JPH1081915A - Manufacture of two directional silicon steel sheet - Google Patents

Manufacture of two directional silicon steel sheet

Info

Publication number
JPH1081915A
JPH1081915A JP8233742A JP23374296A JPH1081915A JP H1081915 A JPH1081915 A JP H1081915A JP 8233742 A JP8233742 A JP 8233742A JP 23374296 A JP23374296 A JP 23374296A JP H1081915 A JPH1081915 A JP H1081915A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
phase
decarburization
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8233742A
Other languages
Japanese (ja)
Inventor
Toshiro Tomita
俊郎 富田
Naoyuki Sano
直幸 佐野
Shigeo Kaminotani
繁雄 上野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8233742A priority Critical patent/JPH1081915A/en
Publication of JPH1081915A publication Critical patent/JPH1081915A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a silicon steel sheet excellent in magnetic properties in two directions orthogonal to each other. SOLUTION: A steel, having a composition which contains, by weight, 0.02-0.2% C and in which the contents of Si and Mn satisfy inequalities Si(%)+0.5Mn(%)<=4, Si(%)-0.5Mn (%)>=1.5, and Mn(%)>=0.2, is rolled in two directions orthogonal to each other, by which a steel sheet is prepared. Then, annealing is applied under reduced pressure to the steel sheet by using, as a separation agent at annealing, a substance accelerating decarburization or a substance accelerating decarburization and a substance accelerating Mn removal. Further, rolling in two directions orthogonal to each other is carried out in the α+γ two-phase temp. region and then rolling is performed in one direction in the α-phase temp. region, or, rolling in one direction is carried out in the α+γ two-phase temp. region and then rolling is performed in a direction orthogonal to the rolling direction in the α-phase temp. region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は小型の変圧器などに
適用する、磁気特性のすぐれた電磁鋼板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic steel sheet having excellent magnetic properties, which is applied to a small transformer or the like.

【0002】[0002]

【従来の技術】電動機、発電機あるいは変圧器などの磁
心材料には、珪素鋼板ないしは電磁鋼板が用いられ、こ
れらの鋼板は、使用時の損失が小さくかつ磁束密度が大
きいことが要求される。
2. Description of the Related Art Silicon or steel sheets are used as core materials for motors, generators, transformers and the like, and these steel sheets are required to have low loss during use and high magnetic flux density.

【0003】電磁鋼板には従来より無方向性電磁鋼板と
方向性電磁鋼板(または方向性けい素鋼板)とがある。
通常、磁心には、渦電流の発生を抑止して鉄損を低く押
さえるため、薄くした電磁鋼板を積層して使用し、その
場合、磁化の方向は板面に平行な方向である。無方向性
電磁鋼板の場合、磁化方向が板面に平行であれば、いず
れの向きでも磁気特性が良好であり、小型モーターなど
に好んで用いられる。これに対し、方向性電磁鋼板は板
面に平行な特定の方向の磁化、すなわち通常は板の圧延
方向に平行な方向に磁化した場合、とくにすぐれた磁気
特性を示すが、それ以外の方向の磁化は無方向性電磁鋼
板の場合よりも劣る。このため、板の圧延方向が常に磁
化の方向と一致するように、巻鉄心としたり、組合わせ
て積層したりして、より一層損失の少ない変圧器の製造
などに適用されている。
Conventionally, there are non-oriented electrical steel sheets and oriented electrical steel sheets (or oriented silicon steel sheets).
Normally, in order to suppress the generation of eddy currents and reduce iron loss, the magnetic core is usually formed by laminating thin magnetic steel sheets. In this case, the direction of magnetization is parallel to the plate surface. In the case of non-oriented electrical steel sheets, as long as the magnetization direction is parallel to the plate surface, the magnetic properties are good in any direction, and they are preferably used for small motors and the like. On the other hand, grain-oriented electrical steel sheets show particularly excellent magnetic properties when magnetized in a specific direction parallel to the sheet surface, that is, usually magnetized in a direction parallel to the rolling direction of the sheet, but in other directions. Magnetization is inferior to non-oriented electrical steel sheets. For this reason, it is applied to the manufacture of transformers with even less loss, such as winding cores or lamination in combination so that the rolling direction of the plate always coincides with the direction of magnetization.

【0004】鉄の結晶には磁気的な異方性があり、鉄の
単結晶のモデルを立方体とすれば、立方体の面に垂直な
方向、すなわち<001> 軸方向に磁化した時の磁気特性が
もっともすぐれている。方向性電磁鋼板は、それを構成
する鉄の結晶粒の殆どが圧延方向に<001> 軸が平行で、
板面に{110} 面が平行な方向に揃っているものである。
この {110}<001> 方位は通常ゴス方位と呼ばれている。
無方向性電磁鋼板は、通常の冷延鋼板とほぼ同じ製造条
件にて製造されるのに対し、方向性電磁鋼板の製造で
は、鋼の化学組成も異なるが、冷間圧延の歪取り焼鈍後
さらに高温で焼鈍することによって、インヒビターと称
する硫化物や窒化物の助けを借りて、ゴス方位の結晶粒
を選択的に成長させて製造される。
[0004] Iron crystals have magnetic anisotropy. If a model of a single crystal of iron is a cube, the magnetic properties when magnetized in the direction perpendicular to the plane of the cube, that is, in the <001> axis direction. Is the most excellent. In grain-oriented electrical steel sheets, most of the iron crystal grains that constitute it have a <001> axis parallel to the rolling direction,
The {110} plane is aligned in a direction parallel to the plate surface.
This {110} <001> direction is usually called Goss direction.
Non-oriented electrical steel sheets are manufactured under almost the same manufacturing conditions as ordinary cold-rolled steel sheets, whereas in the production of grain-oriented electrical steel sheets, the chemical composition of the steel is different, but after cold rolling strain relief annealing. Further, by annealing at a high temperature, with the help of a sulfide or a nitride called an inhibitor, the crystal is manufactured by selectively growing crystal grains having a Goss orientation.

【0005】このような方向性電磁鋼板は、圧延方向の
磁気特性はすぐれているが、それ以外の方向には、<001
> 軸がほとんど含まれていないため磁気特性は劣る。こ
のため、たとえばEIコアのように圧延に平行な方向と
直角な方向とが同時に磁化される使い方では、必ずしも
充分な効果は得られない。
[0005] Such a grain-oriented electrical steel sheet has excellent magnetic properties in the rolling direction, but <001 in other directions.
> Poor magnetic properties due to almost no axes included. For this reason, a sufficient effect cannot always be obtained in a usage such as an EI core in which a direction parallel to the rolling and a direction perpendicular to the rolling are simultaneously magnetized.

【0006】これに対して、圧延方向に<001> 軸が平行
で、かつ板の面に{100} 面が平行である結晶からなる鋼
板が得られたとすれば、圧延に対し平行な方向と直角な
方向とが共に磁気特性のすぐれたものとなり、巻鉄心の
ような形状にしなくても通常のEIコアやLコアの積鉄
心により、高効率の小型のトランスが得られると予想さ
れる。このような、{100}<001>方位を有する電磁鋼板の
製造方法は、古くから種々検討されてきた。しかしなが
ら現実にはこのような鋼板は、未だ製造が実現されてい
ない。
On the other hand, if a steel plate made of a crystal having the <001> axis parallel to the rolling direction and the {100} plane being parallel to the plate surface is obtained, the direction parallel to the rolling is obtained. Both perpendicular directions have excellent magnetic properties, and it is expected that a highly efficient and compact transformer can be obtained with a normal EI core or L core laminated core without having a shape like a wound core. Various methods for producing such an electrical steel sheet having the {100} <001> orientation have been studied for a long time. However, in reality, such a steel sheet has not yet been manufactured.

