JPH1090631A - Optical isolator and composite module using it - Google Patents

Optical isolator and composite module using it

Info

Publication number
JPH1090631A
JPH1090631A JP24314796A JP24314796A JPH1090631A JP H1090631 A JPH1090631 A JP H1090631A JP 24314796 A JP24314796 A JP 24314796A JP 24314796 A JP24314796 A JP 24314796A JP H1090631 A JPH1090631 A JP H1090631A
Authority
JP
Japan
Prior art keywords
birefringent crystal
optical
wedge
light
optical isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24314796A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hirose
友幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24314796A priority Critical patent/JPH1090631A/en
Publication of JPH1090631A publication Critical patent/JPH1090631A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarization independent type optical isolator suppressing a polarization dependent loss together with polarizing dispersion and preventing optical isolator inside reflection. SOLUTION: In the optical isolator constituted of at least one sheet or above of wedge shape birefringent crystals 1, 2, at least one sheet or above of 45 deg. Faraday rotators 8 and at least one sheet or above of planar birefringent crystals 3, the isolator is constituted so that the main section of the planar birefringent crystal 3 is orthogonally intersected with optical aces of at least one sheet of wedge shape birefringent crystals 1, 2, and the optical axis of the planar birefringent crystal 3 isn't parallel to the light passing surface of the planar birefringent crystal 3. Thus, the precise optical isolator is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバアンプ
に用いる光アイソレータおよび光ファイバアンプに用い
る光アイソレータに関する。さらにその光アイソレータ
と、ビームスプリッター、WDMカップラー、バンドパ
スフィルター、フォトディテクタを適宜1つのパッケー
ジ内に配置した複合モジュールに関する。
The present invention relates to an optical isolator used for an optical fiber amplifier and an optical isolator used for an optical fiber amplifier. Further, the present invention relates to a composite module in which the optical isolator, the beam splitter, the WDM coupler, the bandpass filter, and the photodetector are appropriately arranged in one package.

【0002】[0002]

【従来の技術】光アイソレータは一方向の光を通過さ
せ、逆方向の光の通過を阻止する機能を持った光デバイ
スである。光アイソレータは光ファイバ通信において光
部品からのレーザー光源への反射戻り光の防止、光ファ
イバアンプ内で光の共振発生を防止する為に使用され
る。現在、海底光ケーブルのような遠距離光通信におい
ては、光中継器として光ケーブル間に光アイソレータを
1つ以上備えた光ファイバアンプを多段に組み込み光信
号を直接増幅させて伝送している。光ファイバを通過す
る光の偏光状態は外部からの応力や曲げによりランダム
に変化する。光ファイバ間に使用する光アイソレータに
は光の偏光状態に依存しない偏光無依存のアイソレータ
が使用される。偏光無依存型としては2枚の楔状複屈折
結晶と前記楔状複屈折結晶間に配置された45度ファラ
デー回転子からなる光学素子部とその両端にレンズ、フ
ァイバを配置した光アイソレータが公知であり(特公昭
61−58809号公報参照)、これを図10に示す。
図10より順方向において、光ファイバAからレンズA
を通過した平行光は楔状複屈折結晶を通過時に常光の屈
折率を受ける光と、異常光の屈折率を受ける2本の光に
分離する。2本の光は45度ファラデー回転子により偏
光面を回転され、楔状複屈折結晶Bに入射する。この
時、楔状複屈折結晶Aと楔状複屈折結晶Bの光学軸は4
5度ずれた位置関係にあるために、楔状複屈折結晶Aに
て常光の屈折率を受けた光と、異常光の屈折率を受けた
2本の光は楔状複屈折結晶Bにおいても同様に常光の屈
折率、異常光の屈折率を受けるため、2本の光は楔状複
屈折結晶Aに入射する入射光に対し平行光として楔状複
屈折結晶Bを出射し、レンズBで収束された後光ファイ
バBに入射する。逆方向においては、光ファイバBから
レンズを通過した平行光は楔状複屈折結晶Bにより常光
の屈折率を受ける光と、異常光の屈折率を受ける2本の
光に分離し、45度ファラデー回転子を通過後、楔状複
屈折結晶Aに入射する。その2本の光は45度ファラデ
ー回転子の非相反性により、偏光面が順方向の時と直交
しているため、楔状複屈折結晶Bで常光、異常光の屈折
率を受けた光は楔状複屈折結晶Aでは異常光、常光の屈
折率を受け通過する。そのため、楔状複屈折結晶Aを通
過した光は平行光とはならず、広がるように出射し、レ
ンズ通過後も光ファイバAへは結合しない。これにより
一方向からの光は通過させ、逆方向の光の通過を阻止す
る機能を果たす。
2. Description of the Related Art An optical isolator is an optical device having a function of passing light in one direction and blocking light in the opposite direction. An optical isolator is used in optical fiber communication to prevent reflected light returning from an optical component to a laser light source and to prevent occurrence of light resonance in an optical fiber amplifier. At present, in long-distance optical communication such as a submarine optical cable, an optical fiber amplifier having one or more optical isolators between optical cables is incorporated in multiple stages as an optical repeater, and an optical signal is directly amplified and transmitted. The polarization state of light passing through the optical fiber changes randomly due to external stress or bending. As an optical isolator used between optical fibers, a polarization-independent isolator that does not depend on the polarization state of light is used. As the polarization-independent type, an optical isolator having two wedge-shaped birefringent crystals, an optical element portion including a 45-degree Faraday rotator disposed between the wedge-shaped birefringent crystals, and lenses and fibers at both ends thereof is known. (See Japanese Patent Publication No. 61-58809), which is shown in FIG.
From the optical fiber A to the lens A in the forward direction from FIG.
The parallel light that has passed through is divided into light that receives the refractive index of ordinary light and two lights that receive the refractive index of extraordinary light when passing through the wedge-shaped birefringent crystal. The two lights are rotated in the polarization plane by the Faraday rotator by 45 degrees, and enter the wedge-shaped birefringent crystal B. At this time, the optical axes of the wedge-shaped birefringent crystal A and the wedge-shaped birefringent crystal B are 4
Since the positional relationship is shifted by 5 degrees, the light having the ordinary light refractive index in the wedge-shaped birefringent crystal A and the two lights having the extraordinary light refractive index in the wedge-shaped birefringent crystal B have the same relation. After receiving the refractive index of ordinary light and the refractive index of extraordinary light, the two lights exit the wedge-shaped birefringent crystal B as parallel light to the incident light incident on the wedge-shaped birefringent crystal A, and are converged by the lens B. The light enters the optical fiber B. In the opposite direction, the parallel light that has passed through the lens from the optical fiber B is separated by the wedge-shaped birefringent crystal B into light receiving the ordinary light refractive index and two lights receiving the extraordinary refractive index, and rotated by 45 degrees Faraday. After passing through the crystal, it enters the wedge-shaped birefringent crystal A. Since the two light beams are orthogonal to those in the forward direction due to the non-reciprocity of the 45-degree Faraday rotator, the light beam which has ordinary light in the wedge-shaped birefringent crystal B and the light which has received the refractive index of the extraordinary light is in a wedge shape. The birefringent crystal A receives and passes the refractive indexes of extraordinary light and ordinary light. Therefore, the light that has passed through the wedge-shaped birefringent crystal A does not become parallel light, but is emitted so as to spread, and is not coupled to the optical fiber A even after passing through the lens. This has the function of passing light from one direction and blocking the passage of light in the opposite direction.

