるイオン類分析装置の全体構成を示す断面図FIG. 4 is a cross-sectional view showing the overall configuration of an ion analyzer by capillary electrophoresis according to an embodiment of the present invention.
【図5】前記実施形態におけるキャピラリへの試料注入
方法を示す断面図FIG. 5 is a sectional view showing a method of injecting a sample into a capillary in the embodiment.
【図6】前記実施形態で用いられているUVダイオード
アレイ検出器の構成を示す斜視図FIG. 6 is a perspective view showing a configuration of a UV diode array detector used in the embodiment.
【図7】本発明による無電解ニッケルめっき液の分析例
を示す線図FIG. 7 is a diagram showing an analysis example of an electroless nickel plating solution according to the present invention.
【図8】本発明の有用性を示すための、本発明法とIC
P−MSで測定した無電解ニッケルめっき液中のニッケ
ルの定量値を比較して示す図表FIG. 8 shows the method of the present invention and an IC to show the usefulness of the present invention.
Chart showing comparison of quantitative values of nickel in electroless nickel plating solution measured by P-MS
【図9】本発明による無電解銅めっき液中の測定例を示
す線図FIG. 9 is a diagram showing a measurement example in an electroless copper plating solution according to the present invention.
6…試料 8…試料容器 10…キャピラリ 12、13…バッファ 14…高圧電源 16、17…白金電極 20…UVダイオードアレイ検出器 22…光源 30…回折格子 32…ダイオードアレイ 6 ... Sample 8 ... Sample container 10 ... Capillary 12, 13 ... Buffer 14 ... High voltage power supply 16, 17 ... Platinum electrode 20 ... UV diode array detector 22 ... Light source 30 ... Diffraction grating 32 ... Diode array
Claims (4)
析するに際して、 金属イオン類に対して高い錯安定度定数を持つ陰イオン
性物質を泳動緩衝液に用いて、金属イオン類と陰イオン
性の錯体を形成させることにより、 陰イオン類と金属イオン類を同時に分析することを特徴
とするキャピラリ電気泳動によるイオン類分析方法。In the analysis of ions using capillary electrophoresis, an anionic substance having a high complex stability constant with respect to metal ions is used as an electrophoresis buffer, and metal ions and anionic substances are analyzed. An ion analysis method by capillary electrophoresis, wherein anions and metal ions are simultaneously analyzed by forming a complex of the following.
が、2、6−ピリジンカルボン酸、エチレンジアミン四
酢酸、又は、ニトリロ三酢酸であることを特徴とするキ
ャピラリ電気泳動によるイオン類分析方法。2. The method according to claim 1, wherein the anionic substance is 2,6-pyridinecarboxylic acid, ethylenediaminetetraacetic acid, or nitrilotriacetic acid.
析する装置において、 金属イオン類に対して高い錯安定度定数を持つ陰イオン
性物質が用いられた泳動緩衝液と、 該泳動緩衝液に注入されたイオン類を分離するキャピラ
リと、 該キャピラリ出側で、分離された陰イオン類と金属イオ
ン類を同時に分析する検出器と、 を備えたことを特徴とするキャピラリ電気泳動によるイ
オン類分析装置。3. An apparatus for analyzing ions using capillary electrophoresis, comprising: an electrophoresis buffer in which an anionic substance having a high complex stability constant for metal ions is used; Ion analysis by capillary electrophoresis, comprising: a capillary for separating the injected ions; and a detector for simultaneously analyzing the separated anions and metal ions on the exit side of the capillary. apparatus.