【0007】最近、在来の方向性電磁鋼板がゴス方位を
優先方位とするのに対し、鋼板中の結晶の {100}面が鋼
板の面に平行であるような電磁鋼板が開発されている。
この特開平1-108345号公報に提示された発明は、磁化容
易軸の<001> 方向が鋼板に平行な面内に含まれ、それが
種々の方向を取るもので、仮に面内回転方位と名付ける
が、モータのような磁化の方向が板の面内であらゆる方
向を取るような用途には好ましいものである。
[0007] Recently, electrical steel sheets have been developed in which the {100} plane of the crystal in the steel sheet is parallel to the plane of the steel sheet while the conventional grain-oriented electrical steel sheet has the Goss orientation as the preferred orientation. .
The invention disclosed in Japanese Patent Application Laid-Open No. 1-108345 discloses that the <001> direction of the axis of easy magnetization is included in a plane parallel to the steel sheet and takes various directions. Although named, it is preferable for an application such as a motor in which the direction of magnetization takes any direction in the plane of the plate.

【0008】この {100}面が鋼板の面に平行である電磁
鋼板の製造方法は、C、MnおよびSiを適度に含む所
定板厚の鋼板にを加熱し、まず、真空または弱脱炭性雰
囲気中でゆるやかな脱炭をおこなわせる。この場合の脱
炭の温度は、鋼がオーステナイト(γ)域ないしはオー
ステナイト+フェライト(γ+α)の二相域であって、
かつC濃度が0.01%を十分下回る極低濃度にまで脱炭さ
れれば、完全なフェライト(α)相となるような範囲と
する。そうするとゆるやかな脱炭によって表面に、板面
に垂直な方向に<001> 軸、ないしは板面に平行に{100}
面をもつ結晶が高密度に生成する。
[0008] In this method for producing an electromagnetic steel sheet having a {100} plane parallel to the steel sheet, a steel sheet of a predetermined thickness containing C, Mn and Si is heated first, and then a vacuum or weak decarburization is applied. Slow decarburization is performed in the atmosphere. In this case, the decarburization temperature is such that the steel is in an austenite (γ) region or a two-phase region of austenite + ferrite (γ + α),
If the C concentration is decarburized to an extremely low concentration that is sufficiently lower than 0.01%, the range is set so that a complete ferrite (α) phase is obtained. Then, by slow decarburization, the <001> axis on the surface, in the direction perpendicular to the plate surface, or {100} parallel to the plate surface
Crystals with planes are generated at high density.

【0009】続いて、強脱炭性雰囲気中にて、内部の鋼
がA1 点以上でかつ上記の第一次脱炭焼鈍の温度以下の
温度範囲で、第二次の脱炭焼鈍をおこない、表面からα
粒を成長させると共に鋼板全体を充分脱炭する。そうす
ると、板面に平行な{100} 面をもつ結晶のきわめて多い
電磁鋼板が得られると言うものである。
[0009] Then, the strength at decarburizing atmosphere, the interior of the steel at a temperature below the temperature range of the primary decarburization annealing and the at least one point A, performs a secondary decarburization annealing , Α from the surface
The grains are grown and the entire steel sheet is sufficiently decarburized. Then, it can be said that an electromagnetic steel sheet having a very large number of crystals having a {100} plane parallel to the sheet surface can be obtained.

【0010】表面層にて板面に平行な{100} 面をもつ結
晶が、とくにゆるやかな脱炭条件でよく発達するのは、
フェライト粒の{100} 面の表面エネルギーが他の方位の
面より小さいため優先的に成長すること、およびそのエ
ネルギー差がα相となった層が薄いほど大きいことによ
ると考えられる。そしてこのようにして作られた表層の
粒が核となって、脱炭によりγ相からα相に変態しつつ
鋼板内部へ成長していくのである。
[0010] Crystals having {100} planes parallel to the plate surface in the surface layer develop well, especially under mild decarburization conditions.
It is considered that the ferrite grains grow preferentially because the surface energy of the {100} plane is smaller than the planes of other orientations, and that the difference in energy is due to the fact that the thinner the α phase layer, the greater the energy difference. Then, the surface grains formed in this manner serve as nuclei, and grow into the inside of the steel sheet while transforming from the γ phase to the α phase by decarburization.

【0011】また、特開平7-173542号公報に提示された
発明は、上記の表面における板面に平行な{100} 面をも
つ結晶核の発生とその成長とが、酸化物系の焼鈍分離剤
を層間に挟んだタイトコイル、あるいは積層した板によ
り、減圧下で脱炭焼鈍することによっても実現できると
している。ことに、焼鈍温度を高くし、処理時間の短縮
やより一層の{100} 面方位の発達を計ろうとする時、雰
囲気ガスによる脱炭処理では板の層間の隙間を開ける必
要があるが、その隙間を開けることによって生ずる高温
での鋼板の変形は多少の修正では対処できず、積層して
使用する電磁鋼板として使用できないものとなってしま
う。これに対し、焼鈍分離剤を挟んで積層すればこのよ
うな変形は阻止し得る。
Further, the invention presented in Japanese Patent Application Laid-Open No. Hei 7-73542 discloses that the generation and growth of crystal nuclei having a {100} plane parallel to the plate surface on the above-described surface are caused by the oxide-based annealing separation. It can also be realized by performing decarburization annealing under reduced pressure using a tight coil or a laminated plate in which the agent is sandwiched between layers. In particular, when increasing the annealing temperature to shorten the processing time and to further develop the {100} plane orientation, it is necessary to open the gap between the layers of the sheet in the decarburization treatment using atmospheric gas. The deformation of the steel sheet at a high temperature caused by opening the gap cannot be dealt with by a slight modification, and cannot be used as an electromagnetic steel sheet used for lamination. On the other hand, such a deformation can be prevented by laminating with an annealing separator interposed therebetween.

【0012】さらに、焼鈍分離剤を選定することによ
り、脱炭焼鈍過程で脱Mnを生じさせるとこが可能とな
るが、この脱Mnは{100} 面方位の発達をより一層促進
させる効果があるとしている。
Further, by selecting an annealing separator, it is possible to remove Mn in the decarburization annealing process, but the removal of Mn has the effect of further promoting the development of the {100} plane orientation. And

【0013】このようにして形成される{100} 面方位
は、板の面内では特定の方向性をもたず、モータのよう
な磁化方向が回転する場合への適用には効果を発揮す
る。しかしながら、トランスのEIコアやLコアのよう
に、特に直交する2方向の磁気特性がすぐれたものが要
求される場合には、必ずしも充分とはいえない。
The {100} plane orientation formed in this manner does not have a specific directionality in the plane of the plate, and is effective when applied to a case where the magnetization direction rotates like a motor. . However, it is not necessarily sufficient when transformers having excellent magnetic properties in two orthogonal directions are required, such as an EI core or an L core of a transformer.