【0003】[0003]

【発明が解決しようとする課題】現在、海底光ケーブル
のような遠距離光通信においては、光中継器として光ア
イソレータを1つ以上備えた光ファイバアンプを光ケー
ブル間に多段に組み込み光信号を直接増幅させて伝送し
ている。上記光アイソレータによる順方向の光信号伝送
において、光学素子部通過後の2本の平行光は、複屈折
結晶による常光の位相速度、異常光の位相速度の差によ
り偏波分散が生じる。楔状複屈折結晶がルチルである場
合、時間遅延差にして約0.7ピコ秒である。偏波分散
に起因する光信号伝達時間のずれは2.4Gbpsでの
光通信速度では問題とならないが、前記遠距離通信でか
つ10Gbpsでの高速光通信では光中継器を数十〜百
数十台前後直列に接続するため、光アイソレータの偏波
分散による光信号波形の乱れが甚だしくなり、正確な情
報伝達が困難となる。また、光の偏波状態による挿入損
失の最大値と最小値の差が偏波依存ロスであるが、上記
光アイソレータの順方向の偏波依存ロスは光学素子部か
ら出射する2本の平行光の分離距離とレンズの光学特性
に依存する。光学素子部通過後の平行光の分離距離を小
さくするほど偏波依存ロスは小さくなる。上記光アイソ
レータにおいては偏波依存ロスは0.2dB程度である
が、前記遠距離光通信の場合には光中継器を多段に直列
に接続するため、光アイソレータの偏波依存ロスの増大
により光信号のS/N比が大きく劣化する。そのため正
確な情報伝達が困難となる。本特許の目的は偏波分散と
同時に偏波依存ロスを抑え、かつ光アイソレータ内部反
射を防止した偏波無依存型光アイソレータを提供するこ
とである。
At present, in long-distance optical communications such as submarine optical cables, optical fiber amplifiers having one or more optical isolators as optical repeaters are incorporated in multiple stages between optical cables to directly amplify optical signals. Let me transmit. In forward optical signal transmission by the optical isolator, polarization dispersion occurs between two parallel lights after passing through the optical element due to the difference between the phase velocity of ordinary light and the phase velocity of extraordinary light due to the birefringent crystal. If the wedge-shaped birefringent crystal is rutile, the time delay difference is about 0.7 picoseconds. The shift of the optical signal transmission time due to the polarization dispersion is not a problem at the optical communication speed of 2.4 Gbps, but in the long-distance communication and the high-speed optical communication at 10 Gbps, an optical repeater needs to be several tens to one hundred and several tens. Because they are connected in series before and after the stage, the optical signal waveform is greatly disturbed by the polarization dispersion of the optical isolator, and accurate information transmission becomes difficult. The difference between the maximum value and the minimum value of the insertion loss due to the polarization state of the light is the polarization dependent loss. The forward polarization dependent loss of the optical isolator is two parallel light beams emitted from the optical element unit. And the optical characteristics of the lens. The shorter the separation distance of the parallel light after passing through the optical element unit, the smaller the polarization dependent loss. In the above-mentioned optical isolator, the polarization dependent loss is about 0.2 dB. However, in the case of the long-distance optical communication, the optical repeaters are connected in multiple stages in series. The S / N ratio of the signal is greatly deteriorated. Therefore, accurate information transmission becomes difficult. It is an object of the present invention to provide a polarization independent optical isolator that suppresses polarization dependent loss simultaneously with polarization dispersion and prevents internal reflection of the optical isolator.

【0004】[0004]