光度法及び直接検出法の両者による測定が可能なダイオ
ードアレイ検出器であることを特徴とするキャピラリ電
気泳動によるイオン類分析装置。4. An ion analyzer according to claim 3, wherein said detector is a diode array detector capable of performing measurement by both an indirect absorbance method and a direct detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9281526A JPH11118761A (en) | 1997-10-15 | 1997-10-15 | Method and device for analyzing ions due to capillary cataphoresis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9281526A JPH11118761A (en) | 1997-10-15 | 1997-10-15 | Method and device for analyzing ions due to capillary cataphoresis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11118761A true JPH11118761A (en) | 1999-04-30 |
Family
ID=17640411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9281526A Pending JPH11118761A (en) | 1997-10-15 | 1997-10-15 | Method and device for analyzing ions due to capillary cataphoresis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11118761A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003078993A1 (en) * | 2002-03-15 | 2003-09-25 | Japan Science And Technology Agency | Electrophoretic buffer |
US6953520B2 (en) | 1999-11-30 | 2005-10-11 | Electric Power Research Institute, Inc. | Capillary electrophoresis probes and method |
JP2009168450A (en) * | 2007-12-29 | 2009-07-30 | Shino Test Corp | Measuring method of metal inside sample |
-
1997
- 1997-10-15 JP JP9281526A patent/JPH11118761A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6953520B2 (en) | 1999-11-30 | 2005-10-11 | Electric Power Research Institute, Inc. | Capillary electrophoresis probes and method |
WO2003078993A1 (en) * | 2002-03-15 | 2003-09-25 | Japan Science And Technology Agency | Electrophoretic buffer |
CN100430723C (en) * | 2002-03-15 | 2008-11-05 | 独立行政法人科学技术振兴机构 | Electrophoretic buffer |
US7517441B2 (en) | 2002-03-15 | 2009-04-14 | Japan Science And Technology Agency | Electrophoretic buffer |
JP2009168450A (en) * | 2007-12-29 | 2009-07-30 | Shino Test Corp | Measuring method of metal inside sample |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martens et al. | Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry-A tutorial perspective | |
Moldoveanu et al. | Selection of the HPLC method in chemical analysis | |
Rhodes et al. | Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry | |
Vochyánová et al. | Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection | |
Vogt et al. | Separation of metal ions by capillary electrophoresis–diversity, advantages, and drawbacks of detection methods | |
Shah et al. | Historical background: milestones in the field of development of analytical instrumentation | |
US4486272A (en) | Method of electrochemical measurement utilizing photochemical reaction and apparatus therefor | |
Majidi et al. | Improving sensitivity for CE-ICP-MS using multicapillary parallel separation | |
Amankwa et al. | Fluorescence detection in capillary electrophoresis | |
Berthias et al. | Identification and quantification of amino acids and related compounds based on Differential Mobility Spectrometry | |
JPH11118761A (en) | Method and device for analyzing ions due to capillary cataphoresis | |
JP3318473B2 (en) | Method for analyzing decomposition products in SF6 gas | |
Yamada | Infrared-enhanced multiphoton ionization detection of aromatic molecules in solution | |
Lin et al. | On‐line identification of trans‐and cis‐resveratrol by nonaqueous capillary electrophoresis/fluorescence spectroscopy at 77 K | |
Ming Ng et al. | Differentiation of isomeric polyaromatic hydrocarbons by electrospray Ag (I) cationization mass spectrometry | |
US3947124A (en) | Analytical spectroelectrochemistry | |
Duncan et al. | Detection of small quantities of photochemically produced oxygen by reaction with alkaline pyrogallol | |
CN111989562A (en) | LBMFI detector for fluorophore labeled analytes at the Taylor cone in ESI-MS | |
JPH11118780A (en) | Method and apparatus for analytically detecting trace | |
KR101229404B1 (en) | A hazardous substances detection sensor chip | |
Duperrex et al. | An investigation of laser intensity and temperature effects in the time resolved infrared multiphoton dissociation of CF2 HCL | |
Keller et al. | Laser modulated electron capture detection for gas chromatography | |
Coufal et al. | An evaluation of the experimental approaches to detection of small ions in CE | |
Holroyd et al. | Electric field quenching of fluorescence in the photoionization of solutes by far UV light | |
Patil et al. | Arvind R. Umarkar*., Surajj. M Sorode., Yogesh M. Bagad., Mayur. R. Bhurat. |