【0014】[0014]

【発明が解決しようとする課題】本発明は、小型トラン
スのEIコアのような用途に適した、とくに圧延方向と
それに直交する方向との二方向の磁気特性が同時にすぐ
れた電磁鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing an electromagnetic steel sheet which is suitable for applications such as an EI core of a small transformer, and in particular, has excellent magnetic properties in two directions, namely, a rolling direction and a direction orthogonal thereto. Is provided.

【0015】[0015]

【課題を解決するための手段】本発明者らは、このよう
な表面エネルギーにより {100}面方位を発達させる方法
を基にして、さらに{100}<001>の立方晶方位を有する電
磁鋼板の製造方法を種々調査した。 {100}面方位の結晶
は、鋼の表面において再結晶したα相ないしはγ相から
の変態によるα相にて他の面方位との表面エネルギーの
差により形成されることから、板の圧延方向に対して特
定の軸方向を持ったものは形成され難い。しかしなが
ら、この調査結果から脱炭焼鈍前の素地鋼の集合組織
が、形成された {100}面方位の結晶粒の軸方向に影響す
ることが見いだされたので、熱間圧延条件、冷間圧延の
圧下率、中間焼鈍、さらには温間圧延の適用等の効果の
調査をおこなった。
Means for Solving the Problems The present inventors have developed a magnetic steel sheet having a {100} <001> cubic crystal orientation based on a method of developing a {100} plane orientation using such surface energy. Were investigated in various ways. The {100} plane orientation crystal is formed by the difference in surface energy from other plane orientations in the α phase due to transformation from the α or γ phase recrystallized on the steel surface. However, those having a specific axial direction are difficult to be formed. However, the results of this investigation found that the texture of the base steel before decarburization annealing affected the axial direction of the formed {100} crystal grains. The effects of the rolling reduction, intermediate annealing, and the application of warm rolling were investigated.

【0016】その結果、通常の一方向の圧延のみでは実
現できないが、熱間圧延および冷間圧延を含めた圧延工
程において、元の圧延方向とそれに直交する方向との二
方向の直交圧延を施すことによって最終の焼鈍で{100}<
001>の立方晶方位が得られることが明らかになった。こ
のような直交圧延は、一般には冷間圧延の段階にておこ
なわれることが多く、この {100}面方位を得る場合にお
いても冷間圧延での直交圧延が <001>軸を揃えるのに有
効であった。
As a result, although it cannot be realized only by ordinary one-way rolling, in a rolling process including hot rolling and cold rolling, orthogonal rolling in two directions of an original rolling direction and a direction orthogonal thereto is performed. In the final annealing by {100} <
It was found that a cubic orientation of 001> was obtained. Such orthogonal rolling is generally performed at the stage of cold rolling, and even when obtaining the {100} plane orientation, orthogonal rolling in cold rolling is effective for aligning the <001> axis. Met.

【0017】ところが、鋼組成を限定すれば、通常考え
られる冷間圧延段階ばかりでなく熱間圧延段階において
直交圧延を施すことによっても、最終焼鈍にて{100}<00
1>方位が得られることがあきらかになったのである。す
なわち熱間圧延の段階で直交圧延をおこなえば、その後
の冷間圧延は通常の一方向のみの圧延で十分{100}<001>
の立方晶方位が得られ、さらにまた熱間圧延後、引続き
その鋼板の幅方向に冷間圧延することによっても{100}<
001>方位が得られた。このように、熱間圧延と冷間圧延
を含めてどこかの段階で直交圧延をおこなえばよいとい
うことは、この鋼板の実生産の場においては極めて有利
な事象である。
However, if the steel composition is limited, it is possible to perform {100} <00 in the final annealing by performing orthogonal rolling not only in the normally conceivable cold rolling stage but also in the hot rolling stage.
It became clear that 1> direction could be obtained. That is, if orthogonal rolling is performed at the stage of hot rolling, the subsequent cold rolling is sufficient in normal unidirectional rolling only {100} <001>
The cubic orientation is obtained by hot rolling and then cold rolling in the width direction of the steel sheet.
001> orientation was obtained. Thus, the fact that the orthogonal rolling may be performed at any stage including the hot rolling and the cold rolling is a very advantageous event in the field of actual production of this steel sheet.

【0018】{100}<001>の立方晶方位が直交圧延を施す
ことによって得られるのは、表層における {100}面方位
形成の際、素地に残存しているα相の圧延集合組織が影
響しているためと考えられた。前述のように、{100} 面
方位の初期の結晶は、γ相ないしはγ+α相の鋼の表面
の脱炭により生じた薄層のα相において、板面方向に対
しては特定の軸方向をもたずに形成される。ここで、初
期の {100}面方位の結晶粒を特定軸<001> にできるだけ
多く配向させるには、素地の鋼に存在する圧延の集合組
織を大きく関与させる必要があると推定された。
The cubic orientation of {100} <001> can be obtained by performing orthogonal rolling because the rolling texture of the α-phase remaining in the substrate during the formation of the {100} plane orientation in the surface layer is affected. It was thought that it was. As described above, the initial crystal of the {100} plane orientation has a specific axial direction with respect to the plate surface direction in the thin α phase generated by decarburization of the steel surface of the γ phase or γ + α phase. It is formed without lingering. Here, it was presumed that the texture of rolling existing in the base steel had to be greatly involved in order to orient the crystal grains of the initial {100} plane to the specific axis <001> as much as possible.

【0019】圧延の集合組織は、一般にγ相の温度域で
の圧延では顕著には形成され難く、α相域またはα+γ
相域における圧延によって導入される。また、たとえα
相での圧延により集合組織が形成されていても、加熱に
よるα相からγ相への変態の際にランダム化してしま
う。したがって、圧延の集合組織をできるだけ多く残存
させ、しかも最終焼鈍の際に、表面に脱炭による薄層の
α相を形成させるためには、脱炭の温度に加熱された素
地は、α相中にその圧延の影響を有しているγ+α相で
なければならないのである。
The rolling texture is generally not significantly formed by rolling in the temperature range of the γ phase, and the texture of the α phase or α + γ
Introduced by rolling in the phase zone. Also, even if α
Even if a texture is formed by rolling in a phase, it is randomized during transformation from the α phase to the γ phase by heating. Therefore, in order to leave as much of the texture of the rolling as possible and to form a thin α phase by decarburization on the surface during the final annealing, the substrate heated to the decarburization temperature must contain Therefore, it must be a γ + α phase which has the effect of the rolling.