【課題を解決するための手段】本発明はこれらの課題を
解決するためのものであり、入射側光ファイバである光
ファイバA、入射側レンズであるレンズA、出射側光フ
ァイバである光ファイバB、出射側レンズであるレンズ
B、楔状複屈折結晶A、楔状複屈折結晶B、45度ファ
ラデー回転子を配置し、少なくとも1枚の平板状複屈折
結晶を以下の4ヶ所の 楔状複屈折結晶BとレンズB間 レンズAと楔状複屈折結晶A間 45度ファラデー回転子と楔状複屈折結晶B間 楔状複屈折結晶Aと45度ファラデー回転子間 に配置した4種類の偏波無依存型光アイソレータにおい
て、の場合には前記平板状複屈折結晶の主断面は楔
状複屈折結晶Bの光学軸と直交し、かつ前記平板状複屈
折結晶の光学軸はその光通過面に対し最適傾斜させ、
の場合には前記平板状複屈折結晶の主断面は楔状複屈
折結晶Aの光学軸と直交し、かつ前記平板状複屈折結晶
の光学軸は光通過面に対し最適傾斜させ、かつ、前記平
板状複屈折結晶の厚みを制御することにより、順方向に
おいて偏波分散を抑えると同時にレンズBに入射する2
本の平行光の分離距離を最小化することにより偏波依存
ロスを低減させた。上記光アイソレータにおいて、平板
状複屈折結晶を、に配置し、の場合には前記平板
状複屈折結晶の主断面は楔状複屈折結晶Bの光学軸と直
交し、かつ前記平板状複屈折結晶の光学軸はその光通過
面に対し最適傾斜させ、の場合には前記平板状複屈折
結晶の光学軸は楔状複屈折結晶Aの光学軸と直交し、か
つ前記平板状複屈折結晶の光学軸はその光通過面に対し
最適傾斜させ、かつ厚みを制御することにより、順方向
において偏波分散を抑えると同時にレンズBに入射する
2本の平行光の分離距離を最小化することにより偏波依
存ロスを低減させるとともに前記平板状複屈折結晶を傾
斜させることにより前記平板状複屈折結晶からの反射戻
り光、多重反射光が光ファイバA、光ファイバBに入射
する事を防止し、かつ光ファイバAと光ファイバBの光
軸ずれ距離を小さくした。また、順方向において、光が
光学素子部に入射する場合、楔状複屈折結晶で分離した
2本の光は楔状複屈折結晶A、楔状複屈折結晶Bにおい
てそれぞれ同じ屈折率を受ける(常光屈折率→常光屈折
率、異常光屈折率→異常光屈折率)ために光学素子部か
らの出射光には位相速度差が生じる。光学素子部の出射
側に光学軸が直交した平板状複屈折結晶が存在すると、
楔状複屈折結晶A、楔状複屈折結晶Bで常光、異常光の
屈折率を受けた光が平板状複屈折結晶では異常光、常光
の屈折率を受ける。そこで、上記位相速度が0となるよ
う平板状複屈折結晶の厚みを制御することにより、平板
状複屈折結晶を通過した2本の光は位相速度差が打ち消
されて偏波分散が無くなる。図11より、順方向におい
て光学素子部を出射した2本の平行光をレンズで集光し
光ファイバに入射する場合、光軸からの軸ずれ距離が異
なる事により、光ファイバへの入射角度が異なる。この
入射角度差による光ファイバへの結合損失の差が偏波依
存ロスの原因となる。よって、レンズへ入射する2本の
平行光の分離距離を小さくすることにより、偏波依存ロ
スを低減できる。主断面とは複屈折結晶への入射光の伝
搬方向とその複屈折結晶の光学軸を含む面である。図1
3より、2本の平行光が平板状複屈折結晶を通過する
際、1本は常光の屈折率、もう1本は異常光の屈折率を
受けるが、平板状複屈折結晶の主断面内の光学軸の傾斜
角度により異常光の屈折率を受ける光のみが主断面内で
シフトし、2本の平行光として出射する。正の複屈折結
晶の場合は光学軸の傾斜方向に沿って異常光はシフトす
る。2本の平行光の分離距離は平板状複屈折結晶の光学
軸の主断面内での傾斜角度と厚みを制御することにより
小さくすることができる。平板状複屈折結晶に光が入射
する場合、界面の屈折率の違いから入射端面、出射端面
において反射光が発生する。平板状複屈折結晶を傾斜さ
せることにより反射光に反射角を生じさせ、入射光ファ
イバ、出射光ファイバへの反射光の結合を防ぐ。また、
スネルの法則から入射光ファイバ位置に対する出射光フ
ァイバの光軸ずれ距離が小さくなる。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and includes an optical fiber A as an incident side optical fiber, a lens A as an incident side lens, and an optical fiber as an exit side optical fiber. B, a lens B serving as an exit side lens, a wedge-shaped birefringent crystal A, a wedge-shaped birefringent crystal B, and a 45-degree Faraday rotator are arranged, and at least one plate-shaped birefringent crystal is replaced with the following four wedge-shaped birefringent crystals. Between B and lens B Between lens A and wedge-shaped birefringent crystal A Between 45-degree Faraday rotator and wedge-shaped birefringent crystal B Four types of polarization-independent light arranged between wedge-shaped birefringent crystal A and 45-degree Faraday rotator In the isolator, in the case of the above, the main cross section of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal B, and the optical axis of the flat birefringent crystal is optimally inclined with respect to the light passing surface,
In this case, the main cross section of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal A, and the optical axis of the flat birefringent crystal is optimally inclined with respect to the light passing surface. By controlling the thickness of the birefringent crystal, the polarization dispersion is suppressed in the forward direction and
The polarization-dependent loss was reduced by minimizing the separation distance of the parallel light. In the above-mentioned optical isolator, the plate-shaped birefringent crystal is disposed in the case, and in this case, the main cross section of the plate-shaped birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal B, and The optical axis is optimally inclined with respect to the light passing surface. In this case, the optical axis of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal A, and the optical axis of the flat birefringent crystal is By controlling the thickness and tilting it optimally with respect to the light passing surface, polarization dispersion is suppressed in the forward direction, and at the same time, polarization separation is minimized by minimizing the separation distance between two parallel lights incident on the lens B. By reducing the loss and inclining the flat birefringent crystal, it is possible to prevent reflected return light and multiple reflected light from the flat birefringent crystal from entering the optical fiber A and the optical fiber B. A and Hikari The optical axis deviation distance B was small. When light is incident on the optical element portion in the forward direction, the two lights separated by the wedge-shaped birefringent crystal receive the same refractive index in the wedge-shaped birefringent crystal A and the wedge-shaped birefringent crystal B (the ordinary light refractive index). (→ ordinary light refractive index, extraordinary light refractive index → extraordinary light refractive index), there is a phase velocity difference in the light emitted from the optical element. If there is a flat birefringent crystal whose optical axis is orthogonal to the exit side of the optical element,
The light that has undergone the ordinary light and extraordinary light refractive index in the wedge-shaped birefringent crystal A and the wedge-shaped birefringent crystal B receives the extraordinary light and ordinary light refractive index in the flat birefringent crystal. Therefore, by controlling the thickness of the plate-like birefringent crystal so that the above-mentioned phase velocity becomes 0, the phase difference between the two lights passing through the plate-like birefringent crystal is canceled out, and the polarization dispersion is eliminated. From FIG. 11, when two parallel lights emitted from the optical element section in the forward direction are condensed by the lens and made incident on the optical fiber, the incident angle to the optical fiber is changed due to the difference in the axis shift distance from the optical axis. different. The difference in the coupling loss to the optical fiber due to the difference in the incident angle causes the polarization dependent loss. Therefore, the polarization dependent loss can be reduced by reducing the separation distance between the two parallel lights incident on the lens. The main section is a plane including the propagation direction of incident light to the birefringent crystal and the optical axis of the birefringent crystal. FIG.
According to 3, when two parallel lights pass through the flat birefringent crystal, one receives the refractive index of ordinary light and the other receives the refractive index of extraordinary light. Only the light receiving the refractive index of the extraordinary light shifts in the main cross section due to the inclination angle of the optical axis, and is emitted as two parallel lights. In the case of a positive birefringent crystal, extraordinary light shifts along the direction of inclination of the optical axis. The separation distance between the two parallel lights can be reduced by controlling the inclination angle and the thickness of the flat birefringent crystal in the main section of the optical axis. When light is incident on the plate-like birefringent crystal, reflected light is generated at the entrance end face and the exit end face due to the difference in the refractive index at the interface. By inclining the plate-like birefringent crystal, a reflection angle is generated in the reflected light to prevent coupling of the reflected light to the incident optical fiber and the output optical fiber. Also,
From Snell's law, the optical axis shift distance of the output optical fiber with respect to the position of the input optical fiber is reduced.