【0020】脱炭、あるいは脱炭および脱Mnによって
{100}面方位を発達させるのに適した鋼組成の範囲で、
直交圧延をおこなうことにより{100}<001>方位への配向
性がより強く得られる組成を調査の結果、熱間圧延の段
階ではα+γの二相であればよいことがわかった。通常
の鋼の熱間圧延は高温のγ相の温度域でおこなわれるの
で、もともと圧延の集合組織が発達しにくいγ相での圧
延の直後再結晶し、さらに温度の降下でα相に変態し
て、再結晶と変態の二段階のランダム化を経由するた
め、明瞭な圧延の集合組織は残らない。これに対し、α
+γの二相域での熱間圧延は、はっきりした圧延の集合
組織が残存する。
By decarburization or decarburization and de-Mn
In the range of steel composition suitable for developing {100} plane orientation,
Investigation of the composition that can obtain stronger orientation in the {100} <001> direction by orthogonal rolling revealed that it was sufficient to use α + γ two phases in the hot rolling stage. Normally, hot rolling of steel is performed in the high γ phase temperature range. Therefore, clear rolling texture does not remain because the process goes through two-stage randomization of recrystallization and transformation. On the other hand, α
In hot rolling in the two-phase region of + γ, a clear rolling texture remains.

【0021】そこで、さらに鋼の圧延加工性、磁気特
性、二相組織の形成範囲を配慮し、化学組成、圧延条
件、脱炭処理条件等の検討をおこない、このような顕著
な{100}<001>の立方晶方位を得るための最適な製造条件
の範囲を明確にして、本発明を完成させた。本発明の要
旨は次のとおりである。
Therefore, further consideration was given to the chemical composition, rolling conditions, decarburization treatment conditions, etc. in consideration of the rolling workability, magnetic properties, and the range of formation of the two-phase structure of the steel, and such remarkable {100} < The present invention has been completed by clarifying the range of optimal manufacturing conditions for obtaining a cubic orientation of 001>. The gist of the present invention is as follows.

【0022】(1) 重量%で、C:0.02〜 0.2%の、Si
とMnの含有量が下記の式を満足する鋼により、互いに
直交する二方向に圧延をおこなって得た鋼板を、焼鈍分
離剤として脱炭を促進する物質、または脱炭を促進する
物質と脱Mnを促進する物質とを用い、減圧下で焼鈍を
おこなうことを特徴とする磁気特性のすぐれた二方向性
電磁鋼板の製造方法。
(1) C: 0.02-0.2% by weight of Si
A steel sheet obtained by rolling in two directions orthogonal to each other by using a steel having a content of Mn and Mn that satisfies the following formula is used as an annealing separator, a substance that promotes decarburization or a substance that promotes decarburization. A method for producing a bi-directional electrical steel sheet having excellent magnetic properties, wherein annealing is performed under reduced pressure using a substance that promotes Mn.

【0023】 Si(%)+ 0.5Mn(%)≦4 ・・・・・・・・・・・ (1) Si(%)− 0.5Mn(%)≧1.5 ・・・・・・・・・・・ (2) Mn(%)≧0.2 ・・・・・・・・・・・・・・・・・・ (3) (2) 互いに直交する二方向の圧延を、α+γの二相温度
域でおこない、その後α相の温度範囲で一方向に圧延す
ることを特徴とする(1) に記載の二方向性電磁鋼板の製
造方法。
Si (%) + 0.5Mn (%) ≦ 4 (1) Si (%) − 0.5Mn (%) ≧ 1.5 (1)・ ・ (2) Mn (%) ≧ 0.2 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) (2) Rolling in two directions perpendicular to each other is performed in α + γ two-phase temperature range. The method for producing a bidirectional magnetic steel sheet according to (1), wherein the steel sheet is rolled in one direction within a temperature range of α phase.

【0024】(3) 互いに直交する二方向の圧延として、
α+γの二相温度域で一方向の圧延をおこない、その圧
延方向に対して直交する方向にα相の温度範囲で圧延す
ることを特徴とする(1) に記載の二方向性電磁鋼板の製
造方法。
(3) As rolling in two directions perpendicular to each other,
2. The production of a bidirectional electrical steel sheet according to (1), wherein rolling is performed in one direction in a two-phase temperature range of α + γ, and rolling is performed in a temperature range of α-phase in a direction orthogonal to the rolling direction. Method.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

I、化学組成 Cは、脱炭にともなうγ→α変態を利用した集合組織制
御をおこなうため、素材には0.02%以上のCを含んでい
る必要がある。0.02%未満では、脱炭する前からすべて
α一相となっている場合があり変態を活用できない。ま
た、Cの含有量が多くなると、脱炭に長時間要するばか
りでなく、圧延加工が困難となるので、多くても 0.2%
までである。すなわち、素材のCの含有範囲は、0.02〜
0.2%とする。なお、より安定してγ→α変態を起こさ
せ、かつ加工性や脱炭時の効率の向上から、望ましいの
は0.04〜0.08%である。
I. Chemical composition C is required to contain 0.02% or more of C in the material in order to control texture using the γ → α transformation accompanying decarburization. If it is less than 0.02%, all phases may be in α-phase before decarburization, and the transformation cannot be used. When the content of C is increased, not only long time is required for decarburization, but also rolling becomes difficult.
Up to. That is, the content range of C in the material is 0.02 to
0.2%. Note that, from the viewpoint of more stably performing the γ → α transformation and improving the workability and the efficiency at the time of decarburization, the preferable content is 0.04 to 0.08%.

【0026】Cの存在は磁気特性に悪影響をおよぼすの
で、脱炭後のC含有量は少なければ少ないほどよく、
0.005%以下とするのが望ましい。
Since the presence of C has an adverse effect on magnetic properties, the smaller the C content after decarburization, the better.
It is desirable to make it 0.005% or less.

【0027】Mnは脱炭による集合組織形成の際、同時
に脱Mnをおこなわせることにより、好ましい方位をよ
り一層効果的に発達させる効果がある。このためには、
焼鈍前に 0.2%以上、好ましくは 0.3%以上含有してい
る必要がある。
Mn has an effect of developing a preferred orientation more effectively by simultaneously removing Mn when forming a texture by decarburization. To do this,
Before annealing, it must be contained at least 0.2%, preferably at least 0.3%.

【0028】Siは電気抵抗を増し、鉄損の一部を構成
する渦電流損を低減させる。また、Siの添加は脱炭に
よるα相出現の温度を高くできる効果があり、約 1.8%
を超えると、十分脱炭した場合は温度の如何にかかわら
ずγ相は消失する。本発明の{100} 面方位の形成にはα
相での高温処理が必要であるが、Siが十分多い場合、
脱炭により容易にα一相となる。ただしMnの存在はα
相出現の温度を低下させる傾向があるので、Mn量に応
じ下記(2) 式にてSi量の下限を規制する。一方、Si
含有量の増加は鋼を脆化させ、変形抵抗を増して圧延を
困難にし、さらには磁束密度を低下させる。Mnも変形
抵抗を増し圧延を困難にすることから、SiとMnの含
有量の上限を下記(1) 式のように規制する。
Si increases the electric resistance and reduces the eddy current loss which forms a part of the iron loss. In addition, the addition of Si has the effect of increasing the temperature at which the α-phase appears due to decarburization.
When the temperature exceeds γ, the γ phase disappears regardless of the temperature when the decarburization is sufficient. For the formation of the {100} plane orientation of the present invention, α
High temperature treatment in the phase is necessary, but if there is enough Si,
It easily becomes α-phase by decarburization. Where Mn is α
Since the temperature at which a phase appears tends to decrease, the lower limit of the amount of Si is regulated by the following equation (2) according to the amount of Mn. On the other hand, Si
Increasing the content makes the steel brittle, increases the deformation resistance, makes rolling difficult, and further reduces the magnetic flux density. Since Mn also increases deformation resistance and makes rolling difficult, the upper limits of the contents of Si and Mn are regulated as in the following equation (1).

【0029】 Si(%)+ 0.5Mn(%)≦4 ・・・・・・・・・・・ (1) Si(%)− 0.5Mn(%)≧1.5 ・・・・・・・・・・・ (2) その他、不可避的に混入する不純物は、加工性または磁
気特性を劣化させるので、できるだけ少ない方が望まし
い。
Si (%) + 0.5Mn (%) ≦ 4 (1) Si (%) − 0.5Mn (%) ≧ 1.5 (1)・ ・ (2) In addition, impurities that are inevitably mixed deteriorate the workability or magnetic properties, so it is desirable that the impurities be as small as possible.

【0030】また、Alは鋳込み時の鋳片の健全性を確
保したりNを固定する目的で、特に規制はなくても鋼に
添加される場合が多いが、本発明では、磁気特性を劣化
させる窒化物を形成することや、脱炭焼鈍時表面に酸化
物を形成して {100}面方位の形成を阻害するので、 0.0
03%以下とするのが望ましい。
In addition, Al is often added to steel for the purpose of securing the soundness of the slab at the time of casting or fixing N, although there is no particular restriction, but in the present invention, the magnetic properties deteriorate. Since the formation of nitrides that cause the formation of oxides and the formation of oxides on the surface during decarburization annealing hinder the formation of {100} plane orientation,
It is desirable to make it 03% or less.

【0031】II、圧延条件 上述の化学組成を有する鋼を熱間圧延および冷間圧延を
おこなって、所定板厚に仕上げるが、その圧延の際に直
交圧延をおこなう。熱間圧延に供する鋼素材は鋳塊の分
塊圧延によるスラブ、連続鋳造によるスラブ、あるいは
近年発達してきた薄鋳片スラブでもよい。ここで、熱間
圧延とは、γ+α相での圧延であることとし、冷間圧延
とは、α相での圧延であることとする。鋼のC、Si、
およびMnの含有量が上述の本発明で定める範囲にある
とき、一般の熱間圧延に適用される大略 850℃以上の温
度ではすべてγ+α相であり、これを下回る温度ではα
一相である。
II, Rolling Conditions The steel having the above-mentioned chemical composition is subjected to hot rolling and cold rolling to finish to a predetermined sheet thickness. At the time of the rolling, orthogonal rolling is performed. The steel material to be subjected to hot rolling may be a slab obtained by slab rolling of an ingot, a slab obtained by continuous casting, or a thin slab slab developed in recent years. Here, hot rolling refers to rolling in the γ + α phase, and cold rolling refers to rolling in the α phase. C, Si,
When the contents of Mn and Mn are within the range defined by the above-mentioned present invention, the temperature is generally γ + α phase at a temperature of approximately 850 ° C. or higher applied to general hot rolling, and α = α phase at a temperature lower than this.
One phase.

【0032】{100}<001>の立方晶方位を得るためには、
圧延方向および幅方向の両方向とも、それぞれの圧下率
が30%以上、望ましくは40%以上の直交圧延をおこなう
必要がある。直交圧延は、一般には冷間圧延の段階にお
いておこなわれることが多く、本発明で定める化学組成
の鋼にこの冷間の直交圧延を適用しても、十分な効果が
得られる。しかしながら、次のような圧延方法を実施す
ることにより、さらに一層顕著な効果が得られ、その
上、長尺の鋼板の製造を容易にすることができる。
In order to obtain a cubic orientation of {100} <001>,
In both the rolling direction and the width direction, it is necessary to perform orthogonal rolling with a rolling reduction of 30% or more, preferably 40% or more. Orthogonal rolling is generally performed at the stage of cold rolling, and sufficient effects can be obtained even if the cold orthogonal rolling is applied to steel having a chemical composition defined in the present invention. However, by carrying out the following rolling method, a still more remarkable effect is obtained, and furthermore, the production of a long steel plate can be facilitated.

【0033】(a) 熱間圧延の段階で直交圧延をおこなっ
た後、圧延方向、すなわち一方向の冷間圧延をおこなっ
て所要の板厚に仕上げる。この熱間圧延における直交圧
延は、両方向のそれぞれの合計の圧下率が30%以上であ
れば、圧延の順序は不問であり、圧延方向と幅方向の2
回の圧下でもよく、両方向の圧延を適宜組合わせ何度か
に圧下を分けて圧延してもよい。また、両方向の圧下率
は等しければその方が望ましいが、必ずしも同一である
必要はない。
(A) After orthogonal rolling is performed in the hot rolling stage, cold rolling is performed in the rolling direction, that is, in one direction, to finish to a required thickness. In the orthogonal rolling in the hot rolling, the rolling order does not matter as long as the total rolling reduction in each of the two directions is 30% or more.
Rolling in both directions may be performed, or rolling in both directions may be appropriately combined, and rolling may be performed several times by reducing the rolling. Further, it is preferable that the rolling reductions in both directions are equal, but it is not always necessary that they be the same.

【0034】なお、複数回方向を変えて圧延した場合、
一方向の合計の圧下率とは、その方向の圧延開始から最
終パスまでに減少した累計板厚量の、圧延開始板厚に対
する比である。
In the case where rolling is performed a plurality of times while changing the direction,
The total rolling reduction in one direction is the ratio of the total thickness reduced in the direction from the start of rolling to the final pass to the rolling start thickness.

【0035】(b) 熱間圧延後、その鋼板の幅方向に冷間
圧延を施す。この場合も、それぞれの方向の圧延の合計
の圧下率は30%以上とする。
(B) After hot rolling, the steel sheet is subjected to cold rolling in the width direction. Also in this case, the total rolling reduction in each direction is 30% or more.

【0036】各方向の合計の圧下率は30%を下回ると十
分な{100}<001>方位が得られなくなり、より確実にこの
立方晶方位を得るには、それぞれ40%以上の圧下が望ま
しい。また上記(a) および(b) のいずれの圧延方法の場
合も、圧延を容易にするため、冷間圧延の前または冷間
圧延の途中にて中間焼鈍をおこなってもよい。中間焼鈍
の温度はとくには定めないが、必要な軟化が得られれば
よく、時間短縮のため850℃をこえるα+γ相温度域で
もかまわない。
If the total rolling reduction in each direction is less than 30%, a sufficient {100} <001> orientation cannot be obtained, and in order to more reliably obtain this cubic crystal orientation, a reduction of 40% or more is desirable. . In any of the rolling methods (a) and (b), intermediate annealing may be performed before cold rolling or during cold rolling in order to facilitate rolling. Although the temperature of the intermediate annealing is not particularly defined, it is sufficient that the necessary softening is obtained, and the temperature range of the α + γ phase exceeding 850 ° C. may be used for shortening the time.