【0005】[0005]

【発明の実施の形態】以下、本発明について図面を用い
て説明する。図1(a)は本発明にかかる光アイソレー
タの一実施例を示す断面図である。この光アイソレータ
は光ファイバA4、レンズA6、楔状複屈折結晶A1、
45度ファラデー回転子8、楔状複屈折結晶B2、平板
状複屈折結晶3、レンズB7、光ファイバB5、磁石か
ら構成されている。但し、磁石は図中では省略してい
る。また、磁界の外部印可を不要とする45度ファラデ
ー回転子8を使用すれば、磁石は不要となる。楔状複屈
折結晶A1、楔状複屈折結晶B2及び平板状複屈折結晶
3は例えばルチル単結晶、YVO4であり、楔状複屈折
結晶A1、楔状複屈折結晶B2については光学軸10が
入射光線に垂直な面内にあるように切り出してある。ま
た、平板状複屈折結晶3の光学軸10は光通過面に平行
ではなく、順方向において楔状複屈折結晶B2から出射
する2本の平行光の分離距離を最小化出来るよう主断面
11内で傾斜している。その厚みは光が光学素子部を通
過する際に生じる偏波分散を相殺出来ると同時に2本の
平行光が最小分離距離となるように制御されている。光
が平板状複屈折結晶3を通過する際に受ける異常光屈折
率が楔状複屈折結晶で受ける異常光屈折率と異なるた
め、平板状複屈折結晶3の厚みは両楔状複屈折結晶の光
通過部の厚みの和とはならない。楔状複屈折結晶A1と
楔状複屈折結晶B2は厚肉部と薄肉部が相対して配置
し、このとき楔面をレンズ側にする。図1(b)に示す
ように楔状複屈折結晶A1の光学軸10はX軸に対し時
計回りに22.5度傾斜した位置にあり、楔状複屈折結
晶B2の光学軸10は45度ファラデー回転子8による
偏光面の回転のため、X軸に対し反時計回りに22.5
度傾斜している。そのため楔状複屈折結晶A1と楔状複
屈折結晶B2の光学軸10の相対角度は45度ずれてい
る。平板状複屈折結晶3の主断面11はY軸に対し反時
計回りに22.5度傾斜し、光学軸10は主断面11内
で傾斜している。この光アイソレータ動作を図1(b)
に示し、図中のZ方向を順方向とする。図1(a)で示
した(イ)、(ロ)、(ハ)、(ニ)での2本の光の状
態を図1(b)の(イ)、(ロ)、(ハ)、(ニ)で示
す。また、この時45度ファラデー回転子8による偏光
面の回転挙動は省略する。光ファイバA4より出射した
光はレンズA6で平行光となり、楔状複屈折結晶A1へ
入射する。楔状複屈折結晶A1において常光屈折率、異
常光屈折率を受ける2本の光に分離された後、45度フ
ァラデー回転子8により反時計回りに45度回転され、
楔状複屈折結晶B2を通過する。通過時は楔状複屈折結
晶A1で常光屈折率、異常光屈折率を受けた光は楔状複
屈折結晶B2でも同じく常光屈折率、異常光屈折率を受
けるため、楔状複屈折結晶B2を通過した2本の平行光
は楔状複屈折結晶A1に入射した光と平行となる。平板
状複屈折結晶3はその主断面11が楔状複屈折結晶B2
の光学軸10に対し直交しているため、平板状複屈折結
晶3を通過した平行光のうち楔状複屈折結晶で常光屈折
率を受けた光は異常光屈折率を受け、異常光屈折率を受
けた光は常光屈折率を受ける。また、楔状複屈折結晶B
2通過前後の2本の平行光の状態((ハ)→(ニ))を
図1(c)で示した。楔状複屈折結晶B2通過後、常光
屈折率を受けた光の位置をP1、異常光屈折率を受けた
光の位置をP2、平板状複屈折結晶3通過後のP1のシ
フト位置をP3で示した。P1、P2の分離距離aとし
た時、2本の平行光の最小分離距離bは b=a×sin(22.5deg ) となる。上記最小分離距離bを得るためには、平板状複
屈折結晶3の主断面11内の光学軸10の傾斜角度と平
板状複屈折結晶3の厚みを制御することによりP1から
P3へ光をシフトさせれば良い。そのときの移動距離c
は c=a×cos(22.5deg ) で表す事ができる。楔複屈折結晶にルチルを用いた光ア
イソレータにおいて、楔状複屈折結晶B2を出射した時
の平行光分離距離は約30μmである。ここで平板状複
屈折結晶3の光学軸10、厚みを制御することにより、
平行光の分離距離を11.5μmまで近接させることがで
き、図12より偏波依存ロスを0.1dB以上と改善す
ることができた。逆方向では、平板状複屈折結晶3によ
り常光屈折率、異常光屈折率を受けた2本の光に分離
し、楔状複屈折結晶B2に入射する。楔状複屈折結晶B
2を通過時に2本の光は平板状複屈折結晶3で常光屈折
率を受けた光は異常光屈折率を受け、異常光屈折率を受
けた光は常光屈折率を受ける。これら2本の光は45度
ファラデー回転子8通過後に楔状複屈折結晶A1に入射
する。45度ファラデー回転子8により反時計回りに4
5度回転するため、楔状複屈折結晶B2で常光屈折率を
受けた光は異常光屈折率を受け、異常光屈折率を受けた
光は常光屈折率を受ける。これより、楔状複屈折結晶A
1からの2本の出射光は平行光とならず広がるように出
射する。そのため、レンズA6を介しても2本の光を入
射ファイバへ集光されず、逆方向からの光は遮断され
る。図2は本発明にかかる第2の実施例を示す。第1の
実施例で示した平板状複屈折結晶3をレンズA6と楔状
複屈折結晶A1間に配置した光アイソレータである。こ
の際、平板状複屈折結晶3の光学軸10の主断面11は
楔状複屈折結晶A1の光学軸10に対し直交する。図3
に本発明にかかる第3の実施例を示す。第1の実施例で
示した平板状複屈折結晶3をX軸を中心に反時計回りに
傾斜させることにより、平板状複屈折結晶3で発生する
反射光戻り光、多重反射光の光ファイバへの入射を防ぐ
ことができる。また、スネルの法則から、2本の平行光
が光軸8方向へシフトする事により光ファイバA4に対
する光ファイバB5を光軸ずれ変位量αだけ低減でき、
光アイソレータ外径を小さくすることが出来る。また、
平板状複屈折結晶3をレンズA6と楔状複屈折結晶A1
間に配置し、同様に傾斜させても同様の効果を得ること
ができる。図4に本発明にかかる第4の実施例を示す。
平板状複屈折結晶3を45度ファラデー回転子8と楔状
複屈折結晶B2間に配置した場合でも、偏波分散、偏波
依存ロスを低減できるとともに平板状複屈折結晶3に入
射する光は入射角度を持つために平板状複屈折結晶3で
発生する反射戻り光、多重反射光を遮断させることがで
きる。図5に本発明にかかる第5の実施例を示す。平板
状複屈折結晶3を楔状複屈折結晶A1と45度ファラデ
ー回転子8間に配置した場合でも、偏波分散、偏波依存
ロスを低減できるとともに平板状複屈折結晶3に入射す
る光は入射角度を持つために平板状複屈折結晶3で発生
する反射戻り光、多重反射光を遮断させることができ
る。図6に本発明にかかる第6の実施例を示す。第3の
実施例で示した平板状複屈折結晶3のどちらか一方の光
通過面にバンドパスフィルター膜13を施すことによ
り、光ファイバアンプを構成するバンドパスフィルター
モジュールを削除することができる。図7に本発明にか
かる複合モジュールの第7の実施例を示す。第3の実施
例で示した光アイソレータに波長合分波素子を配置し
た。図8に本発明にかかる複合モジュールの第8の実施
例を示す。第3の実施例で示した光アイソレータに、ビ
ームスプリッターと信号光をモニタ するフォトディテクタ
を配置した。図9に本発明にかかる複合モジュールの第
9の実施例を示す。第3の実施例で示した光アイソレー
タに、波長合分波素子、ビームスプリッター、信号光を
モニタ するフォトディテクタを配置した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1A is a sectional view showing one embodiment of the optical isolator according to the present invention. This optical isolator includes an optical fiber A4, a lens A6, a wedge-shaped birefringent crystal A1,
It is composed of a 45-degree Faraday rotator 8, a wedge-shaped birefringent crystal B2, a flat birefringent crystal 3, a lens B7, an optical fiber B5, and a magnet. However, the magnet is omitted in the figure. Further, if a 45-degree Faraday rotator 8 that does not require external application of a magnetic field is used, a magnet is not required. The wedge-shaped birefringent crystal A1, the wedge-shaped birefringent crystal B2, and the plate-shaped birefringent crystal 3 are, for example, rutile single crystal, YVO4, and the optical axis 10 of the wedge-shaped birefringent crystal A1 and the wedge-shaped birefringent crystal B2 is perpendicular to the incident light. It is cut out so that it is in the plane. The optical axis 10 of the plate-like birefringent crystal 3 is not parallel to the light passing surface, but is within the main section 11 so as to minimize the separation distance between two parallel lights emitted from the wedge-shaped birefringent crystal B2 in the forward direction. It is inclined. The thickness is controlled so that the polarization dispersion generated when the light passes through the optical element portion can be canceled and the two parallel lights have a minimum separation distance. Since the extraordinary refractive index received when light passes through the flat birefringent crystal 3 is different from the extraordinary refractive index received by the wedge-shaped birefringent crystal, the thickness of the flat birefringent crystal 3 is equal to the light passing through both wedge-shaped birefringent crystals. It does not add up to the thickness of the part. The thick part and the thin part of the wedge-shaped birefringent crystal A1 and the wedge-shaped birefringent crystal B2 are arranged to face each other, and the wedge surface is on the lens side at this time. As shown in FIG. 1B, the optical axis 10 of the wedge-shaped birefringent crystal A1 is at a position inclined 22.5 degrees clockwise with respect to the X axis, and the optical axis 10 of the wedge-shaped birefringent crystal B2 is rotated by 45 degrees Faraday. 22.5 counterclockwise with respect to the X axis due to the rotation of the polarization plane by the element 8.
Degrees. Therefore, the relative angles of the optical axes 10 of the wedge-shaped birefringent crystals A1 and B2 are shifted by 45 degrees. The main section 11 of the flat birefringent crystal 3 is inclined 22.5 degrees counterclockwise with respect to the Y axis, and the optical axis 10 is inclined in the main section 11. This optical isolator operation is shown in FIG.
And the Z direction in the figure is a forward direction. The states of the two lights in (a), (b), (c), and (d) shown in FIG. 1A are shown in (a), (b), (c), and (b) of FIG. (D). At this time, the rotation behavior of the polarization plane by the 45-degree Faraday rotator 8 is omitted. The light emitted from the optical fiber A4 becomes parallel light by the lens A6 and enters the wedge-shaped birefringent crystal A1. In the wedge-shaped birefringent crystal A1, the light is separated into two lights that receive the ordinary light refractive index and the extraordinary light refractive index, and then rotated 45 degrees counterclockwise by the 45 degree Faraday rotator 8,
It passes through the wedge-shaped birefringent crystal B2. At the time of passing, the light which has received the ordinary light refractive index and the extraordinary refractive index in the wedge-shaped birefringent crystal A1 also receives the ordinary light refractive index and the extraordinary refractive index in the wedge-shaped birefringent crystal B2. The parallel light is parallel to the light incident on the wedge-shaped birefringent crystal A1. The main section 11 of the plate-shaped birefringent crystal 3 is a wedge-shaped birefringent crystal B2.
Of the parallel light passing through the flat birefringent crystal 3, the light having the ordinary light refractive index in the wedge-shaped birefringent crystal receives the extraordinary refractive index, and The received light has an ordinary refractive index. Also, a wedge-shaped birefringent crystal B
The state of the two parallel lights before and after the two passes ((c) → (d)) is shown in FIG. 1 (c). After passing through the wedge-shaped birefringent crystal B2, the position of light receiving the ordinary refractive index is denoted by P1, the position of light receiving the extraordinary refractive index is denoted by P2, and the shift position of P1 after passing through the flat birefringent crystal 3 is denoted by P3. Was. Assuming that the separation distance a is P1 and P2, the minimum separation distance b between the two parallel lights is b = a × sin (22.5 deg). In order to obtain the minimum separation distance b, light is shifted from P1 to P3 by controlling the inclination angle of the optical axis 10 in the main cross section 11 of the plate-like birefringent crystal 3 and the thickness of the plate-like birefringent crystal 3. You can do it. Moving distance c at that time
Can be expressed as c = a × cos (22.5 deg). In an optical isolator using rutile as the wedge birefringent crystal, the parallel light separation distance when emitting the wedge-shaped birefringent crystal B2 is about 30 μm. Here, by controlling the optical axis 10 and the thickness of the flat birefringent crystal 3,
The separation distance of the parallel light could be made close to 11.5 μm, and the polarization dependent loss could be improved to 0.1 dB or more from FIG. In the opposite direction, the light is separated into two lights having the ordinary refractive index and the extraordinary refractive index by the flat birefringent crystal 3 and is incident on the wedge-shaped birefringent crystal B2. Wedge-shaped birefringent crystal B
When the two light beams pass through the plate 2, the light that has received the ordinary light refractive index in the flat birefringent crystal 3 receives the extraordinary light refractive index, and the light that has received the extraordinary light refractive index has the ordinary light refractive index. These two lights are incident on the wedge-shaped birefringent crystal A1 after passing through the 45-degree Faraday rotator 8. 45 degrees Faraday rotator 8 to rotate counterclockwise 4
Since the light rotates by 5 degrees, the light having received the ordinary light refractive index in the wedge-shaped birefringent crystal B2 receives the extraordinary light refractive index, and the light having received the extraordinary light refractive index receives the ordinary light refractive index. Thus, the wedge-shaped birefringent crystal A
The two outgoing lights from 1 are emitted so as not to become parallel lights but to spread. Therefore, even through the lens A6, the two lights are not focused on the incident fiber, and the light from the opposite direction is blocked. FIG. 2 shows a second embodiment according to the present invention. This is an optical isolator in which the flat birefringent crystal 3 shown in the first embodiment is disposed between the lens A6 and the wedge-shaped birefringent crystal A1. At this time, the main section 11 of the optical axis 10 of the flat birefringent crystal 3 is orthogonal to the optical axis 10 of the wedge-shaped birefringent crystal A1. FIG.
FIG. 9 shows a third embodiment according to the present invention. By tilting the plate-like birefringent crystal 3 shown in the first embodiment counterclockwise about the X-axis, the reflected light returning light generated by the plate-like birefringent crystal 3 and the multiple reflection light to the optical fiber Incident can be prevented. Also, according to Snell's law, by shifting the two parallel lights in the direction of the optical axis 8, the optical fiber B5 with respect to the optical fiber A4 can be reduced by the optical axis shift displacement α.
The outer diameter of the optical isolator can be reduced. Also,
The plate-shaped birefringent crystal 3 is composed of a lens A6 and a wedge-shaped birefringent crystal A1.
The same effect can be obtained by disposing them between them and inclining them similarly. FIG. 4 shows a fourth embodiment according to the present invention.
Even when the plate-like birefringent crystal 3 is arranged between the 45-degree Faraday rotator 8 and the wedge-shaped birefringent crystal B2, the polarization dispersion and the polarization-dependent loss can be reduced, and the light incident on the plate-like birefringent crystal 3 is incident. Due to the angle, the reflected return light and the multiple reflected light generated in the flat birefringent crystal 3 can be blocked. FIG. 5 shows a fifth embodiment according to the present invention. Even when the plate-shaped birefringent crystal 3 is arranged between the wedge-shaped birefringent crystal A1 and the 45-degree Faraday rotator 8, the polarization dispersion and the polarization-dependent loss can be reduced, and light incident on the plate-shaped birefringent crystal 3 is incident. Due to the angle, the reflected return light and the multiple reflected light generated in the flat birefringent crystal 3 can be blocked. FIG. 6 shows a sixth embodiment according to the present invention. By applying the bandpass filter film 13 to one of the light passing surfaces of the flat birefringent crystal 3 shown in the third embodiment, the bandpass filter module constituting the optical fiber amplifier can be omitted. FIG. 7 shows a seventh embodiment of the composite module according to the present invention. A wavelength multiplexing / demultiplexing element was arranged in the optical isolator shown in the third embodiment. FIG. 8 shows an eighth embodiment of the composite module according to the present invention. A beam splitter and a photodetector for monitoring signal light were arranged in the optical isolator shown in the third embodiment. FIG. 9 shows a ninth embodiment of the composite module according to the present invention. In the optical isolator shown in the third embodiment, a wavelength multiplexing / demultiplexing element, a beam splitter, and a photodetector for monitoring signal light were arranged.