【0037】III 、最終焼鈍 直交圧延後、脱炭を促進する物質、または脱炭と脱Mn
の両方を促進する物質を含む焼鈍分離剤を、鋼板と鋼板
との間に挟んで、長尺の鋼帯の場合はコイル状に巻き、
切板状の場合は積層して、10Torr以下の真空ないしは減
圧下で焼鈍する。脱炭を促進する物質は、SiO2 、C
2 3 、TiO2 、FeO、V2 3、V2 5 、V
O等の酸化物である。
III, Final Annealing After orthogonal rolling, a substance that promotes decarburization, or decarburization and Mn removal
An annealing separator containing a substance that promotes both is sandwiched between steel sheets, and in the case of a long steel strip, wound in a coil shape,
In the case of a cut plate, they are laminated and annealed under a vacuum or reduced pressure of 10 Torr or less. Substances that promote decarburization are SiO 2 , C
r 2 O 3 , TiO 2 , FeO, V 2 O 3 , V 2 O 5 , V
Oxides such as O.

【0038】従来の極低炭素鋼板や電磁鋼板の焼鈍によ
る脱炭方法は、Feに対しては還元性であると同時に鋼
中のCに対しては酸化性となるように調整した、水素を
含む湿性の雰囲気中で焼鈍するものである。すなわち模
式的に書けば次のような反応で脱炭が進行する。
The conventional method of decarburizing an ultra-low carbon steel sheet or an electromagnetic steel sheet by annealing is such that hydrogen adjusted so as to be reducing for Fe and oxidizing for C in steel is used. Annealing is performed in a wet atmosphere. In other words, if schematically described, decarburization proceeds by the following reaction.

【0039】 (固相)+H2 O(気相)→CO(気相)+H2 (気相) この場合、Cが酸化されてCOとなり脱炭が進むと同時
に、SiやMnも酸化される。Cは鋼中での拡散速度が
速く容易に排除されるが、SiやMnは酸化物となって
鋼板表面に堆積する。この表面の酸化物は、鋼板表面の
エネルギー状態を変化させ、表層におけるα相の表面エ
ネルギーによる{100} 面方位の発達を阻害する。
C (solid phase) + H 2 O (gas phase) → CO (gas phase) + H 2 (gas phase) In this case, C is oxidized to CO and decarburization proceeds, and Si and Mn are also oxidized. You. C has a high diffusion rate in steel and is easily eliminated, but Si and Mn form oxides and deposit on the steel sheet surface. The oxide on the surface changes the energy state of the steel sheet surface and inhibits the {100} plane orientation from being developed by the surface energy of the α phase in the surface layer.

【0040】これに対し本発明では、鋼板表面に酸化物
を接触させ、かつ減圧下で高温にすることにより、たと
えば酸化物がSiO2 の場合、次式のような反応によっ
て脱炭が進行すると考えられる。
On the other hand, in the present invention, when the oxide is brought into contact with the surface of the steel sheet and heated to a high temperature under reduced pressure, for example, when the oxide is SiO 2 , the decarburization proceeds by the following reaction. Conceivable.

【0041】 (固相)+SiO2 (固相)→CO(気相)+SiO(固相) この場合、反応に関与するCおよびO(SiO2 によ
る)はいずれも固相であり、COが気相であるので、減
圧することによって、反応生成物であるCOが強力に排
除され、脱炭が推進される。しかも気相中にSiやMn
を酸化させるO(H2 O)がないため、表面にこれらの
酸化物が生じない。
C (solid phase) + SiO 2 (solid phase) → CO (gas phase) + SiO (solid phase) In this case, both C and O (depending on SiO 2 ) involved in the reaction are solid phases, and CO Since it is in the gas phase, by reducing the pressure, CO as a reaction product is strongly removed, and decarburization is promoted. Moreover, Si and Mn are contained in the gas phase.
Since there is no O (H 2 O) for oxidizing the oxide, these oxides do not occur on the surface.

【0042】上記の減圧下の高温での脱炭においては、
同時に鋼中のMnの昇華による脱Mnが進行する。この
脱Mnは焼鈍分離剤によっては促進され、その効果があ
る物質はTiO2 、Ti2 3 、ZrO2 等である。こ
れらは、昇華したMnを吸収し、鋼板表面近傍のMnの
蒸気圧を低下させることによって脱Mnを促進させる効
果があると考えられる。TiO2 は脱炭を促進する物質
でもあり、これを主体とする焼鈍分離剤を用いれば、脱
炭と脱Mnの両方を促進させることができる。
In the above-described decarburization at a high temperature under reduced pressure,
At the same time, the removal of Mn by sublimation of Mn in the steel proceeds. The removal of Mn is promoted by the annealing separator, and substances having the effect are TiO 2 , Ti 2 O 3 , ZrO 2 and the like. These are considered to have the effect of absorbing sublimed Mn and promoting the removal of Mn by reducing the vapor pressure of Mn near the steel sheet surface. TiO 2 is also a substance that promotes decarburization. If an annealing separator mainly containing TiO 2 is used, both decarburization and Mn removal can be promoted.

【0043】焼鈍分離剤は、粉末状のものを鋼板に塗付
してもよいし、それらの繊維状のもの、または繊維から
なるシート状のもの、もしくはそれら繊維やシートに粉
末を混入させたものでもよい。また、上記酸化物は1種
でもよいし、2種以上を混合したものでもよい。さら
に、その効果を著しく減退させない範囲で、Al23
などのより安定な酸化物や、BN、SiCなどの反応に
直接関係の無い物質を混合してもよい。
As the annealing separating agent, a powdery material may be applied to a steel plate, a fibrous material thereof, a sheet-like material composed of fibers, or a powder mixed with these fibers or sheets. It may be something. The oxides may be used alone or as a mixture of two or more. Further, as long as the effect is not significantly reduced, Al 2 O 3
A material that is not directly related to the reaction, such as a more stable oxide such as BN and SiC, may be mixed.

【0044】以上の焼鈍分離剤を接触させて加熱し脱炭
する場合、10Torr以下の減圧ないしは真空とする。これ
は、10Torrを超える圧力では、脱炭反応により生じたC
Oが鋼板表面からなかなか排除されず、反応の進行が著
しく遅滞し、その上Mnの昇華が抑制され、脱Mnが生
じにくくなるためである。10Torr以下でも鋼の組成によ
っては脱炭できない場合があり、望ましいのは 1Torr以
下である。なお、圧力の下限は低ければ低いほど、すな
わち真空度は高ければ高いほどよいが、工業的に実施す
るには自ずから限界がある。
When heating and decarburizing by contacting the above annealing separator, the pressure is reduced or reduced to 10 Torr or less. This is because at pressures above 10 Torr, the C
This is because O is not easily removed from the surface of the steel sheet, and the progress of the reaction is significantly slowed down, and furthermore, the sublimation of Mn is suppressed and de-Mn is less likely to occur. Even if it is less than 10 Torr, it may not be possible to decarburize it depending on the composition of the steel. Note that the lower the lower limit of the pressure is, the better the degree of vacuum is, that is, the higher it is. However, there is naturally a limit for industrial implementation.