【0006】[0006]

【発明の効果】本発明では光ファイバA、レンズA6、
楔状複屈折結晶A、楔状複屈折結晶B、45度ファラデ
ー回転子、光ファイバB、レンズBを配置し、少なくと
も1枚の平板状複屈折結晶を以下の4ヶ所 楔状複屈折結晶BとレンズB間 レンズAと楔状複屈折結晶A間 45度ファラデー回転子と楔状複屈折結晶B間 楔状複屈折結晶Aと45度ファラデー回転子間 に配置した4種類の偏波無依存型光アイソレータにおい
て、の場合には前記平板状複屈折結晶の主断面は楔
状複屈折結晶Bの光学軸と直交し、かつ前記平板状複屈
折結晶の光学軸はその光通過面に対し最適傾斜させ、
の場合には前記平板状複屈折結晶の主断面は楔状複屈
折結晶Aの光学軸と直交し、かつ前記平板状複屈折結晶
の光学軸は光通過面に対し最適傾斜し、かつ、前記平板
状複屈折結晶の厚みを制御することにより、順方向にお
いて偏波分散を抑えると同時にレンズBに入射する2本
の平行光の分離距離を最小化することにより偏波依存ロ
スを低減させた。上記光アイソレータにおいて、平板状
複屈折結晶を、に配置し、の場合には前記平板状
複屈折結晶の主断面は楔状複屈折結晶Bの光学軸と直交
し、かつ前記平板状複屈折結晶の光学軸はその光通過面
に対し最適傾斜させ、の場合には前記平板状複屈折結
晶の光学軸は楔状複屈折結晶Aの光学軸と直交し、かつ
前記平板状複屈折結晶の光学軸はその光通過面に対し最
適傾斜させ、かつ厚みを制御することにより、順方向に
おいて偏波分散を抑えると同時にレンズBに入射する2
本の平行光の分離距離を最小化することにより偏波依存
ロスを低減させるとともに前記平板状複屈折結晶を傾斜
させることにより前記平板状複屈折結晶からの反射戻り
光、多重反射光が光ファイバA、光ファイバBに入射す
る事を防止し、かつ光ファイバAと光ファイバBの光軸
ずれ距離を小さくした事により光アイソレータ外径を小
さくする事が可能となった。上記光アイソレータにおい
て平板状複屈折結晶のどちらか一方の光通過面にバンド
パスフィルター膜を施すことにより、光ファイバアンプ
を構成するバンドパスフィルターモジュールを削除する
ことができる。
According to the present invention, the optical fiber A, the lens A6,
A wedge-shaped birefringent crystal B, a wedge-shaped birefringent crystal B, a 45-degree Faraday rotator, an optical fiber B, and a lens B are arranged. Between the lens A and the wedge-shaped birefringent crystal A Between the 45-degree Faraday rotator and the wedge-shaped birefringent crystal B In the four types of polarization-independent optical isolators arranged between the wedge-shaped birefringent crystal A and the 45-degree Faraday rotator, In this case, the main cross section of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal B, and the optical axis of the flat birefringent crystal is optimally inclined with respect to its light passing surface,
In this case, the main cross section of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal A, and the optical axis of the flat birefringent crystal is optimally inclined with respect to the light passing surface. By controlling the thickness of the birefringent crystal, the polarization dispersion is suppressed in the forward direction, and at the same time, the polarization-dependent loss is reduced by minimizing the separation distance between two parallel lights incident on the lens B. In the above-mentioned optical isolator, the plate-shaped birefringent crystal is disposed in the case, and in this case, the main cross section of the plate-shaped birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal B, and The optical axis is optimally inclined with respect to the light passing surface. In this case, the optical axis of the flat birefringent crystal is orthogonal to the optical axis of the wedge-shaped birefringent crystal A, and the optical axis of the flat birefringent crystal is By controlling the thickness to be optimally inclined with respect to the light passing surface, polarization dispersion is suppressed in the forward direction, and at the same time, the light is incident on the lens B.
The polarization-dependent loss is reduced by minimizing the separation distance of the parallel light of the book, and the return light from the flat birefringent crystal and the multiple reflected light are tilted by tilting the flat birefringent crystal to form an optical fiber. A, the incidence on the optical fiber B is prevented, and the outer diameter of the optical isolator can be reduced by reducing the optical axis deviation distance between the optical fiber A and the optical fiber B. In the above-mentioned optical isolator, by providing a band-pass filter film on one of the light-passing surfaces of the plate-like birefringent crystal, the band-pass filter module constituting the optical fiber amplifier can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は本発明にかかる光アイソレータの第
1の実施例の断面図であり、(b)は本発明に使用する
複屈折結晶の光学軸方向の斜視図と光の動作図であり、
(c)は2本の光の分離距離を最小にするための説明図
である。
1A is a cross-sectional view of a first embodiment of an optical isolator according to the present invention, and FIG. 1B is a perspective view of a birefringent crystal used in the present invention in an optical axis direction and an operation diagram of light. And
(C) is an explanatory diagram for minimizing the separation distance between two lights.

【図2】 (a)は本発明にかかる光アイソレータの第
2の実施例の断面図であり、(b)は本発明に使用する
複屈折結晶の光学軸方向の斜視図と光の動作図である。
2A is a sectional view of a second embodiment of the optical isolator according to the present invention, and FIG. 2B is a perspective view of a birefringent crystal used in the present invention in the optical axis direction and an operation diagram of light. It is.

【図3】 本発明にかかる光アイソレータの第3の実施
例の断面図を示す。
FIG. 3 shows a sectional view of a third embodiment of the optical isolator according to the present invention.

【図4】 (a)は本発明にかかる光アイソレータの第
4の実施例の断面図であり、(b)は本発明に使用する
複屈折結晶の光学軸方向の斜視図と光の動作図である。
FIG. 4A is a cross-sectional view of a fourth embodiment of the optical isolator according to the present invention, and FIG. 4B is a perspective view of a birefringent crystal used in the present invention in an optical axis direction and an operation diagram of light. It is.

【図5】 (a)は本発明にかかる光アイソレータの第
4の実施例の断面図であり、(b)は本発明に使用する
複屈折結晶の光学軸方向の斜視図と光の動作図である。
FIG. 5A is a sectional view of a fourth embodiment of the optical isolator according to the present invention, and FIG. 5B is a perspective view of the birefringent crystal used in the present invention in the optical axis direction and an operation diagram of light. It is.

【図6】 本発明にかかる光アイソレータの第6の実施
例の断面図を示す。
FIG. 6 is a sectional view of a sixth embodiment of the optical isolator according to the present invention.

【図7】 本発明にかかる複合モジュールの第7の実施
例の断面図を示す。
FIG. 7 is a sectional view of a seventh embodiment of the composite module according to the present invention.

【図8】 本発明にかかる複合モジュールの第8の実施
例の断面図を示す。
FIG. 8 shows a sectional view of an eighth embodiment of the composite module according to the present invention.

【図9】 本発明にかかる複合モジュールの第9の実施
例の断面図を示す。
FIG. 9 shows a sectional view of a ninth embodiment of a composite module according to the present invention.

【図10】 従来技術の断面図を示す。FIG. 10 shows a cross-sectional view of the prior art.

【図11】 光アイソレータからの2本の平行光の分離
距離と光ファイバへの入射角度の関係の概略図を示す。
FIG. 11 is a schematic diagram showing a relationship between a separation distance of two parallel lights from an optical isolator and an incident angle to an optical fiber.

【図12】 2本の平行光分離距離による光ファイバへ
の結合損失差のグラフを示す。
FIG. 12 is a graph showing a difference in coupling loss to an optical fiber depending on a distance between two parallel light beams.

【図13】 平板状複屈折結晶での光学軸と光の動作図
を示す。
FIG. 13 shows an operation diagram of an optical axis and light in a flat birefringent crystal.

【符号の説明】[Explanation of symbols]

1 楔状複屈折結晶A 2 楔状複屈折結晶B 3 平板状複屈折結晶 4 光ファイバA 5 光ファイバB 6 レンズA 7 レンズB 8 45度ファラデー回転子 9 光軸 10 光学軸 11 主断面 12 Y−Z平面への主断面射影 13 バンドパスフィルター膜 14 光アイソレータ 15 光ファイバ 16 レンズ 17 光通過面 18 波長合分波素子 19 ビームスプリッター 20 フォトディテクタ Reference Signs List 1 wedge-shaped birefringent crystal A 2 wedge-shaped birefringent crystal B 3 flat birefringent crystal 4 optical fiber A 5 optical fiber B 6 lens A 7 lens B 8 45-degree Faraday rotator 9 optical axis 10 optical axis 11 main section 12 Y- Projection of main cross section onto Z plane 13 Band pass filter film 14 Optical isolator 15 Optical fiber 16 Lens 17 Light passing surface 18 Wavelength multiplexing / demultiplexing device 19 Beam splitter 20 Photodetector