【0045】焼鈍分離剤を用い、減圧下で脱炭する焼鈍
は、鋼板表面に数μm 以上の、{100}<001>方位の再結晶
粒の層ができればよい。その後は、さらに全板厚にわた
って脱炭が完了するまで、この減圧下の焼鈍をそのまま
続けてもよいが、水素を含む湿性雰囲気にてより高い圧
力、ないしは常圧で脱炭を行ってもよい。
The annealing for decarburization under reduced pressure using an annealing separating agent may be performed if a layer of recrystallized grains having a {100} <001> orientation of several μm or more is formed on the surface of the steel sheet. Thereafter, the annealing under reduced pressure may be continued as it is until decarburization is completed over the entire thickness, but decarburization may be performed at a higher pressure in a humid atmosphere containing hydrogen, or at normal pressure. .

【0046】脱炭焼鈍の温度は 850℃以上のα+γ相域
とし、脱炭にともなう変態によりα一相にする。脱炭し
てα一相になる限りにおいてはさらに高温でもよいが、
1300℃を超える温度は工業的に実現するのが困難であ
る。最も効果的に{100}<001>方位を形成できる温度は10
00〜1200℃である。なお、鋼板表面に{100}<001>方位の
再結晶粒の層ができた後の脱炭は、上記のような高温で
なくてもよい。
The decarburizing annealing temperature is in the α + γ phase region of 850 ° C. or higher, and is converted to α one phase by the transformation accompanying decarburization. Higher temperatures may be used as long as they are decarburized to α phase,
Temperatures above 1300 ° C. are difficult to achieve industrially. The temperature at which the {100} <001> orientation can be formed most effectively is 10
00-1200 ° C. The decarburization after the layer of the recrystallized grains having the {100} <001> orientation is formed on the surface of the steel sheet may not be at the high temperature as described above.

【0047】焼鈍の均熱保持時間は、30分から 100時間
の範囲とする。30分未満では脱炭や脱Mnが不十分で表
面の{100}<001>方位の再結晶粒の発達が不十分であり、
100時間を超えて保持しても、効果は飽和し、エネルギ
ーを無駄に消費するだけだからである。
The soaking time for annealing is in the range of 30 minutes to 100 hours. In less than 30 minutes, decarburization and Mn removal are insufficient, and the development of recrystallized grains of {100} <001> orientation on the surface is insufficient,
Keeping it for more than 100 hours will saturate the effect and only waste energy.

【0048】鋼板の平坦化のための焼鈍、表面の絶縁コ
ーティング、等については、従来無方向性電磁鋼板や方
向性電磁鋼板にて採用されているものと同等な方法でよ
く、本発明の方法による電磁鋼板の磁気特性におよぼす
それらの影響は顕著なものではない。
The annealing for flattening the steel sheet, the insulating coating on the surface, and the like may be the same as those conventionally used for non-oriented electrical steel sheets and oriented electrical steel sheets. Their influence on the magnetic properties of electrical steel sheets is not significant.

【0049】[0049]

【実施例】【Example】

〔実施例1〕表1に示す真空溶解鋳造して得た化学組成
の鋼を熱間鍛造し80mm厚のスラブとした。これを1200℃
に加熱後、圧下率50%の圧延をおこなって40mm厚とし、
次いで90゜回転させて熱間圧延を続け、仕上げ温度 880
℃にて 4mm厚とした。酸洗脱スケール後、最終の熱間圧
延と同じ方向に冷間圧延して 1mm厚とし、 900℃にて2
minの中間焼鈍後、さらに同一方向へ冷間圧延して0・35m
m厚とした。また比較のため、同じ鋼の熱間鍛造による8
0mm厚のスラブを用い、1200℃に加熱後同一方向に熱間
圧延して 4mm厚とし、同様に冷間圧延、中間焼鈍、冷間
圧延した0.35mm厚の鋼板も作製した。
Example 1 Steel having a chemical composition obtained by vacuum melting and casting as shown in Table 1 was hot forged into a slab having a thickness of 80 mm. 1200 ℃
After heating, rolled at a reduction of 50% to a thickness of 40 mm,
Then rotate by 90 ° and continue hot rolling, finishing temperature 880
The thickness was 4 mm at ℃. After pickling and descaling, cold-roll in the same direction as the final hot rolling to a thickness of 1 mm,
0.35m after cold annealing in the same direction after intermediate annealing of min
m thickness. For comparison, hot forging of the same steel 8
A 0 mm thick slab was heated to 1200 ° C and hot rolled in the same direction to a 4 mm thickness. Similarly, a 0.35 mm thick steel sheet was cold rolled, intermediately annealed, and cold rolled.

【0050】[0050]

【表1】 [Table 1]

【0051】これらの圧延後の鋼板から幅 250mm、長さ
600mmの板片を切出し、各板片の間に焼鈍分離剤として
48重量%Al2 3 −51重量%SiO2 系の繊維状のも
のを密度0.02 g/cm2 で、合せてさらに脱Mn促進剤と
してTiO2 粉末を密度 0.004 g/cm2 で挟んで積層
し、10-3Torrの真空に排気しつつ 950℃で50h、または
1050℃で12hの焼鈍を実施した。焼鈍後の各板片の炭素
量は、いずれも0.0025%以下であった。
From these rolled steel sheets, a width of 250 mm and a length of
Cut out 600mm plate pieces, and as an annealing separator between each plate piece
48% by weight Al 2 O 3 -51% by weight SiO 2 fibrous material having a density of 0.02 g / cm 2 , and a TiO 2 powder as a Mn removal accelerator are sandwiched at a density of 0.004 g / cm 2 and laminated. And evacuating to 10 -3 Torr for 50 hours at 950 ° C, or
Annealing was performed at 1050 ° C. for 12 hours. The carbon content of each piece after annealing was 0.0025% or less.

【0052】焼鈍後の各板片から、圧延方向とそれに直
交する幅方向の 2方向で、幅30mm、長さ 100mmの試験片
をそれぞれ採取し、単板磁気特性測定装置により試験片
の長さ方向の磁化特性を測定した。またX線回折法によ
り{200} 面の積分強度比を測定した。
A test piece having a width of 30 mm and a length of 100 mm was sampled from each of the annealed strips in two directions, a rolling direction and a width direction orthogonal thereto, and the length of the test piece was measured by a single-plate magnetic property measuring apparatus. The magnetization characteristics in the directions were measured. The integrated intensity ratio of the {200} plane was measured by X-ray diffraction.

【0053】表2にこれらの試験条件と得られた鋼板の
特性を示す。通常の一方向の圧延により得た鋼板の場合
に比較し、{200} 面の積分強度比はほぼ同程度であるに
もかかわらず、本発明の方法により製造した鋼板は、圧
延方向および幅方向の磁気特性がよりすぐれていること
がわかる。すなわち、特定の焼鈍分離剤と焼鈍条件によ
り、{200} 面方位を発達させることができるが、圧延す
る際に直交圧延をおこなえば、とくに圧延の長さ方向と
その直角方向の磁気特性を改善することができるのであ
る。これは、{100}<001>の立方晶方位が発達したことに
よっている。
Table 2 shows the test conditions and the characteristics of the obtained steel sheet. Although the integrated strength ratio of the {200} plane is almost the same as that of the steel sheet obtained by normal unidirectional rolling, the steel sheet manufactured by the method of the present invention has a rolling direction and a width direction. It can be seen that the magnetic properties of the sample are more excellent. In other words, depending on the specific annealing separator and annealing conditions, the {200} plane orientation can be developed. However, if orthogonal rolling is performed during rolling, the magnetic properties in the length direction of the rolling and its perpendicular direction can be improved. You can do it. This is due to the development of the {100} <001> cubic orientation.

【0054】[0054]

【表2】 [Table 2]

【0055】〔実施例2〕表1に示すD鋼を用い、熱間
鍛造して80mm厚のスラブとし、これを1200℃に加熱後、
熱間圧延して 3mm厚に仕上げた。酸洗脱スケール後、90
゜回転させて熱間圧延の幅方向に冷間圧延をおこない、
0.35mm厚とした。これらの圧延後の鋼板から幅 250mm、
長さ 600mmの板片を切出し、前述の実施例1と同じ方法
および条件にて焼鈍分離剤を挟んで積層し、焼鈍をおこ
なった。ただし、焼鈍の温度および時間は1050℃、12h
とした。
Example 2 A steel slab having a thickness of 80 mm was hot forged using steel D shown in Table 1 and heated to 1200 ° C.
It was hot rolled to a thickness of 3 mm. After pickling descaling, 90
゜ Rotate to perform cold rolling in the width direction of hot rolling,
The thickness was 0.35 mm. 250mm wide from these rolled steel sheets,
A plate piece having a length of 600 mm was cut out, laminated under an annealing separator in the same manner and under the same conditions as in Example 1 described above, and annealed. However, annealing temperature and time are 1050 ℃, 12h
And

【0056】焼鈍後、板片の圧延方向とそれに直交する
幅方向の 2方向で、幅30mm、長さ 100mmの試験片をそれ
ぞれ採取し、単板磁気特性測定装置により試験片の長さ
方向の磁化特性を測定した。またX線回折法により{20
0} 面の積分強度比を測定した。
After annealing, test pieces having a width of 30 mm and a length of 100 mm were sampled in two directions, ie, the rolling direction of the sheet piece and the width direction orthogonal thereto, and were measured in the longitudinal direction of the test piece by a single sheet magnetic property measuring apparatus. The magnetization characteristics were measured. In addition, {20
The integrated intensity ratio of the {0} plane was measured.

【0057】表3に結果を示すが、表2に示した試験番
号 4または10の結果と比較して圧延方向と幅方向の特性
差は小さく、どちらの方向もすぐれた磁気特性を示して
いる。
The results are shown in Table 3. Compared with the results of Test No. 4 or 10 shown in Table 2, the difference in the characteristics in the rolling direction and the width direction is small, and both directions show excellent magnetic characteristics. .

【0058】[0058]

【表3】 [Table 3]

【0059】[0059]

【発明の効果】本発明の方法によれば、圧延方向とそれ
に直交する方向との2方向の磁気特性がとくにすぐれた
電磁鋼板が容易に得られる。このような電磁鋼板は、小
型トランスのEIコアやLコアのように、直交する2方
向の磁気特性が同時にすぐれていることを要求される用
途に最適であり、これを適用することによって、小型化
および高効率化が可能となる。
According to the method of the present invention, it is possible to easily obtain an electrical steel sheet having particularly excellent magnetic properties in two directions, ie, a rolling direction and a direction perpendicular thereto. Such an electromagnetic steel sheet is most suitable for applications requiring excellent magnetic properties in two orthogonal directions at the same time, such as an EI core and an L core of a small transformer. And high efficiency can be achieved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.02〜 0.2%の、SiとM
nの含有量が下記の式を満足する鋼により、互いに直交
する二方向に圧延をおこなって得た鋼板を、焼鈍分離剤
として脱炭を促進する物質、または脱炭を促進する物質
と脱Mnを促進する物質とを用い、減圧下で焼鈍をおこ
なうことを特徴とする磁気特性のすぐれた二方向性電磁
鋼板の製造方法。 Si(%)+ 0.5Mn(%)≦4 ・・・・・・・・・・・ (1) Si(%)− 0.5Mn(%)≧1.5 ・・・・・・・・・・・ (2) Mn(%)≧0.2 ・・・・・・・・・・・・・・・・・・ (3)
C. 0.02 to 0.2% of Si and M by weight%.
A steel having a content of n that satisfies the following formula is used to roll a steel sheet obtained by rolling in two directions perpendicular to each other to obtain a material that promotes decarburization as an annealing separator or a material that promotes decarburization and a material that promotes decarburization. A method for producing a bi-directional electrical steel sheet having excellent magnetic properties, wherein annealing is performed under reduced pressure by using a substance that promotes heat treatment. Si (%) + 0.5Mn (%) ≦ 4 ・ ・ ・ (1) Si (%) − 0.5Mn (%) ≧ 1.5 ・ ・ ・ ( 2) Mn (%) ≧ 0.2 (3)
【請求項2】互いに直交する二方向の圧延を、α+γの
二相温度域でおこない、その後α相の温度域で一方向に
圧延することを特徴とする請求項1に記載の二方向性電
磁鋼板の製造方法。
2. The two-way electromagnetic device according to claim 1, wherein rolling in two directions perpendicular to each other is performed in a two-phase temperature range of α + γ, and then rolling is performed in one direction in a temperature range of α-phase. Steel plate manufacturing method.
【請求項3】互いに直交する二方向の圧延として、α+
γの二相温度域で一方向の圧延をおこない、その圧延方
向に対して直交する方向にα温度域で圧延することを特
徴とする請求項1に記載の二方向性電磁鋼板の製造方
法。
3. The rolling in two directions perpendicular to each other, α +
2. The method for producing a bidirectional magnetic steel sheet according to claim 1, wherein rolling is performed in one direction in a two-phase temperature range of [gamma], and rolling is performed in a [alpha] temperature range in a direction orthogonal to the rolling direction.
JP8233742A 1996-09-04 1996-09-04 Manufacture of two directional silicon steel sheet Pending JPH1081915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8233742A JPH1081915A (en) 1996-09-04 1996-09-04 Manufacture of two directional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8233742A JPH1081915A (en) 1996-09-04 1996-09-04 Manufacture of two directional silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH1081915A true JPH1081915A (en) 1998-03-31

Family

ID=16959873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8233742A Pending JPH1081915A (en) 1996-09-04 1996-09-04 Manufacture of two directional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH1081915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
JP2009007642A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Method for producing {100} texture silicon steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
JP2009007642A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Method for producing {100} texture silicon steel sheet

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
EP2940158B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP7133708B2 (en) Annealing separation agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
CN113166872B (en) Double-oriented electrical steel sheet and method for manufacturing same
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3316854B2 (en) Bidirectional electrical steel sheet and method for manufacturing the same
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP4277432B2 (en) Low magnetostrictive bi-directional electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH1081915A (en) Manufacture of two directional silicon steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP4300661B2 (en) Method for producing bi-directional silicon steel sheet with excellent magnetic properties
JP2001098331A (en) Method of producing {100} texture silicon steel sheet
JPS5970722A (en) Production of electrical sheet having small anisotropy
JP4595217B2 (en) Manufacturing method of bi-directional electrical steel sheet
KR100241005B1 (en) The manufacturing method of oriented electric steel sheet with only one cold rolling processed
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JP4306259B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000309858A (en) Silicon steel sheet and its manufacture
JPS59205420A (en) Manufacture of unidirectional silicon steel sheet
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density