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1枚以上の楔状複屈折結晶
と、少なくとも1枚以上の45度ファラデー回転子と、
少なくとも1枚の平板状複屈折結晶とから構成される光
アイソレータにおいて、前記平板状複屈折結晶の主断面
は少なくとも1枚の楔状複屈折結晶の光学軸と直交し、
かつ前記平板状複屈折結晶の光学軸は前記平板状複屈折
結晶の光通過面に対し平行でない事を特徴とする光アイ
ソレータ。
At least one or more wedge-shaped birefringent crystals, at least one or more 45-degree Faraday rotator,
In an optical isolator composed of at least one flat birefringent crystal, a main cross section of the flat birefringent crystal is orthogonal to an optical axis of at least one wedge birefringent crystal,
An optical isolator, wherein an optical axis of the flat birefringent crystal is not parallel to a light passing surface of the flat birefringent crystal.
【請求項2】 前記平板状複屈折結晶を光軸に対し傾斜
させたことを特徴とする請求項1記載の光アイソレータ
2. The optical isolator according to claim 1, wherein said flat birefringent crystal is inclined with respect to an optical axis.
【請求項3】前記平板状複屈折結晶を最後方に配置し、
かつその主断面は前記平板状複屈折結晶の直前の楔状複
屈折結晶の光学軸に対し直交していることを特徴とする
請求項1記載の光アイソレータ。
3. The flat birefringent crystal is arranged at the rearmost position,
2. The optical isolator according to claim 1, wherein the main cross section is orthogonal to the optical axis of the wedge-shaped birefringent crystal immediately before the flat birefringent crystal.
【請求項4】 前記平板状複屈折結晶を最前方に配置
し、かつその主断面は前記平板状複屈折結晶の直後の楔
状複屈折結晶の光学軸に対し直交していることを特徴と
する請求項1記載の光アイソレータ。
4. The flat birefringent crystal is arranged at the forefront, and its main cross section is orthogonal to the optical axis of the wedge-shaped birefringent crystal immediately after the flat birefringent crystal. The optical isolator according to claim 1.
【請求項5】 45度ファラデー回転子、前記平板状複
屈折結晶および楔状複屈折結晶の順で配置し、前記平板
状複屈折結晶の主断面は前記平板状複屈折結晶の直後の
楔状複屈折結晶の光学軸に対し直交していることを特徴
とする請求項1記載の光アイソレータ。
5. A 45-degree Faraday rotator, said plate-shaped birefringent crystal and a wedge-shaped birefringent crystal are arranged in this order, and a main cross section of said plate-shaped birefringent crystal has a wedge-shaped birefringence immediately after said plate-shaped birefringent crystal. 2. The optical isolator according to claim 1, wherein the optical isolator is orthogonal to the optical axis of the crystal.
【請求項6】 楔状複屈折結晶、前記平板状複屈折結晶
および45度ファラデー回転子の順で配置し、前記平板
状複屈折結晶の主断面は前記平板状複屈折結晶の直前の
楔状複屈折結晶の光学軸に対し直交している事を特徴と
する請求項1記載の光アイソレータ。
6. A wedge-shaped birefringent crystal, the flat birefringent crystal and a 45-degree Faraday rotator are arranged in this order, and the main cross section of the flat birefringent crystal is a wedge-shaped birefringent immediately before the flat birefringent crystal. 2. The optical isolator according to claim 1, wherein the optical isolator is orthogonal to the optical axis of the crystal.
【請求項7】 前記平板状複屈折結晶のどちらか一方の
光通過面にバンドパスフィルター膜をほどこしたを特徴
とする請求項1記載の光アイソレータ。
7. The optical isolator according to claim 1, wherein a band-pass filter film is provided on one of the light passing surfaces of the flat birefringent crystal.
【請求項8】 少なくとも2本の光ファイバと少なくと
も1個のレンズが配置されていることを特徴とする請求
項1記載の光アイソレータ。
8. The optical isolator according to claim 1, wherein at least two optical fibers and at least one lens are arranged.
【請求項9】 請求項8記載の光アイソレータにおい
て、少なくとも1枚の波長合分波機能の光学素子が配置
されていることを特徴とする複合モジュール。
9. The composite module according to claim 8, wherein at least one optical element having a wavelength multiplexing / demultiplexing function is arranged.
【請求項10】 請求項8記載の光アイソレータにおい
て、少なくとも1枚のビームスプリッターと少なくとも
1枚のフォトディテクタが配置されていることを特徴と
する複合モジュール。
10. The composite module according to claim 8, wherein at least one beam splitter and at least one photodetector are arranged.
【請求項11】 請求項8記載の光アイソレータにおい
て、少なくとも1枚の波長合分波機能を持つ光学素子
と、少なくとも1枚のビームスプリッターと、少なくと
も1個のフォトディテクタが配置されていることを特徴
とする複合モジュール。
11. The optical isolator according to claim 8, wherein at least one optical element having a wavelength multiplexing / demultiplexing function, at least one beam splitter, and at least one photodetector are arranged. And a composite module.
JP24314796A 1996-09-13 1996-09-13 Optical isolator and composite module using it Pending JPH1090631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24314796A JPH1090631A (en) 1996-09-13 1996-09-13 Optical isolator and composite module using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24314796A JPH1090631A (en) 1996-09-13 1996-09-13 Optical isolator and composite module using it

Publications (1)

Publication Number Publication Date
JPH1090631A true JPH1090631A (en) 1998-04-10

Family

ID=17099497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24314796A Pending JPH1090631A (en) 1996-09-13 1996-09-13 Optical isolator and composite module using it

Country Status (1)

Country Link
JP (1) JPH1090631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319295B1 (en) * 1998-09-15 2002-03-21 윤종용 Optical isolator to minimize polarization mode dispersion
KR20210120701A (en) 2020-03-27 2021-10-07 서울시립대학교 산학협력단 Optical fiber device for removing cladding light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319295B1 (en) * 1998-09-15 2002-03-21 윤종용 Optical isolator to minimize polarization mode dispersion
KR20210120701A (en) 2020-03-27 2021-10-07 서울시립대학교 산학협력단 Optical fiber device for removing cladding light

Similar Documents

Publication Publication Date Title
US5588078A (en) Non-reciprocal optical waveguide coupling device
US5848203A (en) Polarization-independent optical isolator
JP2757093B2 (en) Non-polarization dispersion type optical isolator
US6339661B1 (en) Polarization maintaining fiber optic circulators
US6532321B1 (en) Fiber optic isolator for use with multiple-wavelength optical signals
EP1726983B1 (en) Optical device comprising an optical isolator
EP0848278B1 (en) Optical circulator
EP1168035A2 (en) Polarization beam splitter or combiner
US5936768A (en) Optical passive device for an optical fiber amplifier and the optical amplifier
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
US7173762B2 (en) Optical isolator with reduced insertion loss and minimized polarization mode dispersion
US6246518B1 (en) Reflection type optical isolator
US5991076A (en) Optical circulator
WO2004083906A2 (en) Circulator and polarization beam combiner
JPH1090631A (en) Optical isolator and composite module using it
EP0874263A1 (en) Optical circulator
US6608723B2 (en) Integrated pump combining module
US20070171528A1 (en) Polarized wave coupling optical isolator
JP3317999B2 (en) Optical isolator
CA2133556A1 (en) Improvements to optical phase shifting
JP3716981B2 (en) Optical isolator
US6624938B1 (en) Optical circulator
JP2004281478A (en) Semiconductor optical amplifier module
CA2214008C (en) Multi-stage optical isolator
AU675424B2 (en) Improvements to optical phase shifting

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031226

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A02